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Abstract 

 
Real-time delivery of products in the context of stochastic demands and multiple vehicles is a difficult problem, as it 
requires the joint investigation of the problems in inventory control and vehicle routing. We model this problem in 
the framework of Average-reward Reinforcement Learning (ARL) and present experimental results on a model-
based ARL algorithm called H-Learning with piecewise linear function approximation. We also show that a version 
of hill climbing yields at least as good performance as exhaustive search with an order of magnitude speedup in 
execution time. 
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1. Introduction 
Reinforcement Learning (RL) provides a nice framework to model a variety of real-world stochastic optimization 
problems [1]. In this paper, we use the RL framework to study the problem of real-time delivery of products using 
multiple vehicles when the demands are stochastic. While RL has been applied separately to inventory control [2] 
and vehicle routing [3,4]  in the past, we are not aware of any applications of RL to the integrated problem of 
real-time delivery of products that includes both.  
 
The delivery problem we investigate is as follows: There is one distribution center and several shops. Products are 
delivered from the distribution center to the shops by several trucks. We assume that there is a single type of product. 
The current status of the inventory levels of the shops, and the loads and locations of the trucks at any time are 
known to the scheduling system. The task of the system is to decide at each time-step the next action for each truck, 
including going to a different location, unloading, and waiting.  Since the system is only given the levels of the 
inventories and the current load levels and locations of the trucks, and is required to determine the best actions for all 
the trucks, it addresses the combined problem of inventory control and vehicle assignment and routing 
simultaneously. While the actions of the trucks themselves only have deterministic effects, they happen concurrently 
with customer actions of consuming the products from the shops, which are highly stochastic. As a result, our 
problem is a stochastic Markov Decision Problem (MDP) with two kinds of costs:  1) the cost of moving the truck 
from one location to the other, which combines the fuel, vehicle, and the driver costs; and 2) the stockout cost,   
which is the lost profit due to not satisfying the customer when a customer finds the shop empty.  
 
While it is natural to minimize the expected total cost in stochastic domains where the planning horizon is finite, in 
most recurrent domains including real-time delivery, the natural optimization criterion is to maximize the expected 
average reward per time step. In this paper we investigate the effectiveness of a model-based Average-reward 
Reinforcement Learning (ARL) method called H-Learning in solving a moderately difficult instance of the real-time 
delivery problem [5]. H-Learning works by learning explicit models of the actions and the environment as well as 
value functions over the states. The models represent how the state of the world changes with the actions chosen by 



the system. In our case, since the direct effects of actions by the trucks are known already, the distribution of 
consumption at each shop is learned. The value function represents the bias of each state, defined as the best 
expected reward when starting from that state over and above what would be expected on the average over the 
infinite horizon. Given the models and the optimal value function over all states, a one-step look-ahead search over 
all available actions of all trucks would yield the optimal decision. 
 
Unfortunately, H-Learning, or any RL method that depends on storing the optimal value function and action models 
as tables, does not scale to large state-spaces such as our delivery domain. The table-based methods require space 
proportional to the number of states, which is exponential in the number of shops and trucks in our domain. In this 
paper we introduce a function approximator which stores the value function as a piecewise linear function, which 
achieves a high degree of compression and good performance (as measured by the average reward per unit time). 
The action models are also stored compactly as a function of a small set of expected inventory levels. Further 
optimization and abstraction of the truck identity makes it possible to scale the approach to 5 shops and 5 trucks 
from 5-shops and 2-trucks. Since at each time-step we have to consider the actions of all the trucks, even one-step 
look-ahead search is computationally expensive. To reduce this computational cost, we used a stochastic hill 
climbing algorithm that runs significantly faster and scales to 5 shops and 5 trucks without sacrificing the quality of 
the solutions. 
 
In the next section, we discuss Average-reward Reinforcement Learning (ARL) and H-learning. In Section 3 we 
describe our method of function approximation and several other optimizations. In Section 4, we present 
experimental results and in Section 5 we describe possibilities for future work. 
 
2. Average-Reward Reinforcement Learning 
We assume that the learner's environment is modeled by a Markov Decision Process (MDP).  An MDP is described 
by a discrete set S of N states, and a discrete set of actions, A. The set of actions that are applicable in a state i are 
denoted by U(i) and are called admissible. The Markovian assumption means that an action u in a given state i∈S 
results in state j with some fixed probability Pi,j(u). There is a finite immediate reward ri,j(u) for executing an action u 
in state i resulting in state j. Time is treated as a sequence of discrete steps. A policy  is a mapping from states to 
actions, such that (i)∈U(i). We only consider policies that do not change over time, which are called “stationary 
policies” [6].   In Average-reward Reinforcement Learning (ARL), we seek to optimize the average expected reward 
per step over time t as t ∞→ , which is called the gain. For a given starting state s0 and policy , the gain is given by 
Equation (1) where ru(s0,t) is the total reward in t steps when policy u is used starting at state s0, and E(ru(s0,t)) is  
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Figure 1: The H-learning algorithm. The agent executes steps 1-8 when in state i. 



its expected value: 

)),((
1

lim)( 00 tsrE
t

s
t

µµρ
∞→

=                                                                       (1) 

In most common MDPs, the gain of the optimal policy *ρ  is independent of the starting state [6]. The goal of ARL 

is to control the MDP in a way that achieves near-optimal gain by executing actions and receiving rewards and 
learning from them. Ideally, we would like to find a policy that optimizes the gain, i.e., a gain-optimal policy. The 
expected total reward in time t for optimal policies depends on the starting state s and can be written as the sum 

)(sht t+⋅ρ . The Cesaro’s limit of the second term ht(s) as t ∞→  is called the bias of state s and is denoted by h(s). 

The optimal gain *ρ  and the biases of the states under the optimal policy satisfy the following Bellman equation:  
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The optimal policy chooses actions that maximize the right hand side of the above equation. The classical dynamic 
programming (DP) methods to solve the above equation, including value iteration and policy iteration, depend on 
knowing the probability transition models pi,j(u) and the immediate rewards ri(u).  Reinforcement Learning (RL) 
methods are not given these models and need to learn them on-line by executing actions, observing the next states, 
and receiving rewards [1].  We use an ARL method called “H-Learning” which is “model-based” in that it computes 
the probabilities pi,j(a) and rewards ri(a) by straightforward Monte Carlo sampling, as shown in steps 2-4 in Figure 1. 
It then employs the “certainty equivalence principle” by using the current estimates as the true values while updating 
the h-value of the current state i in step 7.b. of Figure 1 according to the equation: 
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Unlike the classical DP methods that update all states in a sweep, at any time the RL algorithms such as ours only 
update the value of the current state i, and not the values of other states. To make sure that all state-values are 
updated until they converge, Reinforcement Learning methods require “exploration actions” that ensure that every 
action in every state is executed with some non-zero probability (step 1 of Figure 1). However, to get a good online 
reward, it should not deviate too much from the greedy policy as computed in step 5 of the algorithm in Figure 1.  
One issue that still needs to be addressed in Average-reward RL is the estimation of *ρ , the optimal gain. Since the 

optimal gain is unknown we use ρ , an estimate of the average reward of the current greedy policy, instead. From 
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is estimated in Step 6 of Figure 1. In the next section, we describe a variety of enhancements to the basic H-Learning 
to make it scale to the product delivery problem. 
 
3. On-line Product Delivery 
Consider the supplier of a product such as bread that needs to be 
supplied to several shops from a warehouse using several delivery 
trucks. What is an efficient policy for ensuring the stores remain 
supplied? Trucks must not move unnecessarily to save on transportation 
costs, but must still make deliveries on time to prevent stockouts. We 
developed a simple model and experimented with an instance of the 
problem shown in Figure 2. We considered 5 shops, one centrally 
located depot, and 4 other intermediate locations where trucks can 
change their routes. We assumed it takes one unit of time to go from any 
location to its adjacent location or to execute an unload action. The shop 
inventory levels and truck load levels are discretized into 5 levels 0-4. 
With 2 trucks and 10 locations, this gives us a state space size of 
(55)(52)(102)= 7,812,500, and with 5 trucks and 10 locations, it gives us 
a size of (55)(55)(105) = 976,592,500,000. State space size grows 
exponentially in the number of trucks and the number of shops. Each 
truck has 9 actions available at each time step:  unload 25%, 50%, 75%, 
or 100% of its load, move in one of the four available directions, or do 
nothing. This is a total of 92 = 81 actions for 2 trucks, or as many as 95 = 

Figure 2: The Product Delivery 
Domain: The square in the center is the 

depot and the circles are the shops. 



59,049 actions for 5 trucks. Trucks are loaded automatically upon reaching the depot. There is a small probability of 
a visit by a customer at every time step, which varies from shop to shop. If a customer enters a store and finds the 
shelves empty, the system receives a penalty of -20. A small negative reward of -.1 is given for every “move” action 
a truck may take to reflect the fuel , maintenance, and the driver costs. 
 
3.1 Piecewise Linear Function Approximation 
Table-based methods such as H-Learning do not scale to such large state spaces as the delivery domain both due to 
limitations of space and convergence speed. The value function needs to be represented more compactly using 
function approximation to make it scale to large domains. While there exist many function approximation methods 
such as neural networks and regression trees, linear function approximators are the simplest. Unfortunately, however, 
in many cases including ours, the optimal value function is highly nonlinear and cannot be captured by linear value 
functions. Instead, we used a function approximation scheme based on piecewise linear functions. In particular, we 
hypothesize that the value function can be broken down into several pieces, each of which has the same set of values 
for some of the so-called “non-linear” features. Each such piece of the value function is linear in the remaining set of 
features.  
 
For example, in the delivery domain, it can be argued that the optimal value function is monotonically non-
decreasing in certain variables of the state such as the inventory levels of the shops and the trucks, for any given set 
of locations of the trucks. This is true because the chance of a stockout is smaller when the inventories are higher 
than when they are lower. Similarly one has more options when the trucks have more load than when they have less 
load. We made a further simplifying assumption that the value function is linear in all these primitive features of the 
state, i.e., i1,…,i5, that represent the shop inventory levels, and t1,…,t5, that represent the truck loads. A third 
assumption is that the value function does not have cross-terms such as i1i2. Since the locations of the trucks are 
discrete entities, we do not make a similar assumption about them. Instead, we assume a different linear function for 
each possible 5-tuple of locations l1,…,l5 for the 5 trucks. Thus the entire value function is represented as a piecewise 
linear function, with one piece covering the function for one set of locations. Only mk linear functions are needed to 
represent the h-function, where k is the number of trucks and m is the total number of locations. Since each linear 
function now has up to 11 weights (5 for shop inventory levels, 5 for truck inventory levels, and one weight,  oθ , 

that represents the bias), and there are 105 different linear functions, this reduces the total number of parameters to be 
learned to 1.1 million, nearly a million-fold reduction from the table-based approach. 
 

The h-value is represented as a parameterized functional form with parameter vectors vθ
&

, one for each possible set 

v of values of the “nonlinear features,” i.e., locations of the trucks. Corresponding to every state i, there is a vector of 
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where v is the set of values of the nonlinear features in state s. Then vθ
&

is updated using the following equation: 
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and  β  is  the learning rate. The above update suggests that the value of h(i) would be adjusted toward the result of 

one-step backed up value of the next state. 
 
3.2 Storing and using the action models 
One of the drawbacks of the model-based RL methods is that they require stepping through all possible next states of 
a given action to compute the expected next state. In domains like ours where the state is decomposed into several 
parts, one for each shop, steps 1 and 5 of the H-learning algorithm (Figure 1) are very time-consuming. This is so 
because the number of possible next states is exponential in the number of variables such as the shop inventory 
levels. Anything that can be done to optimize these steps improves the speed of the algorithm considerably. As it 
turns out, using linear function approximation allows us a method of doing this. These steps both contain the 
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j where N is exponential in the number of stores. (in our case, with 5 stores and 2 possible 

customer actions, N = 25). Note that the possible next states of an action at any state differ only in the shop inventory 
levels, since they are the only stochastic parts of the system. 
 
Since the value of h(j) is assumed to be linear in the shop inventory levels, we can write this as 
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sampling. Instead of taking a number of steps proportional to the number of expected next states, this would only 
take steps proportional to the number of shops, which is exponentially smaller. For example, if the current inventory 
level of shop l is 2, and the probability of inventory going down by 1 in this step is 0.2, then ),|( , uiE ilφ  = 2-1*.2 = 

1.8. Thus, we obtain 5.a by substituting ),|( ,,1,0 uiE jlvl
n
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Learning algorithm. In Step 7.a., we combine this equation with (5) above.  
 
3.3 Ignoring Truck Identity 
A second possible optimization allows us to reduce the number of linear functions necessary to represent the h-
function. The figure of mk linear functions stated in section 3.1 assumes that a specific identity is associated with 
each truck: that is, truck 1 is at location l1, truck 2 is at location l2, and so on. This is more information than is 
actually necessary. If we no longer care about the identity of each truck, but use only the fact that there are 2 trucks, 
one of which is located at l1, the other located at l2, then we can reduce space requirements for representing the h-

function, which in turn leads to faster convergence. Instead of mk linear functions, we now require 

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trucks, which previously required 100 linear functions, we now require only 55. For 5 trucks, previously requiring 
105 functions, we only need 2002 linear functions. This reduces the number of learnable weights to 22,022 from 1.1 
million in the 5-truck case. 
 
3.4 Hill Climbing Search 
Another problem that had to be addressed was the size of the action space. With 5 trucks, we have 95 joint actions. It 
is usually too expensive to consider each possible joint action at each step. Although we could do this in principle, it 
can take over a day of simulation time to finish learning using this method. We implemented a simple hill climbing 
strategy which significantly sped up the process by as much as an order of magnitude. Note that every action a is a 
vector of individual “truck actions” ),...,,( 21 taaaa =

&

. This vector is initialized with all “wait” actions. Starting at a1, 

each of the 9 possible actions for that truck is considered, and a
&

 is set to the best action. This process is repeated for 
each truck a2…an. The process then starts over at a1, repeating until a

&

 has converged to a local optimum. 
 
4. Experimental Results 
We conducted several experiments testing the methods discussed in section 3. Two of these are presented here. All 
tests are averaged over 20 runs of 106 time steps each. Figure 3 compares the performance of the agent using 
piecewise linear function approximation vs. using simple table-based approaches. Two trucks and five shops were 
modeled. As can be seen from these results, the state space is so large, even for just 2 trucks, that table-based 
approaches converge too slowly to be practical. Using function approximation allows for much faster convergence. 
 
Figure 4 compares the performance of using hill climbing to search the action space vs. using the more typical fully 
exhaustive search of all possible actions during each iteration. 4 trucks and shops, and 5 trucks and 5 shops are 
considered. In both cases, exhaustive search seems to perform better at first, but the hill climbing method quickly 
catches up and converges to a more stable result. The reason for this result appears to be that the hill climbing 
method allows more robust exploration of interesting parts of the state space than what is allowed by simple 
H[SORUDWLRQ�VWUDWHJLHV�VXFK�DV� -greedy (take random actiRQV�ZLWK�SUREDELOLW\� �DQG�WKH�JUHHG\�DFWLRQ�ZLWK�SUREDELOLW\�

1- ���7KLV�LV�DQ�H[WUHPHO\�HQFRXUDJLQJ�UHVXOW�VLQFH�LW�VXJJHVWV�WKDW�LW�PD\�EH�SRVVLEOH�WR�GR�OHVV�VHDUFK�DQG�REWDLQ�

better results in the end. The greatest benefit is the time to compute the 106 iterations plotted here. For purposes of 
comparison, exhaustive search takes about half a day for one run in the 5-truck case, hill climbing about half an hour.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the average reward decreases with the number of trucks. This is because the percentage chance a customer 
will enter a shop to purchase an item is increased proportionally to the number of trucks in our experiments. The 
increase in the number of trucks was insufficient to combat the increased demand introduced in order to keep the 
problem challenging.  
 
5. Future Work  
There are numerous ways this work can be further extended. Scaling up these results to more realistic settings and 
improving the computation time are important open problems. We will continue to scale up the domain, adding more 
trucks, more locations, more shops, and more depots. Even more challenging would be to add more items: currently 
each truck carries only one type of item in its inventory. Scaling this up to two or more items creates a more difficult 
problem. Instead of trucks moving between 10 locations in discrete “jumps”, allowing trucks to move with variable 
speed along highways interconnecting each intersection would be more realistic. This would require an event-based 
model of time, to allow trucks to arrive at shops and intersections at any time. Currently inventory and load levels are 
represented by 5 discrete values. Using real-valued shop inventory and truck load levels would be another interesting 
challenge. The function approximation method has room for improvement. Further experimentation with exploration 
strategies such as “optimism under uncertainty” may prove more useful.  
 
In summary, we conclude that Average-reward RL is a promising approach for real-time product delivery. While we 
made many simplifying assumptions, the experimental results in our domain are encouraging, and give us confidence 
that we can make our approaches scale to larger and more practical problems. 
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Figure 4: Hill climbing vs. exhaustive search for 4 
and 5 trucks 
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