
Chapter 4
On the Relationship Between Stream
Biotic Diversity and Exurbanization
in the Northeastern USA

Scott Goetz and Gregory J. Fiske

Abstract Stream macroinvertebrate diversity is a commonly used indicator of
aquatic health, reflecting overall ecological integrity within a watershed. Our
study made use of two metrics of stream biota, the Hilsenhoff Biotic Index (HBI)
and the diversity of Ephemeroptera, Plecoptera, and Tricoptera (nEPT) species,
to develop statistical models relating land cover information within watersheds
to these stream biotic health indicators. The study area in southern New England
included over 100 small streams, which make up a substantial portion of the
region’s largest catchments. General additive models (GAM) and step-wise
multiple linear regression (MLR) models were used to explore the relationship
between the land cover and the biotic indicators. Although the GAMs explained
a greater amount of the variation in the stream biota metrics, the MLR models were
also consistently reliable predictors of nEPT and HBI. This research indicates land
cover can be used as a robust predictor of stream biological indicators of small
catchments (HUC12) in the region, and help to target streams for restoration or
protection.
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4.1 Introduction

The links between land cover and water quality, including stream health, have long
been known but not until recently have analyses over large areas been conducted
(Mitsch et al. 2001; Nilsson et al. 2003; Carlisle and Meador 2007). This is partly
a result of wider availability of land cover information from regional to national
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scales (Wickham et al. 2004; Homer et al. 2004). Impervious surface areas
(the built environment, like buildings, roads, parking lots) increase the amount of
pollutants within and the temperature of runoff reaching streams. Forested riparian
buffers, on the other hand, preserve or increase stream quality by contributing leaf
litter, regulating temperature and sunlight, deterring erosion and retaining nutrients
(e.g. Jordan et al. 1997; Lowrance et al. 1997; Groffman et al. 2004). Despite a great
deal of effort, much of the progress that has been made in restoring the health of the
nation’s waterways has been offset by continued urban, suburban, and exurban
development (CBPO 1998; Wickham et al. 2005). The expansion of impervious
surface areas associated with this urban growth disrupts aquatic biology and
degrades water quality by inhibiting infiltration, increasing peak flows, reducing
base flows, reducing lag time between storm events and peak discharge (i.e.,
increased flashiness), facilitating the overland transport of pollutants, and increas-
ing sediment loads associated with stream channel incision and erosion (see updated
review by Schueler et al. 2009).

Other impacts result from the associated loss of resource lands (forests,
wetlands and riparian buffer areas), which serve ecological functions such as
filtering water flows and buffering chemical pollutants (e.g. Goetz et al. 2004).
Many of these pollutants arise from impervious surface areas, particularly the
roads and parking lots built to accommodate increased vehicle use. The adverse
effects of these changes can be mitigated by increased vegetation cover, land-
scape configuration, and low-impact development techniques, which together
reduce the volume and velocity of overland flows, uptake excess nutrients and
pollutants, maintain stream bank integrity, provide shade that reduces stream
warming, and generally reduce the negative ecological and economic impacts
of urbanization.

As a result of the processes described above, landscape configuration modifies the
relationship between land use and in-stream biological metrics, such as the widely
used index of biological integrity (IBI). Those elements that may have an effect on
stream quality at the catchment scale, such as water chemistry (Sponseller et al. 2001)
and non-point source pollution (Paul et al. 2002), may not retain their predictive
power at more local (e.g. riparian or near-stream) scales, and vice versa (Jones et al.
2001). With particular reference to the relationship between stream macroinver-
tebrates and watershed scale land cover, distance to the stream channel appears to
be a key variable that can influence the relative importance of specific land cover
variables (Walsh et al. 2005; King et al. 2005; Goetz and Fiske 2008). Recent work
also emphasizes the spatial arrangement of landscape patches (Strayer 2006), gradi-
ent/slope complexity (Snyder et al. 2003), and dominant substrate (Lammert and
Allan 1999). Assessing the influence of riparian zone land cover over large areas has
also increased in recent years as a result of more widely available high resolution
sources of land cover data with relevance to riparian buffer mapping and monitoring
(see review by Goetz 2006). It is thus nowmore feasible to use comparable metrics of
riparian buffer properties, combined with those of stream hydrology, lithology, and
other landscape metrics to more fully assess the influence of human land use on
stream ecosystems at a variety of spatial scales (Allan 2004; Brabec et al. 2002;
Grimm et al. 2008; Nilsson et al. 2003; Parsons et al. 2002).
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In earlier work the statistical association between land cover variables mapped
using high resolution satellite imagery (impervious cover, tree cover, and trees
and crops in the riparian buffer zone) and stream ecology assessments was
documented across 246 small watersheds within central Maryland (Goetz et al.
2003; Snyder et al. 2005). These watersheds spanned a wide range of land
uses, from predominantly agricultural to mostly residential. Stream conditions
assessed by state departments of natural resources and other groups made use
of indices of biological integrity (IBI), and stream ecological health was ranked
as excellent, good, fair, or poor, based on a combination of the IBI scores
and physical stream properties such as dissolved oxygen, pH, and temperature
(Van Ness et al. 1997; Yetman 2002). Related analysis of land cover variables and
landscape configuration metrics, such as mean distance from impervious areas to
the stream channel along a topographically defined flow path, and indices which
define the dispersion or aggregation of land cover within the watershed, indicated
the potential of these as independent predictors of stream biotic health (Snyder
et al. 2005). Most recently, the research expanded that analysis to the state of
Maryland, making use of the Maryland Biological Stream Survey (MBSS) data
sets, and showed that both IBI and nEPT had a strong correlation to moderate
resolution imagery (30 mLandsat imagery) (Goetz and Fiske 2008). Here the focus
is on extending these earlier analyses to another geographic region with quite
different geological substrate and a different set of biotic indicators, and testing the
relative utility of landscape configuration in this context.

4.2 Study Area and Data Sets

4.2.1 Study Area

The study area comprises the southern portion of New England, including the states
of Massachusetts, Rhode Island, Connecticut, and southern Vermont (Fig. 4.1).
Weather in the region is characterized by warm and humid summers, with rainfall
generally around 90–150 cm annually. Daily winter low temperatures tend to
remain below freezing from November through March, although winter temper-
atures and snowfall have both increased in the four decades preceding 2005
(Burakowski et al. 2008).

The watersheds we focused on cover approximately 7000 km2 of formerly
glaciated land underlain by mostly granite and metamorphic bedrock. These
watersheds include most of the large drainage systems in the area including Narra-
gansett and Buzzard’s Bays, and the Connecticut and Taunton rivers. Land cover in
this area is generally forested with small amounts of agriculture in the Connecticut
River valley, cranberry growing in Southeastern Massachusetts, and steadily
increasing exurbanization characterized by low density residential development
scattered between large urban centers like Boston, Providence, and Worcester.
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4.2.2 Sensitive Taxa

This study developed models on both number of EPT individuals (abundance)
and number of EPT taxa (genera). Total EPT abundance (NEPT) was defined as
each individual within the Ephemeroptera order (mayflies), Plecoptera order
(stoneflies), or Trichoptera order (caddisflies). The number of EPT taxa was simply
a tally of the number of different genera represented by NEPT, which can also be
considered as EPT taxa diversity or taxa richness.

These data were obtained from the U.S. Geological Survey’s National Water
Quality Assessment (NAWQA) program, which has collected chemical, biological,
and physical water quality data from watersheds across the country since 1991.
At the time of this study, data from over 7,000 surface sites could be found within
the NAWQA archives, including biological data for over 2,500 stream reach
segments. A search of the online NAWQA Data Warehouse (http://water.usgs.
gov/nawqa/data) was restricted to the southern New England states of Connecticut,
Rhode Island, and Massachusetts. The tabular results from the search included
sample station ID and geographic coordinates, as well as the Order and Genus
attributes necessary for calculating number of EPT individuals (abundance) and

Fig. 4.1 Map of southern New England, USA, showing the extent of watersheds
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number of EPT taxa (richness). After restricting dates of interest to those within
the range of the land cover information, and filtering out repeated sampling at the
same location (keeping the most recent), we had a sample of 32 sites with NAWQA
data in southern New England (Fig. 4.1). No sampling locations for sensitive taxa
were located within Rhode Island.

4.2.3 HBI

Our research made use of the Hilsenhoff Biotic Index (HBI) for data collected
across 83 stream reaches in Rhode Island and Southeastern Massachusetts.
The HBI, developed in the late 1970s by William Hilsenhoff at the University
of Wisconsin, rates stream biologic integrity on a scale of 0–10, with the lower
values representing an excellent ranking and the higher values representing
poorer conditions (Hilsenhoff 1987). The HBI scale incorporates the tolerance
of each taxa identified during stream reach inspections to organic pollutants
(Robinson 2004). The HBI is one of several metrics from the Wadeable Stream
Condition Index used for stream health monitoring in Rhode Island, and a Rapid
Biomonitoring Protocol (RBP) index used to rate stream health in Massachusetts.
The Rhode Island portion of these data (n ¼ 39) were part of an archive of
11 years of biomonitoring data, collected by Sara da Silva (University of Rhode
Island) (2003), the Rhode Island Department of Environmental Management and
Environmental Resource & Wetlands Assessment, and Nelson, Pope & Voorhis
LLC of Melville, New York (da Silva, personal communication). The HBI metric
information for Massachusetts (n ¼ 44) was provided by the Massachusetts
Department of Environmental Protection, Division of Watershed Management.
These data were concentrated on the Taunton River watershed area of south-
eastern Massachusetts, but also included samples from the Blackstone and
10-mile watersheds (see Fig. 4.1).

4.2.4 Land Cover Metrics

The land cover metrics used in this analysis included maps of percent impervious
surface cover, percent tree cover, and categorical (presence/absence) of grassland
and crop cover. These data sets were derived from National Land Cover Database
2001 (NLCD), available through the U.S. Geological Survey’s EROS Data Center.
The NLCD data set, produced using 30 m Landsat Thematic Mapper satellite
imagery, covers watersheds across the nation (including our entire study area)
using a consistent classification scheme (Homer et al. 2004). From this categorical
map product, we extracted Grassland/Herbaceous and Pasture/Hay land cover
information (NLCD classes numbered 71 and 81) to identify areas dominated
by grass vegetation cover. Corresponding crop cover was derived using NLCD
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class 82 (Cultivated Crops). The NLCD percent impervious surface cover map was
used to identify areas of human development as a more continuous variable
(ranging from 10 to 100 % for each 30 m image pixel), while the continuous
percent tree cover reflected the comparable proportion of land cover in a more
naturally forested state (again ranging from 10 to 100 %).

4.3 Approach

4.3.1 Watershed Delineation

Our research involved both local high-resolution elevation data sets and coarser
nationwide data sets to delineate the catchment areas upstream of our sample
points. Where high-resolution elevation data were available, including Rhode
Island and southeastern MA, a digital elevation model of 5 m horizontal spatial
resolution was built. Where these data were unavailable, we used the National
Elevation Data set (http://ned.usgs.gov), which has a 30 m spatial resolution.

The areas upstream of each sample point in the HBI and EPT analyses were
defined in two ways. One was to generate the area of contribution (catchment) to
each sample point, with additional areas of contribution for sample point upstream
along the same stream reach. The other was to combine (aggregate) those sample
points along the same stream reach and link only the biological sample data to the
lowest sample point (highest stream order) along the reach. These are referred to as
the catchment and aggregatedwatershed sampling schemes throughout the remain-
der of the paper. Each of the watershed sampling schemes were generated
using standard GIS hydrology functions/tools available in ESRI® GIS software.
These tools derive watershed boundaries based on topographic variables (slope,
aspect and elevation) derived from digital elevation data sets.

4.3.2 Landscape Distance Weighting

Weighting land cover metrics with some form of inverse distance weighting has
been explored elsewhere in the context of land cover assessments of stream biota
(e.g. King et al. 2005; Baker et al. 2006; Snyder et al. 2005). A landscape distance
weighting methodology was designed to capture the relative importance of land
cover information based on its proximity to the stream channel (after Goetz and
Fiske 2008). For each watershed in the study area, a distance-weighted surface was
developed, allowing us to use the distance from the stream channel and catchment
“pour point” independent of adjacent watersheds. The first component of the
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distance weighting scheme is a distance to stream channel, where for each 30 m cell
within the watershed distance is calculated to the closest cell that defines the stream
channel. These values are scaled between 0 and 1, with 1 representing the greatest
possible distance. The second distance metric incorporates the amount of tree cover
within each pixel (30 m grid cell) of the watershed.

Originally containing values of 0–100%, the tree cover layer was also scaled
between 0 and 1. The inverse distance is then calculated for both of these
components, providing two data layers, one depicting the inverse distance to
stream, with values closest to the stream being the highest (at or near 1), and the
values furthest from the stream being the lowest (at or near 0). These two data
layers are combined (multiplied) to provide a scaled landscape weighted cost
surface that reflects the potential buffering capacity of tree cover on both over-
land and, to a lesser extent depending on rooting depth, subsurface flow.
Each of the other land cover classes (impervious, grass and crop cover) were
then multiplied by the landscape weighting scheme. Results using this distance-
weighting scheme for each watershed were compared to results without using
distance weighting. Analyses was conducted using ESRI® GIS software, making
use of Python and Arc Macro scripting languages to summarize the data for further
statistical analysis.

4.3.3 Statistical Analyses and Predictions

A stepwise Multiple Linear Regression (MLR) and General Additive Model
(GAM) was used to test the relationship between the biotic metrics (EPT and
HBI) and the land cover variables. In addition to the NLCD land cover layers
(percent impervious, tree cover, grassland, and cropland), predictor variables
included watershed size and the landscape weighted transformations of the
land cover variables. The response variables were the stream biotic metrics:
HBI, EPT abundance and EPT richness (Fig. 4.2). The same predictor and
response variables were used for both the landscape weighted and the non-
weighted tests.

As in previous research, a forward stepwise MLR and GAM was used to
predict stream biota indictors from the land cover metrics. These procedures
allowed us to train a linear model on a portion of the data (90%) while withholding
a selection of the data (10%) for cross validation. Predictor variables were itera-
tively selected based on their relative power in explaining variance within the
response variable. Finally, the best fit models were used to create a map of
predicted stream biotic quality for each HUC12 watershed, which were selected
because they encompassed a comparable total watershed area (size) as those for
which HBI and EPT metrics were derived and aggregated.
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4.4 Results

4.4.1 Land Cover Predictors of Stream Biota Metrics

The relationships between the land cover metrics and the biotic indicators is shown in
Fig. 4.3. In general, the amount of impervious surface and tree cover had the strongest
correlation with the stream biotic metrics. These two metrics are inversely correlated
to one another. The relationship between percent imperviousness within a watershed
and nEPT produces an R2 of 63 %, percent tree cover to nEPT, 41 % (p-value "
0.001), while HBI to imperviousness produces an R2 of 14%, with percent tree cover,
34 % (p-value " 0.001). The effectiveness of the landscape distance weighting was
not consistent in terms of improving model predictions, despite generally higher
simple correlations between the biotic indicators and land cover variables weighted

Fig. 4.2 A flow chart indicating the methodology used in comparing land cover metrics with
stream reach biological indices data for southern New England
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for landscape configuration. The amount of crop and grassland showed little to
moderate relationships with the stream biotic metrics, which may be a result of
relatively low amounts of these land cover types in the study area.

4.4.2 Statistical Analyses

The GAM and MLR models identified the key predictor variables for all three
stream biotic indices and allowed us to compare the effectiveness of landscape
weighting, as well as the differences between different definitions of upstream
area (catchment vs. aggregated watersheds) (see Tables 4.1 and 4.2). With few
exceptions, the GAM and MLR models selected percent impervious area to be the
key predictor variable for number and abundance of EPT, as well as the HBI.
Percent tree cover was also a key predictor variable, being selected second for most
of the MLR models, while the size of the watershed (area) was a significant
predictor only in the GAM model results. Crop and grasslands were consistently
poor predictor variables for all scenarios.

The GAM models produced the highest R2 values, with 76 % reported for both
EPT abundance and richness within the catchments watershed scenarios, which
had slightly but systematically higher explained variance. There was no clear
indication that catchment predictions were systematically better than the
aggregated watershed predictions, as both scenarios produced R2 values within
a few percentage points of one another. The poorest R2 values were generated
from the models that predict HBI, and this was consistent for both the GAM and
MLR approaches. To explore the effect of differing data collection methods used
between states, we divided the two HBI data sets for Massachusetts and Rhode
Island. The results presented in Tables 4.1 and 4.2 show the fit (R2) values for

Fig. 4.3 Graph mosaic indicating the plotted values of percent impervious surfaces and percent
tree cover land cover metrics versus the HBI and nEPT biotic indices. These values are further
stratified by landscape weighted or non-weighted scenarios
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each state individually. Splitting the HBI data this way limited the number of
samples needed for robust GAM or MLR models of the landscape weighted
watersheds in Massachusetts. Furthermore, low sample sizes for each of the
tested scenarios precluded the use of other data intensive approaches, such as
decision-tree models, which have performed well in other studies of this nature
(e.g. Goetz and Fiske 2008) (Fig. 4.4).

Although the GAM results produced higher R2 values overall, they also were
less consistent. The models were run several times for each scenario, to iterate on
variable selection and generate a different data subset for testing and validating the
models. The MLR results, on the other hand, were consistently more robust.
Considering these findings, we used the MLR models, and watersheds of southern
New England (with land cover relative to those we used to build the models –
Table 4.3), to produce a map of predicted nEPT (e.g. Fig. 4.5). This same model

Fig. 4.4 A graph showing the output predicted vs. observed number of EPT for the aggregated
training watersheds in southern New England. These results are from an MLR model that did not
utilize landscape weighting of the land cover variables

Table 4.3 Tabular results
comparing general statistics
for predicted vs. modeled
watersheds for nEPT scenario

Land cover variables

% ISA % Tree % Crop % Grass

Predicted Min 0.01 10.42 0.00 0.10

Max 53.75 91.15 31.03 52.21

Mean 6.16 64.44 1.66 7.86

Std dev 8.82 16.69 3.23 6.84

Modeled Min 0.24 8.04 0.00 1.59

Max 41.75 87.66 1.60 10.75

Mean 12.25 55.50 0.51 4.98

Std dev 11.53 19.01 0.43 2.88
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was used to predict nEPT in catchments of the Upper Delaware (UPDE) scenic
river watershed to the west of the New England study area described in this
chapter (Fig. 4.6).

Fig. 4.5 A map showing the predicted number of EPT individuals for HUC12 watersheds in
southern New England (MRLC mapping zone 65). The area within this region has a relatively
uniform lithology. These results are from an MLR model that did not utilize landscape weighting
of the land cover variables (see Fig. 4.4)
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4.5 Discussion

The GAM andMLRmodel results were similar in terms of the selection of predictor
variables, although the GAMS tended to select fewer variables and performed
consistently better in terms of variance explained. This finding may reflect the
relative advantage of GAMs over linear models in that GAMs require fewer
assumptions of data distributions and error structures, assuming only that functions
are additive and components can be smoothed by local fitting to subsets of the data.
Smoothing parameters were automatically selected based on the effective degrees of

Upper Delaware River Watershed

New York

Pennsylvania

New Jersey

Predicted num. of EPT
0 - 5

5 - 10

11 - 15

16 - 20

21 - 25

Fig. 4.6 A map showing the predicted number of EPT individuals for watersheds in the Upper
Delaware river basin, using the same model as that noted in Fig. 4.5
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freedom and generalized cross validation based on use of default criteria. As such,
the GAMs may have effectively already accounted for much of the variance
explained and inclusion of additional variables added little in terms of additional
model significance. Moreover, differences between the GAMs and MLR models,
although not large, typically added some 5–15 % in terms of variance explained,
which was a statistically significant improvement over the MLR models (0.01 > p
< 0.05). In one case with landscape weighted variables, 76 % of variation in EPT
abundance was explained by a GAM using just a single predictor variable - the
amount of impervious cover within watersheds (Tables 4.1 and 4.2).

Watershed size was not often selected as a significant predictor of the biotic
metrics in any of the model formulations, despite the area encompassed by the
watersheds ranging substantially (from 2 to 146,000 ha). Related, although there
were not many more cases in the catchment than in the aggregated watershed
scenarios, predictions at the catchment scale were consistently better than those
based on aggregating the watersheds. This finding suggests that the greater number
of smaller watersheds in the case of the catchment scenarios reflected greater
sensitivity of the biotic metrics to the land cover variables, even though the sample
sizes were only slightly greater (32 versus 27 cases).

Models of EPT abundance and richness performed consistently better than those
of the HBI metric, which is consistent with EPT representing sensitive taxa that
are better indicators of watershed impacts associated with urbanization than HBI
or other integrated indices of biotic integrity. Perhaps surprisingly, landscape
weighting did not consistently improve model predictions, and in some cases
actually reduced the variance explained by the different models. This finding is
consistent with the results of some of our previous analyses in the mid-Atlantic
region and may be due, in part, to the fact that impervious cover, which is
consistently selected as the most important predictor variable, is often directly
connected to the stream channel via storm drainage networks. In such cases,
deep-rooted forest cover, or other vegetation cover (grasslands or shrublands),
may be bypassed and landscape influences, in terms of buffering runoff volume
and pollutant contents, effectively minimized or obviated. Nonetheless, the MLR
models of EPT for the catchment scenarios selected tree cover as the primarily
predictor variable, despite impervious cover being consistently selected as the
primary predictor in nearly every other model formulation.

Only after landscape weighting did the amount of impervious cover get selected
as a significant predictor in these cases, which indicates that the weighting did in
fact effectively capture the buffering capacity of the landscape. Less variance was
explained in the models with landscape weighting, but this is because tree cover
was used in the weighting scheme and thus the relative importance of tree cover as
a predictor variable dropped out since its effects were already accounted for in the
landscape weighting scheme. Related, the HBI metrics showed some sensitivity to
landscape weighting in terms of changes in the selection of predictor variables,
although impervious cover remained the most important predictor. These findings
are consistent with EPT taxa richness and abundance being sensitive indicators of
urbanization impacts associated with impervious cover.
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The basis of our comparison relies on date-matching the stream IBI and land
cover data and that all of our samples were part of one homogenous physiographic
province. The reality is that a mismatch in time is possible between our land cover
data and stream biotic samples, thus these typs of analysis (given adequate data)
should be stratified by state or, even better, well defined physiographic region.
Likewise, sample timing and seasonality can also decouple the connection between
invertebrate health/activity and land cover metrics.

The predictions of nEPT for an entirely different watershed, the upper Delaware
(Fig. 4.6), appear consistent with our results for the New England watersheds,
despite differences in topography and, to a lesser extent, in geological substrate.
This watershed is experiencing rapid changes in land use via expanding residential
development and associated exurbanization, which implications for stream biota.
The streams of this watershed are just beginning to be systematically monitored
for aquatic biota, including nEPT, by the National Park Service. Predicted maps of
this sort, based on land cover variables, provide a baseline against which in situ
stream measurements can be compared and assessed as the program develops.

It is known from previous work (e.g. Bolstad and Swank 1997; Booth and
Jackson 1997), that management practices, storm water routing, point source
pollution (sewage treatment plants, poultry plants, etc.), and other factors, can
influence the relationships between land cover and stream biota. Moreover,
impacts on stream health and water quality are not threshold responses, but
more closely approximate a gradient in which even rural areas with reduced
tree cover may display impairments comparable to more urbanized reaches
(Booth et al. 2002; Moglen et al. 2004; Goetz and Fiske 2008). Nonetheless,
the results presented here indicate that land cover metrics explain the majority or
variation in stream biotic metrics in southern New England watersheds, and as
such can be used as helpful indicators of stream impairment that can, in turn, be
used to focus monitoring, restoration and protection management objectives.
Moreover, these results support increasing evidence that reducing impervious
cover in new residential and commercial development, or reducing the impacts
of impervious areas through mitigation measures such as riparian buffers and
overall tree cover within a watershed, is beneficial to stream water quality and
associated biotic health.
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