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Abstract

This paper investigates the importance of network effects in the demand for ethanol-compatible vehicles
and the supply of ethanol fuel. An indirect network effect, or positive feedback loop, arises in this context
due to spatially-dependent complementarities in the availability of ethanol fuel and the installed base of
ethanol-compatible vehicles. Marketers and social planners are interested in whether these effects exist,
and if so, how policy might accelerate adoption of the ethanol fuel standard within a targeted population.
To measure these feedback effects, I develop an econometric framework that considers the simultaneous
determination of ethanol-compatible vehicle demand and ethanol fuel supply in local markets. The demand-
side of the model considers the automobile purchase decisions of consumers and fleet operators, and the
supply-side model considers the ethanol market entry decisions of competing fuel retailers. The framework
extends extant market entry models by endogenizing the market size shifting fuel retailer profits. I estimate
the model using zip code panel data from four states over a nine year period. The model estimates provide
evidence of a network effect. Under typical market conditions, entry of an additional ethanol fuel retailer
leads to a 6% increase in the probability of ethanol-compatible vehicle purchase. The entry model estimates
imply that the first entrant requires a local installed base of approximately 300 ethanol-compatible vehicles
to be profitable. As an application, I demonstrate that subsidizing fuel retailers to offer ethanol in selective
geographic markets can be an effective policy to indirectly increase ethanol-compatible vehicle sales.
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1 Introduction

In this paper, I examine the role of network effects in the market for ethanol as a transportation fuel. Although

ethanol is a common additive to most forms of motor fuel, my inquiry relates specifically to the adoption of

E85, a blend containing 85% ethanol and 15% gasoline. E85 is classified as an alternative fuel that may only

be used in flex-fuel vehicles (FFVs) that are engineered to process fuel blends of up to 85% ethanol. As with

classical studies of hardware/software systems (e.g., Chou and Shy, 1990; Church and Gandal, 1992, 1993;

Katz and Shapiro, 1994), the network effects of interest here are indirect because they operate through a system

of complementary goods. That is, positive feedback arises in this context because as the “installed base” of

hardware (FFVs) grows, more firms enter the market for compatible software (E85), which in turn leads to

more hardware sales, and so on. The fact that FFV demand and E85 market entry are endogenously determined

makes the identification of network effects a challenging empirical exercise. My first objective for the study is

therefore to consistently measure each “side” of the feedback loop: the effect of E85 availability on flex-fuel

vehicle demand, and the effect of the flex-fuel vehicle installed base on the supply of E85. My second objective

is to explore the marketing policy implications of these measurements for suppliers of flex-fuel vehicles and E85

fuel. A third and more general objective of the paper is to advance an empirical strategy permitting inference of

simultaneous supply and demand in markets with endogenous markets sizes, such as those governed by network

effects.

To achieve these goals, I develop an equilibrium model of flex-fuel vehicle demand and E85 market entry.

The model may be interpreted as a two-sided technology adoption process, with observations of FFV acquisition

(E85 entry) representing vehicle operator (fuel retailer) decisions to adopt the ethanol fuel standard.1 I model

FFV demand as a discrete choice of whether or not to purchase an E85-compatible vehicle, which is a function

of the number of E85 retailers in the local market. The number of E85 retailers is in turn modeled as the

outcome of a competitive market entry game of complete information, in which the installed base of flex-fuel

vehicles determines the size of the market in which E85 retailers compete. To estimate the model, I assemble

a rich panel dataset that encompasses the entire population of FFV purchases and E85 market entry events in

roughly 4,000 Midwestern zip codes over the nine year period 2001-2009.

The panel data format provides several key advantages for econometric identification. First, zip code level

spatial resolution facilitates direct observation of the localized markets in which the network effects of interest
1In the terminology of the technology standards literature (e.g. Farrell and Saloner, 1985), E85 defines a standard of interoperability

for vehicles and fuels, in the same manner that the DVD format defines an interoperability standard for media players and titles.
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operate. Second, repeated observation of these markets admits extremely strong controls for unobservables,

mitigating concerns over a leading source of endogeneity. Third, under the assumption that market outcomes

are sequentially exogenous, lagged endogenous regressors become available as instruments to further address

endogeneity concerns arising from the simultaneous determination of FFV demand and E85 supply. I exploit

these features in a two-step estimation procedure. In the first step, I estimate the FFV demand parameters using

the “System GMM” estimator of Blundell and Bond (1998), instrumenting for the number of E85 retailers

in the market. In the second step, I condition upon the FFV demand estimates and estimate the E85 market

entry model by minimizing differences between observed and model-predicted entry. Predictions of entry are

generated via a novel simulation-based method that solves the reduced form of the FFV demand/E85 entry

system for the equilibrium number of E85 retailers, thereby accounting for the endogeneity of FFV demand

when estimating the E85 retailer profit function.

The model estimates provide evidence of a network effect. The consumer FFV demand estimates suggest

that, under average market conditions, entry of an additional E85 retailer leads to a 6% increase in the probabil-

ity of flex-fuel vehicle purchase. I find a comparably-sized effect of E85 availability on fleet FFV demand.2 The

market entry model estimates imply that an E85 retailer can operate profitably with an installed base of approx-

imately 300 consumer flex-fuel vehicles or an equivalent mixture of consumer and fleet FFVs, where fleet FFVs

deliver 1.4 times the profit contribution of consumer FFVs. To demonstrate application of the model estimates,

I: a) quantify the long-run impact of the network effect on observed FFV sales and E85 market entry, and b)

assess the benefits and costs for FFV manufacturers to subsidize the entry of E85 retailers. The first simulation

attributes 5.6% of historical FFV purchases and 5.3% of E85 market entry events to the network effect. In the

second application, I show that subsidizing E85 market entry can accelerate the adoption of FFVs, but that the

cost effectiveness of this strategy depends critically on targeting promising local markets for intervention.

The paper contributes to several streams of research, the most central of which is the empirical literature

on indirect network effects. Most studies of indirect network effects have considered high tech products such

as consumer electronics and related media titles. Among the products considered by these studies are VCRs

(Ohashi, 2003; Park, 2004), CD/DVD players (Basu et al., 2003; Dranove and Gandal, 2003; Gandal et al., 2000;

Karaca-Mandic, 2011), PDAs (Nair et al., 2004), and video game consoles (Clements and Ohashi, 2005; Dubé

et al., 2010; Lee, 2013; Liu, 2010; Shankar and Bayus, 2003). As high tech products are distributed through

well-established brick-and-mortar and e-commerce channels, feedback in these markets operates through in-
2Fleet vehicles are owned and operated by corporations or government agencies, as opposed to individual consumers.
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creasing the variety of compatible software rather than by expanding its spatial availability, as studied here.

Whereas the previous literature has modeled the aggregate supply of software as a reduced form under free

entry or monopolistic competition, accounting for the build-out of new distribution infrastructure in my setting

calls for an oligopolostic model of fuel retailer entry into local markets. Empirical measurement of such spatial

network effects has been the subject of limited research to date. One notable exception is Rysman (2004), who

investigates indirect network effects in the market for Yellow Pages directories, which have spatial dependence

by nature of their circulation areas. However, Rysman (2004) does not explicitly consider firm market entry

decisions, focusing instead on the role of network effects for competition among incumbent firms. A separate

literature on shopping malls (e.g., Eppli and Benjamin, 1994; Vitorino, 2012) examines spatial network effects

arising through the agglomeration of demand rather than the diffusion of supply.

The paper also adds to the literature on empirical models of market entry. My model follows the approach

of Bresnahan and Reiss (1990, 1991, 1994) to infer retailer profit functions from observations of the number

of firms in the market. This class of models traditionally uses exogenous variation in market size to separately

identify variable profits and fixed costs. I extend the Bresnahan and Reiss framework to allow for an endoge-

nously determined market size, as is implied by a network effect or other situations where entry affects market

potential.3 Also related in this sense are new models in the product-choice literature that combine demand data

with discrete choice models of firms’ location choices in product attribute space (e.g., Draganska et al., 2009).

Relative to this literature, my contribution is to accommodate endogeneity concerns that arise when entry is

potentially conditioned on demand-side unobservables.

From a policy perspective, the paper also contributes to recent research on the economics of ethanol as a

transportation fuel in the United States. Two recent studies include Anderson (2011), who estimates demand for

E85 and finds evidence of fuel-switching behavior among flex-fuel vehicle owners, and Anderson and Sallee

(2011) whose findings suggest that domestic automakers produce flex-fuel vehicles as a means to lower the

cost of complying with federal fuel-economy (CAFE) standards.4 In a closely related paper, Corts (2010)

investigates the mandated use of FFVs by government fleets on the build out of E85 distribution infrastructure.

Corts (2010) develops a reduced form regression model of the number of E85 retailers, but does not explicitly
3A related approach is outlined in Berry and Waldfogel (1999), but their model is more data-intensive, requiring observations of

“software” sales and prices in order to estimate firms’ variable profits. My model is more suitable to contexts where the entire profit
function must be inferred from observations of firm market entry, in combination with rich data on consumer “hardware” adoption.

4Corporate Average Fuel Economy (CAFE) standards require vehicle manufacturers to maintain an overall fuel efficiency rating for
the fleet of vehicles they supply. Under the Alternative Motor Fuels Act of 1988, vehicle manufacturers are granted CAFE credits for
producing alternative fuel vehicles (including FFVs), offsetting lower fuel economy in the remainder of their product line. However,
limitations are placed on the extent to which this compliance “loophole” may be used – FFV production can reduce the fuel economy
rating for a manufacturer’s product line by a maximum of 1.2 MPG.
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consider FFV demand, precluding counterfactual experiments of the sort performed here. As in my study, Corts

(2010) obtains positive effects of the flex-fuel installed base on the number of E85 retailers and finds that fleet

FFVs contribute more to E85 entry than do privately owned FFVs. I compare the findings in more detail when

presenting my results in Section 6.2.

The paper proceeds as follows. In Section 2 I provide an overview of the ethanol fuel industry, followed

by a description of my data in Section 3. I develop the econometric model in Section 4 and discuss estimation

and identification issues in Section 5. Section 6 presents the main estimation results. In Section 7, I present

applications of the results and discuss their strategic implications for firms. Section 8 concludes with a summary

and a discussion of directions for future research.

2 Ethanol fuel industry

Ethanol’s use as a transportation fuel has grown dramatically over the past decade, reaching 8% of U.S. fuel

consumption by volume in 2009 (U.S. EIA, 2011). The overwhelming majority of ethanol in the U.S. is con-

sumed as an additive to “regular” gasoline, which commonly contains up to 10% ethanol (E10). The blending of

ethanol into gasoline has been spurred by a series of public policy initiatives aimed at improving air quality and

increasing the use of renewable fuels. Adding ethanol to gasoline increases the oxygen content of the blend,

which in turn reduces air pollution from fuel combustion. Many states have mandated that ethanol replace

methyl tertiary-butyl ether (MTBE) as an oxygenate, due to concerns over MTBE’s toxicity. The major federal

incentive encouraging the production of ethanol is the renewable fuel standard (RFS), which requires that fuel

suppliers increase the use of domestically produced biofuels to 36 billion gallons by 2022.

Blends of 85% or more of alcohol, including E85, are classified as “alternative fuels” that qualify for

additional federal and state incentives. The use of E85 has grown steadily since the introduction of flex-fuel

vehicles in 1998, and is particularly concentrated in the Midwest region. For example, in Minnesota, the leading

state in E85 adoption, E85 was available at 13% of the state’s service stations in 2009 (compared to less than

1% nationally) and comprised 5% of statewide fuel sales. The concentration of E85 in the Midwest is linked

to its abundance of corn, the primary feedstock for ethanol in the United States. Ethanol refineries are located

close to corn growing regions in order to minimize feedstock transportation costs. Further, finished ethanol is

expensive to move long distances because it cannot be transported via existing oil pipelines (due to its corrosive

and water-absorbing properties) and instead must be moved by truck, railcar or barge.

Commercial production of flex-fuel vehicles that utilize E85 is dominated by domestic U.S. manufacturers,

who tend to supply flex-fuel versions of their top selling trucks, SUVs, sedans and minivans. As of 2009,

4



36 different models of FFV were produced, constituting 14% of all vehicles supplied to the U.S. market (U.S.

EIA, 2012). Apart from differences in fuel economy, FFVs are identical to their gasoline-only counterparts with

respect to operation, performance and maintenance. According to EPA data (fueleconomy.gov) for model years

2001-2009, compared to gas-only variants, FFVs averaged 26% fewer miles per gallon (MPG) when using

E85 (due to ethanol’s lower energy density than gasoline) and 2% fewer MPG when using regular gasoline

(due to suboptimal injection timing). Limited modifications are required to create flex-fuel variants of existing

vehicles – fuel storage tanks and transfer lines must be upgraded to prevent corrosion and fuel injection systems

must be altered to detect and adjust to varying fuel composition. The cost for manufacturers to provide these

upgrades is relatively modest, generally less than $200 per vehicle. Manufacturers typically do not pass through

these additional costs in their suggested retail prices (MSRPs), a policy consistent with Anderson and Sallee’s

view that FFV production is motivated, at least in part, by reducing CAFE regulation compliance costs through

accumulating alternative fuel vehicle (AFV) credits. I consider the implications of such manufacturer policies

for the measurement of network effects in my discussion of model identification in Section 5.2.

2.1 Vehicle operator adoption of FFVs

Two distinct groups potentially operate flex-fuel vehicles and use E85: consumers and corporate/government

fleets. Although my primary interest is measuring feedback in consumer FFV acquisition and E85 market entry,

fleets play an important role in this market due to the presence of strong government incentives. Specifically,

the Energy Policy Act of 1992 requires that certain fleets maintain a minimum proportion of alternative fuel

vehicles.5 Various state statutes also mandate fleet AFV acquisition and alternative fuel use whenever available

and economically feasible. To account for such systematic differences in alternative fuel adoption, I model

consumer and fleet populations separately in the analysis that follows.

Absent alternative fuel adoption mandates, consumers choose whether or not to acquire a flex-fuel vehicle

by weighing the perceived benefits against any perceived costs or risks. A prerequisite for an informed decision

is of course awareness of E85 and the dual fueling capability of FFVs. Surveys indicate that such awareness is

common in regions where E85 is generally available – for example, Phoenix Automotive (2006, 2007) found

67% awareness of E85 across the Midwest and 100% awareness of FFV E85 compatibility among FFV owners

in Minnesota.6 Since flex-fuel vehicles are backwardly compatible with gasoline, the primary benefit of FFVs
5The specific terms of the regulation are quite complex, allowing for various types of exemptions to the AFV mandate. The primary

target of the Act is government fleets of 50 or more vehicles, but some private fleets are also covered. Non-exempt fleets are typically
required to maintain 75% or more AFVs.

6By contrast, a 2005 national survey sponsored by ethanol producer VeraSun Energy found that 68% of FFV owners were unaware
of the E85 fueling capability (Reid, 2006) – the difference in these results strongly suggests that the concentration of E85 retail outlets is
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to consumers is the option to use E85. Surveys indicate that consumers value the E85 fueling option on the

basis of: (a) potential fuel cost savings, (b) reduced environmental impact (less air pollution, use of renewable

resources), and (c) energy security/support for domestic industries (Harris Interactive, 2006; Maritz Automotive

Research Group, 2006; Phoenix Automotive, 2006, 2007).7 Inasmuch as realization of utility from the afore-

mentioned benefits is linked to the utilization of E85, consumer valuation of the E85 FFV fueling option should

be increasing in the availability of E85. Conversely, in markets where E85 is scarce or unavailable, adverse

factors such as risk aversion to non-traditional engines, lower fuel economy when using gasoline, or limited

selection of FFV models may dominate the dual fuel option value.

From a modeling perspective, the fact that the E85 fueling option is provided at little or no cost is convenient,

as it greatly diminishes the scope for dynamic considerations in the FFV acquisition decision. That is, FFV

purchase does not entail any (incremental) sunk acquisition costs or an irreversible commitment to using E85

fuel. Drawing upon the logic of Dixit and Pindyck (1994), there is no reason to strategically defer a decision

that is costlessly reversible because there is no meaningful intertemporal trade-off between investment costs

and the accrued stream of benefits. In such circumstances, the optimal (dynamic) decision that maximizes the

expected present value of future payoffs collapses to the optimal (static) decision conditioned upon current

information.

2.2 Fuel retailer adoption of E85

E85 is typically distributed by traditional fuel retailers: gas stations and convenience stores. However, gov-

ernment agencies and companies occasionally operate private fueling facilities that exclusively service E85

compatible vehicles in their fleet. As these private-access fueling facilities do not contribute to the indirect net-

work effects of interest here (the benefits of E85 availability are internalized by the fleet operator and unrealized

by other agents) and because they represent a small fraction of E85 outlets (<4% of all outlets in my data, as of

2009), they play a limited role in the analysis that follows. That is, I do not explicitly model the fleet operator’s

decision to build a private fueling facility. Rather, my empirical strategy will be to control for the impact of

private E85 facilities on fleet FFV demand and traditional fuel retailer entry into the E85 market, and to employ

instrumental variables to address potential endogeneity concerns.

For traditional fuel retailers, the profit contribution from offering E85 is contingent upon several factors:

a primary factor driving awareness of FFV E85 compatibility. To address potential awareness concerns, since 2006 FFV manufacturers
have included labels inside the fuel compartment to remind owners of the E85 capability.

7Historical fuel prices indicate that E85 is sometimes more economical on a $/mile basis, but that more frequently FFV owners pay
a premium for E85, a finding corroborated by Anderson (2011) and Petrolia et al. (2010). These results suggest that environmental and
social benefits may be stronger drivers of FFV adoption than potential cost savings.
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competition, market size, variable costs, fuel usage and willingness to pay for E85. The market size is mea-

sured by the local installed base of flex-fuel vehicles, and thus it is through the market size dependence that

the network effect operates on the E85 supply side of the market. Variable E85 costs will be determined by

state-dependent excise tax rates and the wholesale prices of ethanol and gasoline, which incorporate delivery

transportation costs. Sourcing ethanol directly from a local refinery is thus advantageous for fuel retailers as

it typically secures lower ethanol input prices. Fuel usage will be determined by commuting patterns, which

may vary by market and driver type (i.e., consumer or fleet). Similarly, willingness to pay for E85 is expected

to vary by demographic factors and driver type – drivers of fleet vehicles are presumably less price sensitive

than consumers because fleet vehicles are subject to alternative fuel use mandates and because these drivers are

typically reimbursed for fuel expenses. Empirical specifications of the E85 supply model developed in Section

4.2 attempt to capture each of these determinants of profit contribution.

Fuel retailer decisions to enter the market for E85 must also consider required investments in E85 dis-

pensing infrastructure. As with FFVs, gas stations must dispense E85 from storage tanks that are resistant to

alcohol-related corrosion. Specialty hoses, nozzles, and handles are also required. Installation costs vary by

configuration and geography, but a report by the National Renewable Energy Laboratory estimates the median

cost with a new storage tank to be $59,153 and $11,237 when converting an existing tank (National Renewable

Energy Laboratory, 2008). Several incentive programs are available to offset these installation costs. At the

federal level, the Energy Policy Act of 2005 provides tax credits for up to 30% of the costs to install E85 in-

frastructure (capped at $30,000). The four states studied here also offer E85 infrastructure incentives at various

levels.8 Infrastructure expenditures net of these subsidies are the retailer’s (non-recurring) fixed cost to enter the

E85 market. Analogous to the FFV acquisition decision, the relatively small scale of net infrastructure costs,

coupled with the backwardly compatibility of E85 dispensing equipment with gasoline, implies that dynamic

considerations are less important in this setting than in those traditionally studied in the market entry literature.

That is, because E85 dispensing infrastructure may be almost costlessly retrofitted to dispense gasoline, “exit-

ing” the E85 market typically involves reallocating the E85 tank and pump to a traditional gasoline blend rather

than discontinuing their use altogether. In this sense, infrastructure investments are sunk only to the extent they

exceed the “scrap value” of a profit stream generated by using the tank/pump to dispense gasoline. In light

of these considerations, I simplify the treatment of firms’ E85 market entry and exit decisions by representing
8Minnesota: grant amounts are discretionary but impose no cost sharing percentages or caps. Iowa: 50% cost sharing, capped at

$30,000. Illinois: 30% new, 50% conversion cost sharing, capped at $30,000. Indiana: grants of up to $5,000 are available. Programs
are subject to overall spending limits. See www.afdc.energy.gov/fuels/laws/3252 for details.
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them as outcomes of a repeated static game. I return to this point during my concluding remarks in Section 8.

3 Data

Data for the study are a panel of nine yearly observations of 3857 zip codes from the states of Illinois, Indiana,

Iowa, and Minnesota. The data span the years 2001 to 2009 and are summarized in Table 1 below.9 I assemble

the final dataset by combining numerous data sources.

Variable Name Obs Mean Std. Dev. Min Max
FFV registrations

consumer Q1 34713 14.06 23.38 0 300
fleet Q2 34713 1.74 3.62 0 101

FFV installed base
consumer con_ffv_ib 34713 78.34 138.04 0 1707
fleet flt_ffv_ib 34713 9.14 18.95 0 454

E85 stations
retail N1 34713 0.10 0.37 0 5
private N2 34713 0.00 0.07 0 1

Market characteristics
population (greater than 16 years) P1 34713 5298.62 9076.82 6 80216
persons employed P2 34713 3032.11 6823.27 1 127465
car dealerships dealerships 34713 1.14 2.49 0 29
gasoline stations gas_stations 34713 1.92 4.14 0 33
ethanol plants refineries 34713 0.02 0.14 0 3
rural market indicator rural 3857 0.68 0.47 0 1
median household income (’000) income 3857 41.58 13.29 0 200
median commute time (min) commute 3857 24.46 6.22 0 61.6
interstate highways interstates 3857 0.2 0.45 0 3

Table 1: Summary statistics

Vehicle data comes from R.L. Polk & Company, which compiles vehicle registration information from

state departments of motor vehicles. The records provided are transaction level, and represent the complete

population of flex-fuel vehicle registrations for the period of study; these data are therefore one of the most

comprehensive sets in the literature. Record attributes include the vehicle’s zip code of registration, date of reg-

istration and registrant type (e.g., consumer, government or business). For the purpose of this study, I aggregate

government and business FFV registrations into a category termed “fleet registrations.” Government vehicle

registrations comprise approximately 25% of the fleet category, with the balance coming from companies, ex-

cluding automobile dealerships and car rental companies.10 From these data, I construct type-specific measures

of FFV demand: the “flow” variables Q1 and Q2 capture per-period demand of consumer and fleet FFVs, and
9Henceforth, “zip code” is taken to mean a Census 2000 Zip Code Tabulation Area (ZCTA). Zip codes are defined as a set of postal

delivery addresses, whereas ZCTAs define unique spatial regions that closely correspond to the bounding polygons for zip codes.
10I exclude dealership registrations because these vehicles are inoperative inventory and thus do not reflect end-user vehicle demand

or contribute to E85 consumption. Rental companies are closely aligned with auto manufacturers (e.g., Hertz is a wholly owned
subsidiary of Ford) and thus contractual obligations likely determine rental car “demand.” Moreover, rental companies generally
operate their own fueling infrastructure and are thus unlikely to systematically contribute to local E85 consumption.
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the “stock” variables con_ffv_ib and flt_ffv_ib capture cumulative demand (the FFV installed base).11

Data on E85 availability comes from the National Renewable Energy Laboratory (NREL). These data in-

clude the station name, station type (retail or private access), address, E85 introduction date, and station closure

date (if applicable). However, no information is available on whether the station installed new or converted

existing infrastructure in order to enter the E85 market. I summarize E85 availability as the number of retail

(N1) and private access (N2) fueling facilities in a (zip code/year) market. Finally, I assemble zip code statistics

on consumer demographics (from the U.S. Census), businesses in the vehicle and fuel supply chains (from

annual Census Zip Business Patterns), and highways (USGS shapefiles). These variables include measures of

the potential market for FFVs among consumers (driving age population, P1) and fleets (persons employed,

P2), factors influencing vehicle and fuel preferences (median income, rural/urban designation, commute time),

availability of substitutes for FFVs and E85 (counts of auto dealerships and gas stations), key shifters of E85

variable costs (ethanol refineries) and a control for E85 demand from non-local FFVs (interstates).

In total, I observe 488,115 consumer FFV registrations, 60,437 fleet FFV registrations and 840 E85 entry

events, illustrating the relative richness of FFV demand data compared to the E85 supply data. To tease out

the variation in E85 availability further, in Table 2 I tabulate observations of the number of E85 retailers per

(zip code/year) market and compute the empirical probabilities of transitions in the number of E85 retailers.

The table demonstrates, for example, that I have 2,415 observations of markets with a single E85 retailer, 367

observations of markets with two E85 retailers, and so on. Given that there was a single E85 retailer active

in the market in the previous period (t-1), there is 1% probability of observing the firm exit the market in the

current period (t), a 94% probability the firm remains the sole incumbent, a 5% probability a second firm enters

the market, and so on.12 The data clearly indicate that market configurations tend to be highly persistent over

time (entry and exit are rare events) and that local monopoly is the most common structure in markets where

E85 is present.13 In the last two rows of the table I also report the average size of the consumer and fleet

installed bases of FFVs, conditional on the number of E85 retailers. Note that the installed bases increase as N1

increases – while this relationship is expected in the presence of a network effect, it is merely suggestive since
11Computation of the installed base entails an initial conditions problem, as my observations begin in 2001 whereas FFV production

began in 1998. In addition, as the installed base intends to reflect FFVs in use, I must impute unobserved vehicle retirement. See
Section 4.2 and Web Appendix D for more on this issue.

12In the table, I adjust the prior period number of E85 retailers such that it is net of station closures. Thus, exit events correspond to
“product exit” – reallocating E85 pumps and tanks to gasoline. The two types of exit occur with nearly equal frequency in the data: I
observe 33 “product exits” and 34 “station closures.” See Section 4.2 for more discussion of this issue.

13In a slight abuse of terminology, local monopoly in the current context refers to having no other direct E85 competitors in the same
zip code – in general, there may be other substitute fuel (gasoline) retailers in the market. To give a sense of the geographic scale of
what is meant by “local,” a zip code has on average an area equivalent to a circle of five mile radius.
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these averages combine cross-sectional and time-series variation and do not control for factors such as market

population.14

N1mt
N1m,t−1 0 1 2 3 4 5 Obs

0 0.98 0.02 0.00 0.00 0.00 0.00 32,428
1 0.01 0.94 0.05 0.00 0.00 0.00 1,939
2 0.00 0.02 0.87 0.10 0.01 0.00 268
3 0.00 0.00 0.02 0.86 0.12 0.00 58
4 0.00 0.00 0.00 0.00 0.89 0.11 19
5 0.00 0.00 0.00 0.00 0.00 1.00 1

Obs 31,812 2,415 367 87 29 3 34,713
Consumer FFV installed base 64.7 194.8 369.4 411.5 574.7 917.7

Fleet FFV installed base 7.2 26.3 48.8 60.7 88.1 118.3

Table 2: Retail E85 stations per market (N1mt ) and empirical Markov transitions (N1m,t−1 → N1mt )

Before developing the model, I first present model-free evidence for the existence of a network effect.

The expected patterns are that the number of E85 retailers (N1) is positively correlated with the installed base

of consumer and fleet flex-fuel vehicles and that flex-fuel demand (Q1,Q2) is positively correlated with the

number of E85 retailers (N1). In Table 3 I report descriptive linear regressions of the dependent variables

Q1,Q2, and N1 as a function of the relevant endogenous variables. The first column for each dependent variable

reports the regression results with no controls or instruments. The second and third columns add fixed effects

to control for unobervables potentially correlated with the endogenous regressors of interest. Zip code fixed

effects control for unobserved market characteristics such as consumer environmental preferences and regional

E85/FFV incentives or awareness campaigns. Zip code time trends control for factors such as population

growth and gentrification. Year effects control for variation in the variety of FFV models available, average

fuel prices and input costs, and changes in federal E85/FFV incentives. Similarly, state/year fixed effects

control for changes to state-level E85/FFV incentives and mandates as well as regional variation in E85/FFV

awareness. In the third column for each dependent variable, an instrumental variable regression is reported,

where the instruments used are two period lags of the endogenous variables – the identification assumption is

that the econometric error terms are serially uncorrelated. I test the validity of this identification assumption

(in the context of the full model) in Section 6; my purpose here is simply to demonstrate the robustness of

descriptive regression estimates to alternative identification assumptions. The fact that all coefficients on the

FFV installed bases and N1 have the expected (positive) signs and are statistically significant (with the exception

of instrumented fleet demand) provides strong prima facie evidence for the presence of a network effect.
14A similar pattern of positive correlation between the FFV installed base and the number of E85 retailers is evident in plots of the

spatial distribution of FFVs and E85. I provide a time sequence of these maps in Web Appendix A.
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Dependent variable Q1 Q1 Q1 Q2 Q2 Q2 N1 N1 N1
Retail E85 stations (N1) 21.17 3.06 3.47 3.32 0.36 0.29

(0.32) (0.67) (1.51) (0.05) (0.15) (0.79)
Private E85 stations (N2) 5.45 -0.41 0.77

(0.26) (0.71) (5.36)
Consumer FFV installed base 0.0004 0.0009 0.0011

(0.0000) (0.0001) (0.0002)
Fleet FFV installed base 0.0051 0.0032 0.0037

(0.0002) (0.0004) (0.0013)
Observations 34713 30856 26999 34713 30856 26999 34713 30856 26999

Zip FE N Y Y N Y Y N Y Y
Year FE N Y Y N Y Y N Y Y

State/Year FE N Y Y N Y Y N Y Y
Zip time trends N Y Y N Y Y N Y Y

Instruments N N Y N N Y N N Y

Table 3: Descriptive regressions of model dependent variables

4 Model

The model considers the decisions of three types of economic agents: fuel retailers, consumers and fleets.

The conceptual framework is a simultaneous move game, played each period by agents in the local market

who base their decisions on complete knowledge of current market conditions only partially observed by the

econometrician. The moves taken by agents in the game are as follows: (1) consumers/fleets choose whether

or not to purchase a flex-fuel vehicle, (2) fuel retailers decide whether or not to enter the E85 market, and

(3) FFV owners set their level of E85 consumption and entering retailers compete in quantities to set output

levels. An output setting game is chosen as competition in prices among identical firms results in the familiar

Bertrand paradox where all firms price at the marginal cost. Firm competition is strategic in that each firm’s

entry decision influences the level of profits realized by all firms in the market. As the flex-fuel purchase

decisions of consumers and fleets influence firm profits by increasing the size of the market for E85, the market

equilibrium will be defined over the action space of all agents, not just firms. The solution concept of the game

is a symmetric Nash equilibrium in pure strategies.

Throughout the model development, I use the following notational conventions. I index markets (zip codes)

by m, wider regions (states) by r, individuals by i, and time periods (years) by t. I index equations by k ∈{1,2,3}

for consumer flex-fuel demand, fleet flex-fuel demand, and E85 market entry, respectively.

4.1 Flex-fuel demand

4.1.1 Consumers

The objective of the flex-fuel demand system is to measure market-specific feedback in FFV adoption from

E85 entry in a robust but parsimonious fashion. The model must draw inference from counts of FFV registra-
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tions that do not convey transaction prices or current vehicle holdings, among other important factors. I must

therefore abstract from numerous details that would be pertinent in a more focused analysis of automotive de-

mand. With these caveats in mind, I model consumer demand for flex-fuel vehicles as a binary choice. In every

period, consumers choose between purchasing a flex-fuel vehicle (1) and the outside alternative (0), which is

normalized to have zero utility in expectation. That is, consumers are assumed to be in the market for a flex-

fuel vehicle every period, allowing for the possibility of replacement sales.15 The choice-specific utilities for

an individual consumer are assumed to take the following form:

U1
imt = α1N1mt +β �

1X1mt +δ1m +ω1t +ζ1rt + tν1m + ε1mt +η1
imt ≡U1mt + ε1mt +η1

imt (1a)

U0
imt = η0

imt (1b)

The utility of choice 1 appearing in equation (1a) captures the consumer’s valuation of a flex-fuel vehicle as

a function of the the number of E85 retailers operating in the market, N1mt . The associated α1 parameter

is the primary coefficient of interest, which captures feedback in E85 availability on FFV adoption. The β1

parameters capture the influence of exogenous observables (X1mt) such as demographic characteristics and the

number of auto dealerships in the market. As in the descriptive regressions of the previous section, the utility

specification (1a) employs strong controls for unobservables through the inclusion of: i) market fixed effects

(δ1m), ii) year fixed effects (ω1t), iii) state/year fixed effects (ζ1rt), and iv) zip code specific time trends (tν1m).

ε1mt is a market and period specific shock to FFV utility common to all consumers. The terms η0
imt and η1

imt

capture individual i�s idiosyncratic preferences for the choice options, which are assumed to be independent

and identically distributed extreme value shocks. The extreme value assumption implies that choice-specific

market shares follow the standard logit formulas:

H1
1mt =

Q1mt

P1mt
= Pr

�
U1

imt >U0
imt

�
=

exp
�
U1mt + ε1mt

�

1+ exp
�
U1mt + ε1mt

� (2a)

H0
1mt =

P1m −Q1mt

P1mt
= Pr

�
U1

imt ≤U0
imt

�
=

1
1+ exp

�
U1mt + ε1mt

� (2b)

where H1
1 and H0

1 are the choice shares of flex-fuel vehicles and the outside option, Q1 is current period FFV

registrations, and P1 is the driving age population of the market. As shown by Berry (1994), the market share

equations above may be transformed into the following linear expression for the the log-odds of consumer
15I choose to allow replacement sales to be consistent with my computation of the installed base of FFVs, which explicitly accounts

for vehicle retirement. In practice, this assumption has little effect on demand estimates, as market populations are large in comparison
to cumulative flex-fuel sales (in my sample, the FFV penetration rate averages about 2% of the market population).
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flex-fuel vehicle purchase, H1:16

H1mt = ln
�
H1

1mt
�
− ln

�
H0

1mt
�
= ln

�
Q1mt

P1mt −Q1mt

�
=U1mt + ε1mt (3)

4.1.2 Fleets

As discussed in Section 2, fleet operators face different incentives than consumers when considering vehicle

purchases and thus I model the populations separately. Modeling fleet vehicle demand involves additional chal-

lenges due to the complexity of the underlying acquisition process and limitations of the data. Fleet acquisitions

are often centrally coordinated and therefore demand is characterized by infrequent purchases of multiple ve-

hicles. Depending on where vehicles are registered (e.g., organization headquarters or employee home) and

the extent to which employees live outside their employer’s market, the fleet demand process may also span

multiple markets. Fully accounting for these features would require detailed data on organizations operating

vehicle fleets and the ability to associate observed fleet vehicle registrations with a particular organization.

Unfortunately these data are not available, necessitating a more abstract treatment of fleet FFV demand. My

empirical strategy is therefore to choose a convenient fleet demand specification and to demonstrate robustness

of the measured network effects to alternative specifications. I explore alternative fleet demand specifications

in Web Appendix E – the measurement of network effects is substantially robust to the choice of specification.

Accordingly, I preserve symmetry with the consumer FFV demand specification and use an aggregate logit

specification identical in form to equation (3):

H2mt = ln
�

Q2mt

P2mt −Q2mt

�
=U2mt + ε2mt (4)

= α21N1mt +α22N2mt +β �
2X2mt +δ2m +ω2t +ζ2rt + tν2m + ε2mt

This specification effectively treats fleets as a collection of individuals who make independent FFV adoption

decisions. In light of the abstraction from bulk-buying behavior, parameter estimates from this model should not

be interpreted as primitives of fleet utility. In (4), I take the number of persons employed (P2) as the measure of

market size. This definition seems plausible, as fleet vehicles are typically assigned to employees and markets

with higher employment should, all else equal, contain a larger number of fleet vehicles. Market fixed effects

and time trends are particularly important in this context, since they control for unobserved heterogeneity in

the true fleet FFV market potential. Equation (4) differs from (3) in one other respect: the number of private-

16In empirical specifications, I calculate H1mt using H1mt = ln
�

κ+Q1mt
κ+P1mt−Q1mt

�
as this avoids the technical problem of a negative

infinite log-odds ratio when Q1mt = 0 (which occurs in 15% of my observations). For the correction I set κ = 0.5, as this value is shown
by Pettigrew et al. (1986) to be the bias-minimizing value. Using the asymptotic value derived by Pettigrew et al. (1986), I estimate the
bias in my application to be ∼−10−5, which is negligible in comparison to the mean of the log-odds ratio of -5.7.
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access E85 refueling stations (N2) also enters the specification. N2 is potentially endogenous since there may

be common unobservables (e.g., regional incentive programs) driving the construction of these dedicated E85

facilities and fleet FFV demand. I address the potential endogeneity of N2 during estimation through the use of

instrumental variables.

4.2 E85 market entry

Fuel retailer entry into the E85 market is modeled in the tradition of the seminal works by Bresnahan and Reiss

(1990, 1991, 1994). The unifying theme of these papers is that the number of firms in a market, N, is modeled

as the outcome of a two-stage game of complete information played among a set of E firms with ex ante

symmetric profit functions. In the first stage, firms make strategic decisions to enter (or continue participating

in) the market, anticipating the ensuing competition (in quantities or prices) in the second stage. Recognizing

that firm profits decline as competition increases, observations of N reflect bounds on the latent profit function,

which may recovered through ordered categorial variable regression techniques.

My specification follows Bresnahan and Reiss (1994) in its application to geographic panel data. The model

distinguishes between potentially entering firms and incumbent firms in that only newly entering firms incur

nonrecurring entry costs. Potential entrants enter the market when their expected discounted profits exceed

entry costs, and incumbents continue to operate as long as expected discounted profits exceed the “scrap value”

obtained from reallocating E85 tanks and pumps to dispensing gasoline. To formalize the framework in the

context of my application, let ΠN represent the expected discounted profit contribution (i.e., ΠN excludes fixed

costs) of selling E85 for each retailer in a market where N firms are operating. Let F represent the nonrecurring

cost of entry, i.e., the fixed cost of E85 infrastructure investments. The marginal (Nth) potential entrant will

therefore enter the market when ΠN ≥ F . I normalize the “scrap value” of exiting the market to zero, so that

the marginal incumbent will exit the market when its expected discounted profits are less than zero (ΠN < 0),

and continue operating as long as expected profits are non-negative (ΠN ≥ 0).17 Finally, let �N1mt denote the

adjusted number of E85 retailers in a market, where �N1mt = N1mt − (# o f E85 station closures in t). I define

this adjusted quantity to distinguish between voluntary exit from the E85 product market and “involuntary”

exit that occurs when a fuel station shuts down entirely.18 Given that E85 comprises a small portion (typically
17Nonrecurring entry costs, scrap values, and the level of unobserved firm profits cannot be separately identified and thus normalizing

one of these quantities is required. Normalizing the scrap value to zero does not affect the measurement of entry thresholds (the number
of FFVs required to support a given number of E85 retailers), which the key object of inference in the entry model.

18A related issue is distinguishing between an existing gas station adding an E85 tank/pump and an entirely new gas station entering
the market with an E85-compliant tank/pump. The NREL data do not provide these details, but using secondary sources I was able to
obtain opening dates for 507 stations that carry E85 – of those, only 22 offered E85 in the first year of establishment. This suggests
most E85 entry comes from existing gas stations.
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<5%) of station revenues, I assume station closures are exogenous events essentially unrelated to E85 product

decisions. Under this definition, the quantity N1mt − �N1m,t−1 reflects the number of firms that voluntarily incur

or forfeit E85 infrastructure investments in period t, which is the relevant measure of entry/exit linked to the

E85-specific profit function. An observation of N firms in the data can therefore correspond to one of three

conditions:

1. Net entry: N1mt > �N1m,t−1. At least one potential entrant has entered the market. This condition im-
plies that per-firm expected discounted profits were sufficient to support the marginal (Nth) entrant, but
insufficient to support an additional (N +1th) entrant. That is, ΠN

mt ≥ Fmt and ΠN+1
mt < Fmt .

2. No change: N1mt = �N1m,t−1. The number of firms has stayed the same. Thus, per-firm expected discounted
profits were sufficient to support the N incumbents, but insufficient to support an additional (N + 1th)
entrant. That is, ΠN

mt ≥ 0 and ΠN+1
mt < Fmt .

3. Net exit: N1mt < �N1m,t−1. At least one incumbent has exited the market. Per-firm expected discounted
profits were sufficient to support to support N incumbents, but insufficient to support N+1 incumbents.
That is, ΠN

mt ≥ 0 and ΠN+1
mt < 0.

The above conditions may be compactly expressed as ΠN
mt ≥ I(N1mt > �N1m,t−1)Fmt and ΠN+1

mt < I(N1mt ≥

�N1m,t−1)Fmt , where the indicator function I(·) evaluates to 1 if the enclosed statement is true. These inequalities,

combined with distributional assumptions on unobservables, are used to recover parameters characterizing firm

profits, which can in turn be used to quantify the influence of indirect network effects.

I assume that expected discounted profits are multiplicatively separable in market size (S) and per-capita

variable profits (V) and given by the following reduced form:

ΠN
mt = Smt

Vmt

(1+N1mt)2 + ε3mt (5)

This specification is motivated by assumptions of linear per-capita demand for E85, constant variable costs

and second stage Cournot competition in quantities. I derive this reduced form profit function for a one-period

game in Web Appendix B. In (5), the market size S is measured in flex-fuel vehicle units, and per-capita variable

profits V capture the expected discounted profit stream from the vehicles in S. Following Bresnahan and Reiss

(1991), I assume unobservable firm profits enter ΠN linearly as a common shock denoted by ε3mt .

To complete the econometric specification, I must clarify how S,V, and F are parameterized. I represent

nonrecurring fixed costs as a linear function of exogenous market-level cost shifters (X3): Fmt = φ �X3mt . I

parameterize per-capita variable profits as V mt = exp(ψ �X4mt), where X4 is a vector of exogenous E85 variable

cost and demand shifters. Forcing the positivity of variable profits through exponentiation is consistent with

theory and improves convergence of the estimation algorithm. Finally, I assume the market size S may be
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represented as a linear function of the installed base of consumer flex-fuel vehicles, the installed base of fleet

flex-fuel vehicles, and other exogenous shifters (X5):

Smt(N1mt) =

�
t

∑
τ=−∞

wt−τQ1mτ

�
+ γ

�
t

∑
τ=−∞

wt−τQ2mτ

�
+λ �X5mt (6)

In (6) above, the installed base terms are computed as a weighted sum of cumulative FFV demand in a market.

The weight wk represents the survival rate for a vehicle that is k years old (where w0 ≡ 1), so that the weighted

sum approximates the number of on-road FFVs after accounting for vehicle retirement.19 In addition to ob-

served FFV demand from 2001-2009, the summation includes imputed FFV demand for the years 1998-2000.

Details of the imputation procedure may be found in Web Appendix D. The coefficient on the installed base

of consumer flex-fuel vehicles is normalized to one for identification purposes, as the (fully parameterized)

expression for variable profits is interacted with the market size in equation (5). This normalization converts

E85 demand into units of consumer flex-fuel vehicles and thus implies the γ coefficient in equation (6) may be

interpreted as the estimated number of fleet FFVs required to match the profit contribution of one consumer

FFV. I write S as a function of N1 to emphasize that the market size is an implicit function of N1 through current

period flex-fuel vehicle demand, Q1 and Q2 – this relationship is the source of simultaneity in the model. By

extension, (6) makes clear that feedback realized in the current period will persist into future periods through

the weighted summation of the installed base.

Putting the aforementioned specifications together, the model for N1 taken to data is:

N1mt =
E

∑
k=0

k I
�

Πk
mt ≥ I(N1mt > �N1m,t−1)Fmt

�
I
�

Πk+1
mt < I(N1mt ≥ �N1m,t−1)Fmt

�
(7a)

Πk
mt =






0 k = 0

Smt(k) Vmt
(1+k)2 + ε3mt 0 < k ≤ E

−∞ k = E +1

(7b)

4.3 Equilibrium

A challenge to inference in empirical models of strategic interactions, such as the market entry game considered

here, is the presence of multiple equilibria. If a model admits multiple equilibria, the mapping from parame-

ters to game outcomes is not necessarily unique, complicating both estimation and counterfactual evaluation.

Bresnahan and Reiss (1990) demonstrate how modeling the number (rather than identities) of entering firms
19Weights are assumed to be time stationary and as quoted in the Department of Transportation’s Transportation Energy Data Book,

Edition 25, Table 3.9 (Davis and Diegel, 2006). As the weights decline very slowly in duration, measurement of the market entry
thresholds in Table 6 is not very sensitive to their use – omitting them altogether increases entry thresholds by less than 4%.
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resolves multiplicity when firms are identical and profits strictly decrease in the number of entrants (due to

competition). In my application, entry can expand the market and thus potentially increase profits – admitting

the possibility of a non-monotonic relationship between profits and the number of firms in the market. I ensure

a unique equilibrium by ruling out net increases to profits from entry by imposing the constraint that ∂ΠN

∂N1
≤ 0

hold for all markets when estimating equation (7). That is, increases in firm profits from an expanded market

size (via the network effect in S(N1)) are not allowed to be larger than decreases to profits from additional

competition (via the 1
(1+N1)

2 term entering variable profits). The constraint, which is derived in Web Appendix

C, takes the following form:20

G(N1)≡
α1Q1

1+ exp(H1)
+

γα21Q2

1+ exp(H2)
− 2S

1+N1
≤ 0 (8)

Formally then, the Nash equilibrium for the model is defined by the number of operating E85 retailers N∗
1 ,

the number of consumer flex-fuel vehicle sales Q∗
1, and the number of fleet flex-fuel vehicle sales Q∗

2 that

simultaneously satisfy equations (3), (4), (7), and (8).

5 Estimation

As explained below, a simulation-based technique is used to estimate the E85 entry model, which in turn

requires a distributional assumption on the econometric error terms. Building on the standard assumption

of normally distributed shocks to firm profitability in the entry literature, I accommodate correlated shocks

between E85 profits (ε3) and FFV demand (ε1,ε2) by assuming ε is distributed multivariate normal.21 The

variance of the entry model error term ε3 is normalized to one in order to identify the unobserved scale of firm

profits. The system to be estimated thus has the following structure:

Q1 (X ,N1,ε1;θ1) , Q2 (X ,N1,N2,ε2;θ2) , N1 (X ,Q1,Q2,ε3;θ3) , (ε1,ε2,ε3)∼ N (0,Σ) , Σ33 ≡ σ3 = 1 (9)

where I collect all exogenous covariates into X and equation-specific parameters into the θ terms. I devise a

two-step estimation procedure to consistently estimate the system (9). As the system is estimated sequentially,

I compute standard errors using a panel bootstrap procedure to account for measurement error in the first step

(FFV demand) parameters when estimating E85 entry model in the second step. The two-step estimation

procedure is performed on 30 samples where market histories are drawn with replacement; standard errors are

given by the standard deviations of the parameter estimates.
20The constraint does not bind at the estimated parameter vector, which is unsurprising given the modest rate of E85 diffusion.
21As will be seen, the normality assumption is not necessary for or employed during FFV demand estimation, which uses GMM. Ex

post, the assumption seems reasonable as the estimated FFV demand residuals closely approximate a normal distribution.
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In the first step of the procedure, I leverage methods from the panel data literature to estimate the flex-

fuel demand parameters (θ1 and θ2) using a rich fixed effects specification to control for unobservables and

instruments to address simultaneity concerns. Estimation proceeds by working with the expressions for the

log-odds of FFV purchase, equations (3) and (4), which are linear in parameters and related to the first two

expressions in (9) above via Q1 = P1
exp(H1)

1+exp(H1)
and Q2 = P2

exp(H2)
1+exp(H2)

. I recover the estimates θ̂1 and θ̂2 by

applying a variant of the “System GMM” estimator of Blundell and Bond (1998). As Blundell and Bond (1998)

note, System GMM is well suited for the estimation of panel data models where: i) fixed effects for the panel

variable enter as controls, ii) supplemental exogenous shifters of the endogenous regressors are unavailable, and

iii) the evolution of endogenous regressors approximates a random walk – these are precisely the conditions I

face in the current application.22 System GMM operates under a sequential exogeneity assumption, i.e., that

current period econometric error terms are uncorrelated with prior realizations of the endogenous variables but

are potentially correlated with current and future values of those variables. This assumption in turn implies

that lagged values of an endogenous variable may be used as instruments for that variable in the current period.

Two tests are available to substantiate the validity of the System GMM estimator. First, as is standard with

GMM, the Hansen J (Hansen, 1982) test is available to check whether the lagged endogenous variables are

properly excluded from the estimation equation. Second, residuals from the regression may be tested for serial

autocorrelation, which if present would violate the sequential exogeneity assumption. I report both tests in the

results of Section 6.

Implementation of System GMM requires forming two sets of moment conditions, one involving the es-

timation equation in first-differenced form (the “differences” equation) and one involving the undifferenced

form (the “levels” equation). The System GMM estimator makes use of both sets of conditions to improve

econometric efficiency. In the differences equation, regressors are transformed (differenced) to purge the fixed

effects, and levels of endogenous variables lagged by two or more periods are available as instruments for

those variables in differenced form. In the levels equation, instruments are transformed (differenced) to make

them orthogonal to the fixed effects – differences of endogenous variables lagged by one or more periods are

then available as instruments for the variables in level form. Translating these statements into an estimator

for the consumer FFV demand equation begins by defining instrument sets for the difference and level equa-

tions as Z1mt ≡
�

∆X1mt N1m,t−2 . . . N1m1

�
and ∆Z1mt ≡

�
X1mt ∆N1m,t−1 . . . ∆N1m2

�
where ∆ is the

22With market fixed effects in the model specification, supplemental instruments must vary in a robust fashion over time within the
same zip code. Theoretically appealing candidates, such as shifters of E85 infrastructure costs (which should be correlated with E85
entry but not FFV demand), exhibit little or no temporal variation. As Table 2 makes clear, evolution of the number of E85 retailers is
well characterized by a first order Markov process.
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first-difference operator and, in a slight abuse of notation, I let X1mt incorporate indicator variables representing

year fixed effects, state/year fixed effects, and zip code time trends in addition to the observable regressors

described in equation (3). The moment conditions for the GMM objective are then M1mt =




Z1mt (∆ε1mt)

(∆Z1mt)ε1mt





and the GMM estimator �θ1 = argmin
θ1

∑
m,t

M�
1mtW1M1mt is formed as a sample analog of the identification as-

sumption E [M1] = 0. The optimal weight matrix W1 is inversely proportional to the variance of the moments

and estimated via the usual two-step procedure assuming independent moments in the first step. The fleet FFV

demand parameters are estimated analogously by �θ2 = argmin
θ2

∑
m,t

M�
2mtW2M2mt , where M2mt is constructed

similarly to M1mt but additionally includes in Z2mt (∆Z2mt) lags (lagged differences) of private E85 facilities

(N2) as instruments to accommodate the potential endogeneity of N2.

In the second step of the overall procedure, I employ simulation to estimate the E85 entry model. The

key insight motivating the estimator is that conditional upon FFV demand estimates (θ̂1,θ̂2) and a draw of the

structural error terms ε , the system of equations (3), (4) and (7) may be solved simultaneously to generate the

model-predicted number of E85 retailers in equilibrium (N∗
1 ) for any value of the entry model parameters (θ3).

Explicitly solving the reduced form fully accounts for the endogeneity of FFV demand during the second step

estimation, as all FFV demand dependencies, including cross-equation correlation in the structural error terms,

are consistently reflected in the model-predicted number of E85 retailers.

To promote numerical convergence of the second step estimation, a smooth simulator is generated by aver-

aging predicted entry values over L draws of the error terms, i.e. N∗
1mt ≡ 1

L

L
∑

l=1
N∗

1mtl – I provide further details

on this computation in Section 5.1 below. With a smooth simulator available, estimation of θ3 proceeds by

minimizing the difference (in the sum of squares sense) between the observed number of E85 retailers (N1mt)

and the model-predicted number of E85 retailers (N∗
1mt). One final wrinkle is accounting for simulation bias –

it has long been recognized in the literature that “plugging in” an unbiased simulator to a non-linear objective

function results in a biased estimator for a fixed number of simulation draws. To achieve an unbiased estimator,

the analyst must either apply a bias correction or employ a “large” number of simulations. I leverage the result

of Laffont et al. (1995), who derive the asymptotic distribution of the bias-correcting term for the least squares

objective and show that it is given by 1
L E[Var(X)], where X is the simulator. Thus, my simulated non-linear
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least squares estimator of θ3 is given by:23

�θ3 = argmin
θ3:G(N∗

1mt)≤0
∑
m,t

�
(N1mt −N∗

1mt)
2 − 1

L(L−1)

L

∑
l=1

(N∗
1mtl −N∗

1mt)
2

�
(10)

5.1 Computation of market entry simulator, N∗
1

The first step to composing the simulator is to obtain draws of the market shocks. To promote estimation

convergence, a set of L independent draws from a standard trivariate normal distribution are taken once and

stored at the beginning of the algorithm – desired correlation patterns are induced on those draws in each

optimization iteration by forming the product with the Cholesky root of the covariance matrix implied by θ3.

Note that because the covariance parameters of the FFV demand errors (σ1,σ2,ρ12) can be estimated from the

first step residuals (e.g., �ρ12 =Corr(�ε1,�ε2)), the cross-equation correlations ρ13 and ρ23 are the only elements

of Σ that enter θ3.24

With a set of properly correlated draws available, the next step is to compute firm profits with a conjectured

number of E85 retailers in the market. The key insight here is that for the lth draw, the conjectured unit sales of

consumer FFVs in a market with n E85 retailers may be written Q̂1mtl(n)=P1mt
exp(H1mt−(�α1N1mt+�ε1mt)+(�α1n+ε1mtl))

1+exp(H1mt−(�α1N1mt+�ε1mt)+(�α1n+ε1mtl))
,

and similarly for fleet unit sales, Q̂2mtl(n). The operands of the exponential functions in these expressions are

the observed log-odds of FFV purchase, with the effects of observed entry and market shocks replaced with their

conjectured effects. This formulation serves two purposes. First, it ensures that the predicted values Q̂1(n) and

Q̂2(n) incorporate the market fixed effects δ , which are not estimated explicitly. Second, replacing �ε1mt with

ε1mtl ensures that the econometric errors are consistent with the assumed data generating process for each con-

jectured value of n. That is, the process accounts for the fact that the values of correlated cross-equation shocks

are endogenously determined along with the dependent variables (it would therefore be inappropriate to condi-

tion upon realized shocks at alternative levels of E85 availability). To evaluate conjectured profits, Q̂1(n) and

Q̂2(n) may be substituted into equation (6) for market size and subsequently to (7b). The equilibrium number of

firms is then determined by iteratively searching over the conjectured number of firms n (starting at n = 0) until

the unique value that satisfies condition (7a), i.e.
�

Πn
mtl ≥ Fmt(n > �N1m,t−1)

�
∩
�

Πn+1
mtl < Fmt(n ≥ �N1m,t−1)

�
, is

found. During estimation, I take E = max[N1mt ] = 5 to match the maximum observed number of entering E85

retailers.
23In my empirical work, I take L = 30 draws for each of the 30 bootstrap replications. The constraint in equation (10), which is

expressed in terms of parameters and observables in equation (8), is implemented using a penalty function during estimation.

24That is, market shocks are generated by ε(ρ13,ρ23) =Cκ where κ ∼ I3 and Σ =CC� =




σ̂2

1 ρ̂12σ̂1σ̂2 ρ13σ̂1
ρ̂12σ̂1σ̂2 σ̂2

2 ρ23σ̂2
ρ13σ̂1 ρ23σ̂2 1



.
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5.2 Identification

The primary focus of my empirical strategy to identify the FFV demand parameters θ1 and θ2 is to absorb as

many sources of confounding variation as possible through extremely rich non-parametric controls. With the

inclusion of these controls, the key parameters of interest (α1 and α21) will be identified from within-market

FFV share differences over time that a) coincide with changes in E85 availability and b) are unrelated to market-

specific trends, common year effects or common state/year effects. Additional identification comes from the

assumption that market shocks are orthogonal to lagged values of the number of E85 retailers operating the

market. While these identification assumptions seem reasonable given the institutional context, I cannot rule out

all potential confounds. For example, higher-order (i.e., non-linear) unobserved market-specific trends affecting

both FFV demand and E85 availability could be observationally confounded with a network effect. Similarly,

an unobserved trend affecting one “side” of the market coupled with rational expectations by the other “side”

could produce the appearance of a network effect. An example might be that vehicle manufacturers attempt to

“push” FFVs on consumers who have no native preference for E85 compatibility and that fuel retailers respond

by offering E85 in markets where they recognize this strategy being implemented.25 If such systematic FFV

distribution policies exist and result in non-linear trends in FFV sales (I control for unobserved linear trends in

FFV demand), they would lead to an inappropriately optimistic estimate of the network effect. While I view this

particular scenario as rather unlikely given that most state franchise laws prohibit manufacturers from requiring

dealerships to accept specific vehicle models, it serves to illustrate the potential limitations of my empirical

approach.26

Turning to the E85 entry model, identification of the parameters θ3 rests on a combination of assumptions.

As with all latent variable models, identification of θ3 is driven in part by assumptions on the distribution of the

econometric errors and the functional form of the latent construct. Exclusion restrictions provide an additional

source of nonparametric identification. As the empirical specifications discussed in the Section 6 make clear,

in addition to several fixed effects, the observable regressor dealers enters the FFV demand specification but

is omitted from the E85 entry model. The number of auto dealerships shifts FFV demand through variation

in the availability of FFVs and substitutes for FFVs. As there is no reason to presume a connection between

auto dealerships and E85 supply considerations, dealers is plausibly excluded from the E85 profit function.
25I thank an anonymous reviewer for bringing this point to my attention.
26As an example, per Illinois code §815 ILCS 710/4, it is illegal for a vehicle manufacturer to coerce, or attempt to coerce, any motor

vehicle dealer “to accept, buy or order any motor vehicle or vehicles, appliances, equipment, parts or accessories therefor, or any other
commodity or commodities or service or services which such motor vehicle dealer has not voluntarily ordered or requested except items
required by applicable local, state or federal law.”
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As to separate identification of infrastructure costs and variable profit factors, inspection of (7) suggests that

infrastructure cost factors (φ ) are identified by the mean values of N1 (conditional upon regressors X3), while

variable profit factors (ψ) will be identified through interactions of X4 with the market size.

6 Results

Model parameter estimates are reported in Table 4 below and discussed in the sections that follow.

FFV Demand (H1,H2) E85 Entry (N1)

Consumer Fleet Variable profit Infrastructure costs Market size
retail E85 stations (N1) 0.059 0.064

(0.027) (0.031)
private E85 stations (N2) 0.026

(0.244)
rural 0.022 0.016 0.791

(0.032) (0.045) (0.032)
income 0.016 0.013 -0.021

(0.001) (0.001) (0.001)
commute 0.004 0.003 -0.028

(0.003) (0.005) (0.003)
gas_stations -0.011 -0.009 -0.026

(0.002) (0.003) (0.002)
dealerships -0.012 -0.015

(0.004) (0.006)
refineries 0.316

(0.034)
interstates 26.608

(4.068)
fleet installed base 1.415

(0.201)
fleet installed base * N2 -1.226

(0.560)
ρ1 0.024

(0.105)
ρ2 0.002

(0.111)
Observations 34713 34713 34713 34713 34713

Serial autocorrelation test (AR2 Z) -0.761 -0.913
AR2 p-value 0.447 0.361

Overidentification test (Hansen J) χ2
7 = 7.725 χ2

14 =17.323
Overidentification p-value 0.357 0.239

Zip FE Y Y N N N
State FE N N Y Y N
Year FE Y Y Y Y N

State/Year FE Y Y N N N
Zip time trends Y Y N N N

Table 4: Main estimation results
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6.1 Flex-fuel demand

The flex-fuel demand model results are presented in the first two columns of Table 4. Before discussing the

parameter estimates, I first comment on diagnostic tests of the System GMM estimator. Recall from Section

5 that identification requires no serial autocorrelation be present in the shocks (ε1,ε2). A test proposed by

Arellano and Bond (1991), checks for serial autocorrelation in the GMM residuals by testing for second order

autocorrelation in ∆ε .27 The test statistic is normally distributed under the null of no serial autocorrelation. The

test Z scores are -0.761 and -0.913 for the consumer and fleet equations, respectively. Thus, the null hypotheses

are not rejected at conventional (5%) significance levels, suggesting the use of the System GMM estimator is

valid. Similarly, the Hansen J test statistics (which are distributed chi-squared with degrees of freedom equal to

the number of overidentifying restrictions) are χ2
7 = 7.725 (consumer) and χ2

14 = 17.323 (fleet). Again, the null

of proper exclusion of the lagged values of N1 and N2 cannot be rejected at conventional significance levels.

Turning to the consumer FFV demand estimates, the key parameter (α1) is the coefficient on the number

of E85 retailers (N1), which captures the “demand side” of the network effect. As anticipated, this coefficient

is positive and significant. The parameter estimate implies that increasing the number of E85 retailers in a

market by one increases the log-odds of FFV purchase (H1) by 0.059. Interpretation is aided by translating

this result into probability and unit demand measures. Noting that the probability of FFV purchase is related

to the log-odds ratio by Pr[purchase] = exp(H1)
1+exp(H1)

, I find the average marginal effect of adding one E85 retailer

to a market is a 6.1% increase in the probability of FFV purchase.28 As expected unit demand is given by

Q̂1 = P1 ·Pr[purchase], I find that adding one E85 retailer to a market on average increases annual unit sales

by 0.87 FFVs. The structural demand model thus generates a more conservative prediction of the effect of E85

availability on FFV demand than is implied by the descriptive regressions of Table 3. As a further check that

the System GMM estimator is producing sensible results, in Table 5 I compare the SGMM estimate of α1 to

a series of models that do not employ instruments and utilize less stringent controls. As may be seen, the α1

estimates are generally robust to the model specification. While the results are statistically consistent across

specifications (i.e., the 95% confidence intervals overlap), the point estimates do follow the expected pattern of

correcting an upward bias through stronger controls and use of instruments.
27After transforming to first differences, testing for AR(1) in ε in the original estimation equation is equivalent to testing for AR(2)

in ∆ε . The test statistic is given by ∑
m,t

εm,tεm,t−2.
28Since N1 is discrete, I report marginal effects as a proportional change rather than an elasticity. That is, I compute the average

marginal effect as the sample average of Pr(N1=1)−Pr(N1=0)
Pr(N1=0) . The marginal effect is constant (to one decimal place) over all observed

transition values for N1 (e.g., 0 → 1,1 → 2, etc.).
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OLS OLS OLS SGMM
α1 0.128 0.131 0.068 0.059

(0.013) (0.026) (0.015) (0.027)
α21 -0.643 0.088 0.091 0.064

(0.023) (0.027) (0.021) (0.031)
Observable controls N Y Y Y
Zip FE N Y Y Y
Year FE N N Y Y
State/Year FE N N Y Y
Zip time trends N N Y Y

Table 5: Comparison of α1 and α21 estimates under different models

The remaining coefficients (β1) capture the effects of exogenous market-level observables (X1) on consumer

flex-fuel vehicle demand. The demographic variables rural, income and commute are included as controls

because they may impact FFV demand via correlation with unobserved environmental preferences and fuel

consumption patterns. Of these, only income is statistically significant – the positive sign of this coefficient is

consistent with theories that environmental preferences correlate positively with income levels. gas_stations

controls for the availability of substitutes for E85, namely gasoline. The negative sign of the coefficient on

gas_stations is sensible given that in markets where gasoline is readily available and less expensive, E85 and

hence FFVs are relatively less attractive. dealers controls for the availability of vehicles, the majority of which

are substitutes for FFVs. The negative sign of this coefficient suggests a greater number of substitutes is

associated with lower FFV demand. For brevity, I suppress reporting and discussion of estimated fixed effects

and time trend parameters.

Turning now to the fleet flex-fuel demand estimates, the coefficient on N1 (α21) is also positive and signif-

icant, implying positive feedback in fleet flex-fuel demand and E85 retailer entry. The corresponding average

marginal effect of adding one E85 retailer entry is a 6.5% increase in the probability of FFV purchase and an an-

nual unit sales increase of 0.17 FFVs. Again the aggregate logit model generates a more conservative prediction

of the effect of E85 availability on FFV demand than is implied by the descriptive regressions. The coefficient

on private E85 stations is insignificant after controlling for market fixed effects, which is unsurprising since

there is almost no within-market variation of this quantity. Table 5 also contains comparisons of the SGMM

estimate of α21 to simpler models. In this case, inclusion of observable controls and market fixed effects has a

major impact on model estimates, while additional corrections are negligible. I use the same exogenous mar-

ket characteristics in the fleet demand equation as in the consumer equation (i.e., X2 = X1, where here income

proxies for wages), and find similar dependence on these factors across the two equations.
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6.2 Fuel retailer entry

The E85 market entry estimates are presented in columns three to five of Table 4. Entry model regressors are

divided into categories corresponding to infrastructure cost shifters (X3), variable profit shifters (X4) and market

size shifters (X5). For infrastructure costs, the controls are state and year fixed effects, which I do not report for

brevity. Here, state fixed effects capture variation in state-sponsored infrastructure incentives as well as regional

differences in equipment and installation labor costs while year effects capture changes in federal incentives

and average E85 infrastructure costs. I include the cross-equation correlation parameters in the infrastructure

cost column, as the econometric error term ε3 also enters the profit function linearly. The estimated coefficients

ρ13 and ρ23 are small and statistically insignificant. I interpret this result as indicating that the relevant co-

dependence of the FFV demand and E85 entry systems is fully captured through observables and fixed effects

in the model specification.

The variable profit specification also includes state and year effects to capture variation in excise tax rates

and average fuel price/cost margins. Observable shifters include demographics that may correlate with fuel

type preferences (rural, income), fuel consumption rates (commute), wholesale ethanol prices (refineries), and

substitute fuel prices (gas_stations). In general, the estimates are as expected – profits are higher where whole-

sale ethanol prices are low (more ethanol plants) and substitute fuel prices are high (fewer gas stations). The

fact that variable profits decrease in commute time potentially reflects that consumers with high fuel usage costs

are less likely to buy E85 because it is rarely priced lower on a $/mile basis. That variable profits decrease in

income is slightly counterintuitive, since higher income consumers presumably have higher willingness to pay

for E85. One potential explanation is that the income effect is picking up higher input costs for E85, as high

income neighborhoods tend to be far from ethanol refineries located in rural communities.

The market size coefficients are particularly interesting to interpret, as units have been normalized to con-

sumer flex-fuel vehicles. The variable interstates is intended to capture E85 consumption by flex-fuel vehicles

in long-range commuting patterns. The estimate implies the presence of an interstate highway has the same

contribution to retailer profits as 26.6 consumer flex-fuel vehicles in the installed base. In a similar fashion,

the coefficient on the fleet flex-fuel installed base (γ) parameter indicates that it takes 1.4 consumer flex-fuel

vehicles to equal the profit contribution of one fleet flex-fuel vehicle. This result is expected, given that fleets

have many alternative fuel usage incentives while consumers do not. In his study, Corts (2010) finds that it takes

about twice as many private vehicles (which he defines as consumer plus corporate fleet FFVs) as government

fleet flex-fuel vehicles to support one E85 station. A direct comparison of the results is difficult because of
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the different definitions, but I view this as a broadly consistent finding in that government fleets generally have

stronger E85 consumption incentives than do corporate fleets. I also include an interaction term of the fleet

installed base with the number of private E85 facilities in the market, anticipating that fleets with dedicated fa-

cilities will be “out of the market” and thus not contribute to consumption at retail E85 stations. The coefficient

estimate of -1.2 is consistent with this story, suggesting that when a dedicated facility is present, most fleet E85

consumption is diverted there.

Interpretation of the entry model results is facilitated by computing the number of flex-fuel vehicles required

to support a given number of E85 retailers, or the “entry thresholds” in the language of Bresnahan and Reiss

(1991). The “supply side” of the network effect essentially operates through this mechanism: as the installed

base of flex-fuel vehicles increases, the market becomes more profitable to serve, and at certain threshold

values of the installed base, additional entry becomes feasible. I report the entry thresholds in Table 6. The

threshold values are computed from the entry model estimates using the formula: S∗N1
= exp(�ψ �X4)

�φ �X5
(N1 +1)2 . I

compute entry thresholds at sample average values of the controls, X4 and X5. Given significant right-skew in

the distribution of the predicted thresholds, I consider the median to be the better measure of central tendency.

By this measure, the model predicts that under typical conditions at least 299 consumer flex-fuel vehicles are

required to support a single E85 retailer. My estimates appear broadly in line with those obtained independently

by other research methods. A joint publication by the EPA and the Departments of Transportation and Energy

(US DOT, DOE, and the EPA, 2002) reports that roughly 200 flex-fuel vehicles are required to support an E85

retailer. Corts (2010) estimates a series of models (linear, Poisson, Tobit) that suggest between 320 and 560

private FFVs are needed to support an E85 station.

E85 retailers Mean Std Dev Median
1 402 302 299
2 904 679 673
3 1607 1207 1196
4 2510 1886 1868
5 3615 2716 2690

Table 6: E85 market entry thresholds in consumer FFV units

The E85 entry model entails several strong assumptions, the among which are that market outcomes are

independent and that firm competition is accurately represented as a Cournot output game. In Web Appendix

E, I develop robustness checks that relax these assumptions and find that my results remain highly consistent

with those reported in Tables 4 and 6.
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7 Applications and strategic implications

In this section, I demonstrate application of the results. The first application quantifies the long-run effect

of positive feedback across a sample of heterogeneous markets, which cannot be directly inferred from the

model estimates. The second experiment explores promotional strategies firms may implement to accelerate

the adoption of the ethanol fuel standard, and thereby generate additional demand for their products. For

this experiment, I take the perspective of a FFV manufacturer and evaluate the effect of offering promotional

subsidies to fuel retailers to enter the E85 market.

7.1 Quantifying the network effect

The method to quantify the long-run impact of the network effect is to first simulate market outcomes assuming

the model estimates are the true parameters governing the data generating process (the “with feedback” condi-

tion). Then, the simulation is repeated under the assumption that neither consumers nor fleets have utility for

E85 (i.e., for the “no feedback” condition, I set α1 = α21 = 0). Simulation of market outcomes requires the fol-

lowing series of steps. First, for each market observation, I draw market shocks from the distribution N(0, Σ̂).

Next, I solve the model for the equilibrium values of Q∗
1,Q

∗
2 and N∗

1 (as during the entry model estimation)

period by period, updating the installed base sequentially. Third, I repeat the first two steps multiple (30) times

and average the result to obtain the expected value of the market outcomes.

I summarize the counterfactual graphically in Figures 1a and 1b. In these plots, the installed bases and

number of E85 retailers are aggregated across the sample markets. At any point in time, the cumulative influence

of the network effect is given by the difference between the “with feedback” and “no feedback” curves. In the

final period (2009), the network effect accounts for 5.3% of the predicted number of E85 retailers. Similarly,

the network effect accounts for 5.6% of the total flex-fuel vehicle installed base. Indirect network effects of this

size are economically material, but modest in comparison to those observed in high-tech product markets. For

example, Nair et al. (2004) find that indirect network effects in PDA hardware/software adoption account for

22% of the installed base of PDAs over a period roughly one third of the length of my study.

7.2 FFV manufacturer subsidy of E85 entry

I assess two joint marketing arrangements in which subsidies are provided by FFV manufacturers to fuel re-

tailers in order to encourage E85 market entry and thereby increase FFV sales. The first policy considers a

fixed-rate subsidy that reduces the average fixed cost of E85 market entry by 25% for all potential entrants in

the first period (2001). The effectiveness of the policy is measured by comparing outcomes to the baseline “with
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Figure 1: Quantifying the long-run impact of the network effect

feedback” simulation used to quantify the long-run network effect: the benefit of the policy is the incremental

number of FFV sales generated by the intervention, and the cost is measured by the number of stations that

utilize the subsidy (i.e., the number of new entrants in 2001). The second policy involves the same timing and

level of subsidy, but allows the vehicle manufacturer to target specific markets with higher anticipated rates of

return. Attractive markets are characterized by two factors: higher levels of expected FFV demand, and higher

entry thresholds. The latter follows because it is not cost effective to subsidize a market where entry is likely

to occur “naturally” anyway. I evaluate a simple targeting rule: markets that are offered the subsidy must be in

the top quartile of expected FFV demand (E[Q1]) and the top quartile of entry thresholds. By this criteria, 17%

(656/3857) of markets are eligible for the targeted subsidy.

Figures 2a and 2b below summarize the effect of these counterfactual policies. Plotted values reflect the

incremental effect of the policy on FFV unit sales and the number of E85 retailers relative to the baseline “with

feedback” simulation in Section 7.1. As expected, the uniform policy generates more incremental FFV unit

sales, but it does so at a heavy cost. Whereas the targeted policy leads to 43 E85 retailers entering in 2001, the

uniform policy induces 157 new entrants. As time passes, the effects of both policies diminish relative to the

baseline simulation because many subsidized markets eventually experience entry “naturally.” However, the

rate at which the intervention effect declines is more extreme for the uniform policy.

Some back of the envelope calculations can shed additional light on the cost/benefit proposition of the two

policies. In Table 7, I first calculate the costs of the two policies in “E85 infrastructure” units by multiplying

the number of entrants induced by the policy by 25%. Next I calculate the present value of incremental FFV

sales (in 2001 vehicle units) for the two policies, assuming a 5% discount rate (and no terminal value). Benefit
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Figure 2: Subsidy counterfactual

to cost ratios derived from these figures are sufficient to compare the relative attractiveness of the two policies.

The advantage of targeting is readily apparent: the value proposition of the targeted policy is more than twice

that of the uniform policy. Of course, computing the net benefit in dollar terms requires knowledge of the

manufacturer margin per FFV and average E85 infrastructure costs. However, only the ratio of these quantities

is needed to define a break-even “hurdle rate” for a policy: a policy will be profitable provided its benefit/cost

ratio exceeds the ratio of E85 infrastructure costs to FFV margins.29 As an example, the targeted policy will

be profitable provided the ratio of E85 infrastructure costs to FFV margins is less than 136. What constitutes

a realistic hurdle rate? Secondary sources provide some guidance – the discussion in Section 2.2 suggests the

average cost of E85 infrastructure investments lies in the range $10,000-$50,000, and financial reporting on

automakers suggests average vehicle margins are in the low thousands.30 Thus, a fairly conservative estimate

of the of this ratio would be around $50,000/$500=100 while a liberal one might be $10,000/$2,000=5. In the

conservative case, the targeted policy would be profitable whereas the uniform policy would not. This simple

experiment demonstrates that the network effect can be harnessed to improve vehicle manufacturer profitability,

and that a targeted incentive policy incorporating knowledge of local market conditions offers a considerable

boost to returns on investment.
29To see this, let (wm,qm) be FFV (margin, incremental sales) and (wr,qr) be E85 (average infrastructure costs, incremental retailers)

and s be the subsidy rate. A policy is profitable if wmqm ≥ swrqr, and thus if qm/sqr ≥ wr/wm.
30Margins on new vehicles sold in the US varies greatly by manufacturer and model. Margins on pickup trucks are typ-

ically higher, often more than $5000, compared to hundreds of dollars on most cars. Source: http://money.msn.com/top-
stocks/post.aspx?post=620b56b9-a45d-4036-bd1b-9b66461d978d
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Policy Uniform Targeted
Subsidized stations 157 43

Cost (E85 infrastructure units) 39.3 10.8
Benefit (2001 FFVs) 2,351.5 1,464.0

Benefit/cost ratio 60.0 136.19

Table 7: Subsidy cost/benefit analysis

8 Conclusion

This paper presents evidence of indirect network effects in the demand for ethanol-compatible vehicles and

the supply of ethanol fuel. In contrast to most studies of indirect network effects, the feedback mechanism

investigated here is spatial in nature and operates at a highly localized level. To identify these local effects, I

estimate a model of consumer flex-fuel vehicle demand, fleet flex-fuel vehicle demand, and E85 retailer market

entry using a zip code panel dataset that incorporates the entire population of FFV registrations and E85 market

entry events in four states over nine years. The framework extends the Bresnahan and Reiss (1990, 1991,

1994) models of competitive entry to incorporate an endogenous market size. I develop a new simulation-based

estimator that accommodates simultaneity and correlated shocks across the model equations, without requiring

the use of instruments for the entry model. The model estimates indicate a network effect with both statistical

and economic significance, but moderate size in comparison to those found in high tech product markets.

As an application, I demonstrate that the network effect may be to leveraged to improve FFV manufacturer

profitability through targeted subsidies of E85 market entry.

There are some limitations to the analysis and therefore several possibilities for extension. Perhaps the

most obvious limitation is the restrictive treatment of dynamics. In particular, forward-looking behavior by

consumers, fleets and fuel retailers is not formally modeled. However, abstraction from dynamic considerations

in the flex-fuel vehicle demand system is unlikely to be a major concern for the empirical estimates due to:

a) the absence of incremental sunk costs to acquire FFV technology and no irreversible commitment to E85

use, b) the high persistence of E85 availability levels (implying myopic conditioning on current levels closely

approximates rational future expectations), and c) the inclusion of rich fixed effects in the model that can to

some extent capture expectations flexibly in non-parametric fashion. The treatment of dynamics in the E85

supply model is likely a more serious limitation. While the model does admit a form of dynamically-evolving

firm heterogeneity by distinguishing between incumbents and potential entrants, it captures firms’ expected

discounted profits as a reduced form rather than through a recursive computation explicitly incorporating firm

expectations. As previously noted, absent all sunk costs, these procedures would yield equivalent decision rules,
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but the fact that some sunk costs do exist means there is some potential for specification-related bias. However,

inasmuch as arguments (b) and (c) above also apply to the E85 entry model and to the extent that sunk costs

are modest in this context relative to most empirical studies of market entry, I view the taken approach as

reasonable for the purpose of measuring the network effects of interest. Nevertheless, this issue is worthy of

further attention. The paper could be further extended by relaxing the assumption of identical firms in the

entry model. In this vein, exploring multi-market contact and scale economies in ethanol distribution are also

potentially interesting topics of study. I leave these extensions to future work.

References
S. Anderson. The demand for ethanol as a gasoline substitute. Journal of Environmental Economics and Management, 63(2):151–168, 2011.

S. Anderson and J. Sallee. Using loopholes to reveal the marginal cost of regulation: The case of fuel-economy standards. American Economic Review,
101(4):1375–1409, 2011.

M. Arellano and S. Bond. Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. Review of
Economic Studies, 58(2):277–297, 1991.

A. Basu, T. Mazumdar, and S. Raj. Indirect network externality effects on product attributes. Marketing Science, 22(2):209–221, 2003.

S. Berry. Estimating discrete-choice models of product differentiation. RAND Journal of Economics, 25(2):242–262, 1994.

S. Berry and J. Waldfogel. Free entry and social inefficiency in radio broadcasting. RAND Journal of Economics, 30(3):397–420, 1999.

R. Blundell and S. Bond. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1):115–143, 1998.

T. Bresnahan and P. Reiss. Entry in monopoly markets. Review of Economic Studies, 57(4):531–553, 1990.

T. Bresnahan and P. Reiss. Entry and competition in concentrated markets. Journal of Political Economy, 99(51):977–1009, 1991.

T. Bresnahan and P. Reiss. Measuring the importance of sunk costs. Annales d’Economie et de Statistique, 34:181–217, 1994.

C. Chou and O. Shy. Network effects without network externalities. International Journal of Industrial Organization, 8(2):259–270, 1990.

J. Church and N. Gandal. Network effects, software provision, and standardization. Journal of Industrial Economics, 40(1):85–103, 1992.

J. Church and N. Gandal. Complementary network externalities and network adoption. International Journal of Industrial Organization, 11(2):239–260,
1993.

M. Clements and H. Ohashi. Indirect network effects and the product cycle: Video games in the US, 1994-2002. Journal of Industrial Economics, 53
(4):515–542, 2005.

K. Corts. Building out alternative fuel retail infrastructure: Government fleet spillovers in E85. Journal of Economics and Management Strategy, 59(3):
219–234, 2010.

S. Davis and S. Diegel. Transportation energy data book: Edition 25. Technical report, ORNL/TM-2007/070, Oak Ridge National Laboratory (ORNL),
2006.

A. Dixit and R. Pindyck. Investment under uncertainty. Princeton University Press Princeton, NJ, 1994.

M. Draganska, M. Mazzeo, and K. Seim. Beyond plain vanilla: Modeling joint product assortment and pricing decisions. Quantitative Marketing and
Economics, 7(2):105–146, 2009.

D. Dranove and N. Gandal. The DVD-vs.-DIVX standard war: Empirical evidence of network effects and preannouncement effects. Journal of
Economics and Management Strategy, 12(3):363–386, 2003.

J. Dubé, G. Hitsch, and P. Chintagunta. Tipping and concentration in markets with indirect network effects. Marketing Science, 29(2):216–249, 2010.

M. Eppli and J. Benjamin. The evolution of shopping center research: A review and analysis. Journal of Real Estate Research, 9(1):5–32, 1994.

J. Farrell and G. Saloner. Standardization, compatibility, and innovation. RAND Journal of Economics, 16(1):70–83, 1985.

31



N. Gandal, M. Kende, and R. Rob. The dynamics of technological adoption in hardware/software systems: The case of compact disc players. RAND
Journal of Economics, 31(1):43–61, 2000.

L. Hansen. Large sample properties of generalized method of moments estimators. Econometrica, 50(4):1029–1054, 1982.

Harris Interactive. US consumer awareness of E85 flex-fuel vehicles high, buying interest split about 50:50. www.greencarcongress.com, 2006. Accessed
April 2013.

P. Karaca-Mandic. Role of complementarities in technology adoption: The case of DVD players. Quantitative Marketing and Economics, 9(2):179–210,
2011.

M. Katz and C. Shapiro. Systems competition and network effects. The Journal of Economic Perspectives, 8(2):93–115, 1994.

J. Laffont, H. Ossard, and Q. Vuong. Econometrics of first-price auctions. Econometrica, 63(4):953–980, 1995.

R. S. Lee. Vertical integration and exclusivity in platform and two-sided markets. American Economic Review, 103(7):2960–3000, 2013.

H. Liu. Dynamics of pricing in the video game console market: Skimming or penetration? Journal of Marketing Research, 47(3):428–443, 2010.

Maritz Automotive Research Group. Four out of five consumers would consider flex-fuel vehicle for next purchase. www.maritz.com, 2006. Accessed
April 2013.

H. Nair, P. Chintagunta, and J. Dubé. Empirical analysis of indirect network effects in the market for personal digital assistants. Quantitative Marketing
and Economics, 2(1):23–58, 2004.

National Renewable Energy Laboratory. Cost of adding E85 fueling capability to existing gasoline stations: Nrel survey and literature search. www.
afdc.energy.gov, 2008. Accessed November 2012.

H. Ohashi. The role of network effects in the US VCR market, 1978-1986. Journal of Economics and Management Strategy, 12(4):447–494, 2003.

S. Park. Quantitative analysis of network externalities in competing technologies: The VCR case. Review of Economics and Statistics, 86(4):937–945,
2004.

D. R. Petrolia, S. Bhattacharjee, D. Hudson, and C. W. Herndon. Do americans want ethanol? A comparative contingent-valuation study of willingness
to pay for E10 and E85. Energy Economics, 32(1):121–128, 2010.

H. Pettigrew, J. Gart, and D. Thomas. The bias and higher cumulants of the logarithm of a binomial variate. Biometrika, 73(2):425–435, 1986.

Phoenix Automotive. FFV & E85 Perceptions. www.cleanairchoice.org, 2006. Accessed December 2012.

Phoenix Automotive. E85 everywhere: Minnesota consumer perceptions. www.cleanairchoice.org, 2007. Accessed December 2012.

K. Reid. Alcohol at the pump. National Petroleum News, 97(9):40–44, 2006.

M. Rysman. Competition between networks: A study of the market for yellow pages. Review of Economic Studies, 71(2):483–512, 2004.

V. Shankar and B. Bayus. Network effects and competition: An empirical analysis of the home video game industry. Strategic Management Journal, 24
(4):375–384, 2003.

US DOT, DOE, and the EPA. Effects of the Alternative Motor Fuels Act CAFE incentives policy. Technical report, United States Congress, 2002.

U.S. EIA. Ethanol blend wall: Are we there yet? www.eia.gov, 2011. Accessed June 2013.

U.S. EIA. On-road AFVs made available by year. www.afdc.energy.gov, 2012. Accessed July 2013.

M. Vitorino. Empirical entry games with complementarities: An application to the shopping center industry. Journal of Marketing Research, 49(2):
175–191, 2012.

32

www.greencarcongress.com
www.maritz.com
www.afdc.energy.gov
www.afdc.energy.gov
www.cleanairchoice.org
www.cleanairchoice.org
www.eia.gov
www.afdc.energy.gov


Web Appendix – Not for Publication
A Visualization of FFV installed base and E85 availability

Figure 3: FFV installed base and E85 retail locations, 2001
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Figure 4: FFV installed base and E85 retail locations, 2005
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Figure 5: FFV installed base and E85 retail locations, 2009
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B Derivation of the E85 retailer profit function

To motivate the reduced form profit function described in 4.2, I derive period demand for E85 under the follow-

ing assumptions:

1. Market demand is given by D =
N
∑

f=1
d f = S (a−P), where f indexes the fuel retailers active in a market

and d f represents per-firm demand for E85.

2. Variable costs are linear in output and common to all firms: Cf = cd f .

3. Firms are identical and compete in output (Cournot competition).

Now, using (1) above, the inverse demand curve may be written as:

P = a− D
S
= a− 1

S

N

∑
f=1

d f

Given Cournot competition, the first order condition for firm f is given by:

∂ΠN
f

∂d f
=

∂
∂d f

[d f (P− c)] = 0

= P− c+d f
∂P
∂d f

= 0

= a− 1
S

N

∑
f=1

d f − c+d f

�
−1

S

�
= 0

The symmetry of firms implies that
N
∑

f=1
d f =Nd f . Using this condition and solving for optimal firm quantity

yields:

d∗
f =

S
1+N

(a− c)

The equilibrium market price will therefore be:

P∗ = a−
Nd∗

f

S
= a− N

1+N
(a− c)

Finally, reduced form profits may be expressed as:

ΠN = ΠN
f = (P∗ − c)d∗

f = S
(a− c)2

(1+N)2
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C Derivation of the entry equilibrium constraint

To derive the constraint condition imposing ∂ΠN

∂N1
≤ 0, I suppress all subscripts and introduce the following

shorthand notations relating to equations (3) and (4). Let:

H1 = ln
�

Q1

P1 −Q1

�
= α1N1 + k1 , where : k1 = β �

1Z1 +δ1 +ω1 +ζ1rt + tν1m + ε1

H2 = ln
�

Q2

P2 −Q2

�
= α21N1 + k2 , where : k2 = α22N2 +β �

2Z2 +δ2 +ω2 +ζ2rt + tν2m + ε2

Then the current period consumer and fleet flex-fuel sales may be written:

Q1 = P1
exp(H1)

1+ exp(H1)
= P1

exp(α1N1 + k1)

1+ exp(α1N1 + k1)

Q2 = P2
exp(H2)

1+ exp(H2)
= P2

exp(α1N1 + k2)

1+ exp(α1N1 + k2)

Differentiating Q1 with respect to N1 yields:

∂Q1

∂N1
=

∂
∂N1

P1
exp(α1N1 + k1)

1+ exp(α1N1 + k1)
= αP1

exp(α1N1 + k1)

(1+ exp(α1N1 + k1))
2 =

α1Q1

1+ exp(H1)

Similarly, for Q2 we obtain: ∂Q2
∂N1

= α21Q2
1+exp(H2)

. Let B1 (B2) represent the prior period, predetermined installed

base of consumer (fleet) FFVs: B1 =
t−1
∑

τ=−∞
wt−τQ1τ . Then, from equation (6) we have:

∂S
∂N1

=
∂

∂N1

�
(B1 +Q1)+ γ (B2 +Q2)+λ �X5

�
=

∂Q1

∂N1
+ γ ∂Q2

∂N1

Using these side calculations and referring to the profit equation (5), the constraint ∂ΠN

∂N1
≤ 0 takes the form:

∂ΠN

∂N1
=

∂
∂N1

�
S(N1)

(a− c)2

(1+N1)
2 −F

�
≤ 0

=⇒ ∂S
∂N1

(a− c)2

(1+N1)
2 −

2S(a− c)2

(1+N1)
3 ≤ 0

=⇒ (a− c)2

(1+N1)
2

��
∂Q1

∂N1
+ γ ∂Q2

∂N1

�
− 2S

(1+N1)

�
≤ 0

=⇒ α1Q1

1+ exp(H1)
+

γα21Q2

1+ exp(H2)
− 2S

1+N1
≤ 0
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D FFV installed base initial conditions

Estimation of the E85 entry model requires computation of the FFV installed base. Uncertainty arises in this

computation because I do not observe flex-fuel vehicle demand in periods prior to 2001 (t = 1), resulting in an

initial conditions problem. Fortunately, the severity of this problem is moderate: according to Department of

Energy figures, only 14% of cumulative FFV production through 2009 occurred during the period 1998-2000

(U.S. EIA, 2012). Nevertheless, I attempt to address this issue by imputing FFV demand for the years 1998-

2001. I perform the imputation by modeling the proportion of manufactured FFVs that are registered in a given

zip code (by registrant type), using a generalized linear model with a logit link and binomial family. That is,

for each zip code I estimate regression intercepts (and their standard errors) using my nine yearly observations

of FFV registrations and the aggregate FFV production quantities for the corresponding year.31 To simulate

FFV registrations for unobserved periods, I draw the registration proportion from the corresponding market

distribution and multiply by the aggregate FFV production for that period. As with the error terms ε, I take

30 draws per market, so that the effect of the initial conditions are integrated out of the objective function (10)

when N∗
1 is computed. For the purpose of reporting the installed bases of FFVs in Table 1, I use average values

of the simulated data from 1998-2001.

E Robustness results

Here I explore the robustness of my results to three key assumptions: the spatial independence of markets,

the competitive conduct of firms, and the specification of fleet FFV demand. The assumption of Cournot

competition only has implications for the entry model estimation, while spatial independence and fleet demand

specifications affect both FFV demand and E85 supply estimates.

There are two potential concerns related to the assumption of spatial independence. First, the assumption

rules out regionally-correlated shocks such as advertising campaigns that span multiple zip codes. Second,

model does not explicitly account for potential “spillovers” in ethanol adoption (in FFV demand or E85 supply)

from nearby markets. I employ two procedures to assess the robustness of model estimates to the assumption

of market independence. First, I explore the robustness of model estimates to increased geographic isolation

of markets, which should attenuate the influence of regional shocks and spillovers. That is, I estimate the

model using markets in which E85 retailers are increasingly separated by some minimum distance. I use

samples which satisfy 5, 10, and 20 mile minimum separation criteria, and report results in columns 2 to 4
31The latter data come from the Department of Energy and date to the first production year for FFVs. Available at

http://www.afdc.energy.gov/afdc/data/vehicles.html.
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of Tables 8, 9, and 10 below. I include the main estimation results in the first column of the tables below to

facilitate comparisons. Inspection of the results suggests that estimates are generally robust to the extent of

geographic isolation (and hence spatial independence). Point estimates of the α parameters in the flex-fuel

demand equations are statistically consistent (with 95% confidence intervals) but significance levels fall rapidly

with increasing distance, reflecting in part the smaller sample sizes as separation distances increase. Parameters

of the E85 entry model also generally remain consistent within 95% confidence intervals. Measurement of the

entry thresholds, the primary object of inference in the entry model, is highly consistent across specifications.

As a second robustness check, I estimate a version of the model in that includes “spatial lags” of the endogenous

variables (column 5 in the tables below). The spatial lags are weighted sums of the variable of interest, where

weights are inversely proportional to the distance to the focal market. A cutoff distance of 15 miles is imposed

– i.e., weights for markets more than 15 miles from the focal market are set to zero. As an example, the

variable SL_N1 in Tables 8 and 9 contains the weighted sum of the number of E85 retailers (outside the focal

market) in zip codes up to 15 miles from the focal market. The E85 entry model similarly includes spatial

lags of the consumer and fleet FFV installed bases, as well as interactions with the number of interstates (which

presumably might shift cross-market contact). The spatial lag terms are insignificant in the FFV demand models

and the α parameters are virtually unaffected, further implying that the FFV demand specification is robust.

Unsurprisingly, the E85 entry model estimates differ to a greater extent across the specifications as they employ

fewer controls, but the net effect in terms of the predicted entry thresholds is generally robust.

Fleet demand specifications are explored in columns 6 and 7 of Tables 9 and 10. In column 6, I take

the fleet market size to be the market population (as in the consumer FFV demand regressions). Comparing

results in this column to the first, it is readily apparent that the using population as the market size results

in a significantly larger FFV demand response to E85 availability. Also, the entry model results using this

demand specification imply that fleet vehicles contribute less to E85 profitability than consumer FFVs. These

factors lead me to conclude that the employee market size measure is preferable as it is more conservative (FFV

demand) and more realistic (E85 entry). In column 7, I report estimates from a linear regression where fleet

FFV registrations (Q2) is the dependent variable. This model is estimated using the System GMM procedure

with the same regressors and instruments as in the main model estimation. As the dependent variable in the

fleet demand regression is different here, it is inappropriate to compare the estimated coefficients with the other

columns of Table 9. I include this specification purely as a robustness check in the E85 entry model. In Table 10,

comparing column 7 to the first reveals that these results are highly consistent, lending support to the premise

7



that the results of the main (aggregate logit) model are plausible and robust.

Finally, in column 8 of Table 10, I explore an alternative assumption about firm competition. The Cournot

assumption implies that installed bases should increase at a rate proportional to (1+N1)2. However, casual

inspection of the FFV installed base conditional upon N1 in Table 2 suggests that installed bases may increase at

a slower rate. Cartel behavior is an alternative model of competitive conduct that is consistent with a slower rise

in the installed base (linear in N1). The cartel model also represents a lower bound for the effect of competition

on ethanol retailer profits. Comparing the cartel model estimates (column 8) to the analogous Cournot model

(column 1), we see that all reported parameter estimates are statistically equivalent (some differences do exist

in the unreported state fixed effects). Monopoly thresholds for this model are essentially the same as in the

Cournot model, suggesting that the specification of competition has relatively little influence in determining the

estimated parameters.

Specification 1 2 3 4 5
E85 station separation (mi) 0 5 10 20 0

retail E85 stations (N1) 0.059* 0.057* 0.046 0.028 0.059*
spatial lag retail E85 stations (SL_N1) -0.001

rural 0.022 0.007 -0.004 0.041 0.025
income 0.016*** 0.015*** 0.013*** 0.013*** 0.016***

commute 0.004 0.007* 0.010* 0.011* 0.004
gas_stations -0.011*** -0.010*** -0.009*** -0.010*** -0.011***
dealerships -0.012*** -0.012*** -0.012** -0.012* -0.012**

Zip fixed effects Yes Yes Yes Yes Yes
Period fixed effects Yes Yes Yes Yes Yes

State/Year FE Yes Yes Yes Yes Yes
Zip time trends Yes Yes Yes Yes Yes

Observations 34713 31121 24078 14707 34713
Significance levels: * 5%, ** 1%, *** 0.1%

Table 8: Robustness results – consumer FFV demand
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Specification 1 2 3 4 5 6 7
Fleet market size Employees Employees Employees Employees Employees Population N/A

E85 station separation (mi) 0 5 10 20 0 0 0
retail E85 stations (N1) 0.064* 0.059* 0.040 0.031 0.061** 0.172*** 1.005***

spatial lag retail E85 stations (SL_N1) 0.008
private E85 stations (N2) 0.026 -0.013 -0.217 -0.102 -0.052 -0.060 0.388

rural 0.016 -0.003 -0.006 0.038 0.020 0.051 -0.848*
income 0.013*** 0.015*** 0.013*** 0.013** 0.016*** -0.003 0.037***

commute 0.003 0.007 0.010 0.010 0.003 -0.005 0.016
gas_stations -0.009*** -0.010*** -0.009*** -0.010*** -0.011*** -0.038*** 0.103***
dealerships -0.015** -0.014** -0.013* -0.014* -0.011** -0.015 0.174***

Zip fixed effects Yes Yes Yes Yes Yes Yes Yes
Period fixed effects Yes Yes Yes Yes Yes Yes Yes

State/Year FE Yes Yes Yes Yes Yes Yes Yes
Zip time trends Yes Yes Yes Yes Yes Yes Yes

Observations 34713 31121 24078 14707 34713 34713 34713
Significance levels: * 5%, ** 1%, *** 0.1%

Table 9: Robustness results – fleet FFV demand9



Specification 1 2 3 4 5 6 7 8
E85 station separation (mi) 0 5 10 20 0 0 0 0
Competition Cournot Cournot Cournot Cournot Cournot Cournot Cournot Cartel
Fleet market size Employees Employees Employees Employees Employees Population N/A Employees

Variable rural 0.791*** 0.615*** 0.596*** 0.571*** 0.743*** 0.758*** 0.803*** 0.791***
profits income -0.021*** -0.024*** -0.020*** -0.021*** -0.021*** -0.022*** -0.022*** -0.021***

commute -0.028*** -0.022*** -0.025*** -0.027*** -0.027*** -0.029*** -0.028*** -0.027***
gas_stations -0.011*** -0.028*** -0.030*** -0.020*** -0.027*** -0.026*** -0.027*** -0.026***

refineries 0.316*** 0.298*** 0.302*** 0.207*** 0.315*** 0.305*** 0.323*** 0.300***
State FE Yes Yes Yes Yes Yes Yes Yes Yes

Period FE Yes Yes Yes Yes Yes Yes Yes Yes

Infrastructure State FE Yes Yes Yes Yes Yes Yes Yes Yes
costs Period FE Yes Yes Yes Yes Yes Yes Yes Yes

ρ12 0.024 -0.005 0.008 -0.002 0.017 -0.018 -0.011 0.008
ρ13 0.002 -0.012 0.004 -0.005 0.001 -0.001 0.000 0.022

Market size interstates 26.608*** 30.964*** 29.443*** 38.179*** 36.472*** 26.557*** 26.296*** 27.511***
flt_ffv_ib 1.415*** 1.907*** 1.789*** 2.997*** 1.711*** 0.652*** 2.095*** 1.394***

N2*flt_ffv_ib -1.226** -2.078** -0.526 -1.175 -1.043* -0.791* -1.503 -1.127**
SL_con_ffv_ib 0.065***

SL_flt_ffv_ib -0.463***
SL_con_ffv_ib*interstates -0.088***

SL_flt_ffv_ib*interstates 0.459***
Observations 34713 31121 24078 14707 34713 34713 34713 34713
Monopoly entry threshold 299 315 296 399 321 288 305 296
Significance levels: * 5%, ** 1%, *** 0.1%

Table 10: Robustness results – E85 market entry
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