Scott Lundberg

Scott Lundberg
University of Washington Seattle | UW · Department of Computer Science and Engineering

Doctor of Philosophy

About

67
Publications
50,051
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
18,264
Citations

Publications

Publications (67)
Article
Full-text available
Background Unlike linear models which are traditionally used to study all-cause mortality, complex machine learning models can capture non-linear interrelations and provide opportunities to identify unexplored risk factors. Explainable artificial intelligence can improve prediction accuracy over linear models and reveal great insights into outcomes...
Article
Full-text available
Local feature attribution methods are increasingly used to explain complex machine learning models. However, current methods are limited because they are extremely expensive to compute or are not capable of explaining a distributed series of models where each model is owned by a separate institution. The latter is particularly important because it...
Preprint
Feature attributions based on the Shapley value are popular for explaining machine learning models; however, their estimation is complex from both a theoretical and computational standpoint. We disentangle this complexity into two factors: (1)~the approach to removing feature information, and (2)~the tractable estimation strategy. These two factors...
Preprint
Full-text available
Background Unlike linear models, complex machine learning models can capture non-linear interrelations and provide opportunities to identify novel risk factors. Explainable artificial intelligence can improve prediction accuracy and reveal unprecedented insights into outcomes like mortality. This paper comprehensively analyzes all-cause mortality b...
Article
Full-text available
Hundreds of millions of surgical procedures take place annually across the world, which generate a prevalent type of electronic health record (EHR) data comprising time series physiological signals. Here, we present a transferable embedding method (i.e., a method to transform time series signals into input features for predictive machine learning m...
Article
Full-text available
Recent research has demonstrated that feature attribution methods for deep networks can themselves be incorporated into training; these attribution priors optimize for a model whose attributions have certain desirable properties—most frequently, that particular features are important or unimportant. These attribution priors are often based on attri...
Preprint
Full-text available
Pipelines involving a series of several machine learning models (e.g., stacked generalization ensembles, neural network feature extractors) improve performance in many domains but are difficult to understand. To improve their transparency, we introduce a framework to propagate local feature attributions through complex pipelines of models based on...
Preprint
Full-text available
What makes two images similar? We propose new approaches to generate model-agnostic explanations for image similarity, search, and retrieval. In particular, we extend Class Activation Maps (CAMs), Additive Shapley Explanations (SHAP), and Locally Interpretable Model-Agnostic Explanations (LIME) to the domain of image retrieval and search. These app...
Chapter
In healthcare, making the best possible predictions with complex models (e.g., neural networks, ensembles/stacks of different models) can impact patient welfare. In order to make these complex models explainable, we present DeepSHAP for mixed model types, a framework for layer wise propagation of Shapley values that builds upon DeepLIFT (an existin...
Preprint
Researchers have proposed a wide variety of model explanation approaches, but it remains unclear how most methods are related or when one method is preferable to another. We establish a new class of methods, removal-based explanations, that are based on the principle of simulating feature removal to quantify each feature's influence. These methods...
Preprint
Researchers have proposed a wide variety of model explanation approaches, but it remains unclear how most methods are related or when one method is preferable to another. We examine the literature and find that many methods are based on a shared principle of explaining by removing - essentially, measuring the impact of removing sets of features fro...
Preprint
Full-text available
Many existing approaches for estimating feature importance are problematic because they ignore or hide dependencies among features. A causal graph, which encodes the relationships among input variables, can aid in assigning feature importance. However, current approaches that assign credit to nodes in the causal graph fail to explain the entire gra...
Preprint
Full-text available
A variety of recent papers discuss the application of Shapley values, a concept for explaining coalitional games, for feature attribution in machine learning. However, the correct way to connect a machine learning model to a coalitional game has been a source of controversy. The two main approaches that have been proposed differ in the way that the...
Preprint
Full-text available
Understanding the inner workings of complex machine learning models is a long-standing problem and most recent research has focused on local interpretability. To assess the role of individual input features in a global sense, we explore the perspective of defining feature importance through the predictive power associated with each feature. We intr...
Preprint
Full-text available
Deep learning is increasingly common in healthcare, yet transfer learning for physiological signals (e.g., temperature, heart rate, etc.) is under-explored. Here, we present a straightforward, yet performant framework for transferring knowledge about physiological signals. Our framework is called PHASE (PHysiologicAl Signal Embeddings). It i) learn...
Article
Full-text available
Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to...
Preprint
Full-text available
In healthcare, making the best possible predictions with complex models (e.g., neural networks, ensembles/stacks of different models) can impact patient welfare. In order to make these complex models explainable, we present DeepSHAP for mixed model types, a framework for layer wise propagation of Shapley values that builds upon DeepLIFT (an existin...
Preprint
Full-text available
Two important topics in deep learning both involve incorporating humans into the modeling process: Model priors transfer information from humans to a model by constraining the model's parameters; Model attributions transfer information from a model to humans by explaining the model's behavior. We propose connecting these topics with attribution pri...
Preprint
Full-text available
Tree-based machine learning models such as random forests, decision trees, and gradient boosted trees are the most popular non-linear predictive models used in practice today, yet comparatively little attention has been paid to explaining their predictions. Here we significantly improve the interpretability of tree-based models through three main c...
Article
Full-text available
ChIP-seq is a technique to determine binding locations of transcription factors, which remains a central challenge in molecular biology. Current practice is to use a 'control' dataset to remove background signals from a immunoprecipitation (IP) 'target' dataset. We introduce the AIControl framework, which eliminates the need to obtain a control dat...
Preprint
ChIP-seq is a technique to determine binding locations of transcription factors, which remains a central challenge in molecular biology. Current practice is to use a “control” dataset to remove background signals from a immunoprecipitation (IP) target dataset. We introduce the AlControl framework, which eliminates the need to obtain a control datas...
Article
Full-text available
Although anaesthesiologists strive to avoid hypoxaemia during surgery, reliably predicting future intraoperative hypoxaemia is not possible at present. Here, we report the development and testing of a machine-learning-based system that predicts the risk of hypoxaemia and provides explanations of the risk factors in real time during general anaesthe...
Article
Interpreting predictions from tree ensemble methods such as gradient boosting machines and random forests is important, yet feature attribution for trees is often heuristic and not individualized for each prediction. Here we show that popular feature attribution methods are inconsistent, meaning they can lower a feature's assigned importance when t...
Article
Full-text available
Time series data constitutes a distinct and growing problem in machine learning. As the corpus of time series data grows larger, deep models that simultaneously learn features and classify with these features can be intractable or suboptimal. In this paper, we present feature learning via long short term memory (LSTM) networks and prediction via gr...
Article
Full-text available
Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide...
Conference Paper
Full-text available
Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretabil...
Article
Full-text available
We use a deep learning model trained only on a patient's blood oxygenation data (measurable with an inexpensive fingertip sensor) to predict impending hypoxemia (low blood oxygen) more accurately than trained anesthesiologists with access to all the data recorded in a modern operating room. We also provide a simple way to visualize the reason why a...
Preprint
Full-text available
Hypoxemia causes serious patient harm, and while anesthesiologists strive to avoid hypoxemia during surgery, anesthesiologists are not reliably able to predict which patients will have intraoperative hypoxemia. Using minute by minute EMR data from fifty thousand surgeries we developed and tested a machine learning based system called Prescience tha...
Article
Full-text available
We present the checkpoint ensembles method that can learn ensemble models on a single training process. Although checkpoint ensembles can be applied to any parametric iterative learning technique, here we focus on neural networks. Neural networks' composable and simple neurons make it possible to capture many individual and interaction effects amon...
Preprint
Determining the binding locations of regulatory factors , such as transcription factors and histone modifications, is essential to both basic biology research and many clinical applications. Obtaining such genome-wide location maps directly is often invasive and resource-intensive, so it is common to impute binding locations from DNA sequence or me...
Article
It is critical in many applications to understand what features are important for a model, and why individual predictions were made. For tree ensemble methods these questions are usually answered by attributing importance values to input features, either globally or for a single prediction. Here we show that current feature attribution methods are...
Article
Full-text available
Understanding why a model made a certain prediction is crucial in many data science fields. Interpretable predictions engender appropriate trust and provide insight into how the model may be improved. However, with large modern datasets the best accuracy is often achieved by complex models even experts struggle to interpret, which creates a tension...
Conference Paper
Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) is a widely used method to determine the binding positions of various proteins on the genome in a population of cells. A typical ChIP-seq protocol involves two experiments: one designed to capture target ChIP-seq signals ('target' experiment) and the other to capture ba...
Article
Full-text available
A cell’s epigenome arises from interactions among regulatory factors—transcription factors and histone modifications—co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to infer a network of these interactions, the chromatin network, by inferring conditional-dependence relationships among a large number of...
Article
Full-text available
Introduction: A cell's epigenome arises from interactions among chromatin factors --- transcription factors, histones, and other DNA-associated proteins --- co-localized at particular genomic regions. Identifying the network of interactions among chromatin factors, the chromatin network, is of paramount importance in understanding epigenome regulat...
Patent
Full-text available
A method for compressing a cloud of points with imposed error constraints at each point is disclosed. Surfaces are constructed that approach each point to within the constraint specified at that point, and from the plurality of surfaces that satisfy the constraints at all points, a surface is chosen which minimizes the amount of memory required to...
Article
Chemical and biological monitoring systems are faced with the challenge of detecting weak signals from contam- inants of interest while at the same time maintaining extremely low false alarm rates. We present methods to control the number of false alarms while maintaining power to detect; evaluating these methods on a fixed sensor grid. Contaminant...
Article
False alarms generated by sensors pose a substantial problem to a variety of fusion applications. We focus on situations where the frequency of a genuine alarm is "rare" but the false alarm rate is high. The goal is to mitigate the false alarms while retaining power to detect true events. We propose to utilize data streams contaminated by false ala...
Conference Paper
Full-text available
Many well-defined metrics have been developed for data fusion problems in the target tracking domain. However, much less is known about the proper evaluation of Chemical, Biological, Radiological, and Nuclear (CBRN) data fusion methods. In this paper we begin to address the issue of evaluating the performance of CBRN fusion algorithms. As a demonst...
Article
In the early 1980’s, Cunningham described a unique decomposition of a strongly-connected graph. A linear time bound for finding it in the special case of an undirected graph has been given previously, but up until now, the best bound known for the general case has been O(n 3). We give an O(m logn) bound.
Article
Ma and Spinrad have shown that every transitive orientation of a chordal comparability graph is the intersection of four linear orders. That is, chordal comparability graphs are comparability graphs of posets of dimension four. Among other uses, this gives an implicit representation of a chordal comparability graph using O(n) integers so that, give...
Article
Full-text available
The fusion of Chemical, Biological, Radiological, and Nuclear (CBRN) sensor readings from both point and stand-off sensors requires a common space in which to perform estimation. In this paper we suggest a common representational space that allows us to properly assimilate measurements from a variety of different sources while still maintaining the...
Conference Paper
Full-text available
This paper develops a weakly supervised algorithm that learns to segment rigid multi-colored objects from a set of training images and key points. The approach uses congealing to learn a probabilistic spatial model of the multi-colored object class and graph-cut to separate the foreground from the background. The result is a novel approach which ca...
Conference Paper
Full-text available
Ma and Spinrad have shown that every transitive orientation of a chordal comparability graph is the intersection of four linear orders. That is, chordal comparability graphs are comparability graphs of posets of dimension four. Among other uses, this gives an implicit representation of a chordal comparability graph using O(n) integers so that, give...

Network

Cited By