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Abstract

The installation of photovoltaic (PV) system, as a renewable energy source, has signifi-
cantly increased. Therefore, fast and efficient fault detection and diagnosis technique is
highly needed to prevent unpredicted power interruptions. This is obtained in this study in
the following steps. First, an efficient meta-heuristic algorithm is proposed for extracting
the optimal five parameters of the PV model in order to assist the MATLAB simulation
model. It is used due to its simplicity and high efficiency in building the PV array simula-
tion. Second, a new PV system deep-learning convolutional neural network (CNN) fault
classification method is presented for the advantage of automatic feature extraction, which
reduces the computational burden and increases the high classification capability. Finally,
for the practical and theoretical validation of the employed CNN model, normal and six
fault cases are selected based on different atmospheric conditions. At same time, three
electrical indicators are analysed and accordingly chosen as inputs to the proposed classi-
fication model. Moreover, the proposed model is compared with other machine-learning
models.

1 INTRODUCTION

Renewable sources of energy recently have noticeable donation
to sustain sources of power generation. This is due to the yearly
rise in energy demand, the bad impact of non-sustainable energy
sources as well as global degradation of fossil fuel such as coal
and oil. Among these renewable sources, solar energy is one
of the most common widely utilised power sources due to its
friendly environmental impact, zero-running cost, and simple
technical issues needed for efficient operation. Currently, pho-
tovoltaic (PV) modules, as the main part of solar energy, is grow-
ing rapidly all over the world due to the significant progress of
the developed technology as it helps to decrease the solar cells
material costs [1]. However, the need for efficient fault diag-
nosis techniques has increased also for better monitoring the
outdoor-installed PV systems considering the variation of envi-
ronmental conditions.

For effective fault detection methods, modelling the PV sys-
tem mathematically plays an important key on the accuracy of
the classification technique. This is because it has a remarkable
role in obtaining the optimal parameters, design, and assessment
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of the PV solar system fault diagnosis methods [2, 3]. Although
the manufacturers of solar modules provide the electrical char-
acteristics of PV modules at standard test condition (STC) to
users to help in building the simulation model and other calcu-
lations, these characteristics can change from its nominal val-
ues under actual long-term working condition. Moreover, the
PV system operation depends on the environmental conditions
such as temperature and solar irradiance [4]. Therefore, an effi-
cient PV model using measured current-voltage (I-V) data is
needed to accurately and efficiently optimise the PV parameters
[5]. There are many models that are formulated to characterise
the I-V curve. The most commonly used for PV modelling is
the single diode, double diode, and the PV module models [6].
On the other hand, an efficient PV optimisation algorithm is
needed to extract the electrical parameters from PV models.
Recently, several algorithms have been dedicated that can be
classified into three sets: Analytical algorithms [7], determinis-
tic algorithms [8], and meta-heuristic algorithms [9]. Based on
the latter set, the improved teaching-learning-based optimisa-
tion algorithm (ITLBO) [10] is used in this study for extracting
the electrical parameters from PV module to be employed in the
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simulation model due to its simplicity in execution as well as no
special requirements.

In general, studying the different faults, in case of low-solar
irradiance level, is computationally challengeable for the PV
fault diagnosis because disturbances introduced on the different
indicators might be unnoticeable. Valuable studies [11–13] offer
several algorithms to detect PV faults such as low-mismatch
faults, and line-to-line fault (LL) under low-solar irradiance lev-
els. However, such studies provide low accuracy in fault identifi-
cation and need high-cost measurement sensors. In this work,
the low irradiance is taken into consideration when studying
the different faults for achieving better performance of the pro-
posed model.

Nowadays, the artificial intelligence (AI) techniques are com-
monly used for the diagnosis of PV fault types due to high classi-
fication accuracy. Artificial neural network (ANN), probabilistic
neural network (PNN), and fuzzy c-means (FCM) are lately used
in a wide range in [14–16]. However, these AI techniques have
some demerits such as huge data amount and computational
time for training stage, sensitive for small environmental condi-
tion variations, and updating the collected data periodically are
needed due to degradation ageing problems in solar PV mod-
ules. Furthermore, the advantage of monitoring the operation
of PV systems gives the user a huge data amount for detecting
different known and unknown faults. Consequently, using this
kind of data-based models is relevant, and the process of fea-
tures extraction is effective for PV fault diagnosis issues. For the
purpose of extracting the desired features, convolutional neural
network (CNN) as a multivariate model is recently used for data
image representation and also for faults classification task.

In the case of CNN-based classification model, CNN utilises
mainly in image recognition for its high accuracy in classifica-
tion. Moreover, using CNN in monitoring numerous engineer-
ing schemes are increased for the advantage of automatic fea-
tures extraction process. In the field of detecting the motor
faults, Lee et al. [17] use signal databases containing a univariate
with bivariate data time series, then, they implement CNN as a
feature extraction and classification technique to raise the accu-
racy of bearing fault classification rate. Chen et al. [18] suggest
CNN for the classification and extract-features technique. This
is obtained by dividing the collected multivariate time-series data
into univariate data for each parameter, then, the feature extrac-
tion process was performed for each parameter individually. In
case of PV solar cells, Li et al. [19] conduct one dimensional
CNN to classify the different kinds of PV module defects such
as yellowing, dust-shading, and corrosion of gridline using aerial
images in large-scale PV plants. However, the equipment used
in the work is expensive, and the CNN implemented only on
the offline operating condition.

In this study, the main innovations are trifold:

1. Based on meta-heuristic techniques, the ITLBO is advised
to extract the electrical parameters of PV modules for the
simulation model.

2. The CNN fault classification technique is proposed to
achieve high performance of the fault diagnosis tasks, con-
sidering the advantage of automatic features extraction from

a

b

FIGURE 1 The measured curves and simulated ones of the photo-
voltaic (PV) model obtained by improved teaching-learning–based optimisation
(ITLBO) algorithm at 1000 W/m2 irradiance and 25◦C temperature: (a) The
current-voltage (I–V) curves, (b) The P–V curves

input datasets, as softmax layer, to obtain the classification
output result.

3. The effectiveness of the proposed technique is validated by
simulated and experimental case studies. In addition, it is also
compared with three benchmark AI models, namely, two-
stage support vector machine (SVM) [13], ANN [14], and
PNN [15].

2 PV SYSTEM MODEL AND
DESCRIPTION OF TYPICAL FAULT
INDICATORS

2.1 PV modelling

The equivalent circuit of the PV module is shown in Figure 1.
The PV module can be modelled by connecting some diodes
in series representing the series connected solar cells, and some
diodes in parallel representing the parallel branches of solar cells
(in this study, each PV module has 60 cells connected in series
and no parallel branches of solar cells), then the generated cur-
rent can be written in Equation (1) as [6]

I = Iph − IO

(
e

V +I Ns Rs
nNsVth − 1

)
−

(
V + I NsRs

NsRsh

)
(1)
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FIGURE 2 The model circuit of the PV module

where the thermal voltage Vthwhich can be expressed as in
Equation (2)

Vth =
nKT

q
(2)

To model an accurate PV module, five parameters are
required to be mathematically calculated. These parameters
are Iph, IO, Rs, Rsh, and n. The main reason for extract-
ing these parameters is to get the minimum absolute error
between the measured with the simulated data of the generated
current.

The ITLBO algorithm presented in [10] is used in this study
as an accurate optimisation technique for parameter extrac-
tion of the PV module. Compared with the existing teaching-
learning–based algorithms, the proposed algorithm has two
main improvements, namely, (i) in the teacher stage, a new
teaching plan is proposed where the learners are divided into
two different groups based on the learning level, then the best
learners are guided from their corresponding teacher as well
as themselves; and (ii) in the learner stage, instead of only one
learner to exchange knowledge to another learner, the new plan
of ITLBO is to make the well-learners learn from the other
two learners for accurate search path, while the poorer learn-
ers learn from the knowledge of four different learners in order
to increase the global search capability and provide the popu-
lation variety. The simulated data obtained by the ITLBO algo-
rithm at STC operating condition is compared with the mea-
sured values in Figure 2. It is observed that the simulated data
is almost similar to the measured one which provides accurate
modelling for the PV module to get the five parameters The
available electrical parameters of the PV module provided by
the manufacturer during the optimisation process are listed in
Table 1, while the obtained five parameters can be shown in
Table 2.

2.2 Indicators selection

Selecting the indicators for detecting the faults in PV system
must satisfy the following aspects: (i) Ability of identifying and
discriminating the different kinds of fault under the variation
of solar radiation and module temperature, (ii) suitable for dif-

TABLE 1 Electrical parameters of the PV module at STC

Parameter Value

Im,mod (A) 8.12

Vm,mod (V) 30.2

Pmax (W) 245

Isc,mod (A) 8.69

Voc,mod (V) 37.4

𝛼 (A∕K) 0.0006

Β(V∕K) –0.0031

TABLE 2 The calculated five parameters of PV module at STC

Optimal parameter Value

Iph(A) 9.33

Io(A) 10−10

Rs (
′Ω) 0.24

Rsh (′Ω)(V) 593.24

n(p.u.) 1.102

ferent PV systems scale and configurations, (iii) ability of using
optimum number of indicators to help accelerate the classifica-
tion operation and minimise the used memory, (iv) measuring
and building the selected indicators must be simple and easy for
implementation. Therefore, in this study, three indicators are
implemented from the whole PV array rather than calculating
those for each string or module.

Voltage, current, and power, which are obtained from the I-V
and P-V curves, are the three common indicators used in iden-
tifying different faults of the PV array, see examples in [14–16,
20, 21]. Although, these indicators could discriminate between
the healthy the faulty conditions, implementing these indica-
tors, in our study, has made an overlapping between the differ-
ent selected faults for the irradiance variation. More specifically,
every two data points have the same working situation and volt-
age levels attained at some fault cases. Therefore, for efficient
fault diagnosis method that has a better sense to environmen-
tal condition variation and fault happening, three indicators are
chosen in this study for analysing the characteristics of differ-
ent faults. The fault diagnosis procedure is based on extracting
these indicators under the variation of solar irradiance and mod-
ule temperature. Furthermore, analysing the selected indicators
in the PV system represents the key role to detect and accurately
classify the different faults.

The selected indicators for the PV array are Normalised Vm ,
Normalised Im , and FF , and their expressions can be obtained as
in Equations (3) to (5), respectively [11, 22].

Normalised Vm =
Vm

Voc,re f
(3)
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Normalised Im =
Im

Isc,re f
(4)

FF =
Vm∗Im

Isc∗Voc
(5)

To calculate these indicators, the electrical parameters of the
PV array, namely, Vm , Im , Isc and Voc , can be determined analyti-
cally at any solar irradiance S and temperature T as in Equations
(6) to (9), respectively [23].

Vm = Ns,mod ∗

[
Vm,STC [1 + 𝛼 (T − TSTC )] + Vth∗ln

(
Ish

Ish,STC

)]
(6)

Im = NP,mod ∗

[
Im,STC

(
S

SSTC

)
[1 + 𝛼 (T − TSTC )]

]
(7)

Ish = NP,mod ∗

[
Ish,STC

(
S

SSTC

)
[1 + 𝛼 (T − TSTC )]

]
(8)

Voc = Ns,mod ∗

[
Voc,STC [1 + 𝛽 (T − TSTC )] +Vth∗ln

(
Ish

Ish,STC

)]
(9)

2.3 Typical faults occurring in PV arrays

There are various types of faults that may occur in the PV sys-
tem. Some of faults on the DC side that frequently occur have
excessive power losses and reduction in the efficiency of the
PV system, including short-circuit (SC) faults, LL faults, open
circuit (OPEN), partial shading (Shad), and degradation. It is
noted that the most commonly occurring faults in the existing
studies are LL, OPEN and Shad faults [13–16].

The LL faults (or bridging faults) are conducted here by gen-
erating an SC connection between two points in a string or
among different PV strings. Practically, this fault type may have
occurred due to either water entering to the conductors, chew-
ing by animals, mechanical damage of insulation, or junction
box damage by DC arcs. LL faults can cause fire damage in
large-scale PV systems. Moreover, they may generate reverse
fault current, with its value depending on the voltage differ-
ence among the two faulty points. Low-voltage difference would
provide a low fault currents, and this becomes a challenge to
detect this LL fault cases using traditional fault detection meth-
ods. In addition, in such LL fault cases, the protection devices
may fail to sense such currents (see [13, 24] for more details).
Therefore, to address these concerns, this study focuses on diag-
nosing LL1 and LL2 fault cases under the variation of atmo-
spherical conditions, particularly in low-irradiance levels. For
implementing the LL fault in this study, two fault scenarios,
denoted as LL1 and LL2, represent four and six short-circuited
modules mismatch between two strings, respectively. However,
such fault has not commonly occurred in the PV arrays, and

their effect should be discussed and detection techniques should
be utilised to prevent probable power losses or fire damage.
As indicated by [11], the resistance of SC can be assumed to
equal zero, which is consistent with our setting for faults LL1
and LL2.

Shading faults are recently modelled and studied due to its
distinct impact on the power output from the PV systems dur-
ing the day operation. Although, their impacts are not perma-
nent, they should be distinguished from the other fault types for
the exact classification in order to serve the protection devices.
In this study, two fault scenarios of shading faults, denoted as
shad1 and shad2, are selected to be examined. These faults rep-
resent four- and six-shaded modules in same string, respec-
tively. Note that the shunt bypass diode is assumed to nor-
mally operate for the shaded modules. The shading factor is
set at 50%, which means only half of the full solar irradiance
is received by the module surface, while the temperature is
same as STC. However, the shading fault can be performed
at different patterns and shading factors in the PV array. This
study considers that the shading is almost fixed over the day,
that is, the constant shading factor is applied. More specifi-
cally, in small residential PV arrays, the physical area is relatively
small and the solar irradiance can be assumed constant on all
PV modules over the day [25]. Moreover, in such arrays, the
shading faults are assumed to occur due to the nearby build-
ings or the associated equipment. Therefore, the same num-
bers of PV-shaded modules may be affected by this small mov-
ing shadow along the day, wherever the module location is,
inside the examined string. So, the number of shaded modules
are considered fixed along the daytime, as similar treatment is
found in [15, 16].

Finally, OPEN circuit faults are modelled by disconnecting
electric wiring between the PV modules. Two faults are consid-
ered, namely, OPEN1 and OPEN2, to denote the OPEN circuit
faults in one and two PV strings, respectively. It should be noted
that every fault class is simulated separately, that is, the study of
multiple faults occurring at the same time is not included in this
study.

The PV array under study contains three strings, where each
string consists of 13 modules connected in series as shown
in Figure 3(a). Each module is connected in parallel with
shunt bypass diode to avoid hotspots formation and power
loss in shading condition as shown in Figure 3(b). Moreover,
seven experimental operating tests on the DC side have been
simulated to evaluate the fault diagnosis method; one nor-
mal condition, and six fault cases can be seen in Figure 4
(LL1, LL2, OPEN1, OPEN2, Shad1, and Shad2). The dif-
ferent typical faults are simulated using MATLAB Simulink
in case of STC as shown in Figure 5. According to Fig-
ure 5, in the LL1 and LL2 fault cases, Voc and Vm are declined,
while the Isc and Im are unchanged compared with the nor-
mal state. On the other hand, in the OPEN1 and OPEN2
fault cases, the value of Isc and Im are significantly decreased,
where the Voc and Vmare almost the same. Additionally, in
Shad1 and Shad2 fault cases, the Im and Vm , are significantly
affected, while Isc and Voc are similar with those of the normal
condition.
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FIGURE 3 (a) Schematic diagram of the PV array with 3×13, and (b) the
equivalent circuit model of the PV module
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FIGURE 4 The DC side of the PV array with the examined six fault cases

FIGURE 5 The I–V curves of the PV array at one normal and six faults
cases at standard test condition (STC)

3 METHODOLOGY

First, the analysis of the selected three indicators is per-
formed. Then, a fault detection and diagnosis method is pre-
sented based on the deep-machine model of the standard
CNN.

3.1 The analyses of selected indicators for
typical faults

To perform indicators analysis, the typical faults are con-
ducted under different environmental conditions, that is, vari-
able temperature and solar irradiance in three consecutive
days in June. A wide range of irradiance from 5 to 1000
W/m2 and temperature data samples from 5 to 55◦C are cho-
sen with a time step of 15 min between every two samples
with solar irradiance values as shown in Figure 6(a), where
all samples with zero irradiance, that is, during the night, are
eliminated.

To simulate the shading faults, the solar irradiance is multi-
plied by gain equals 0.5 to be feed to the shading modules, while
the temperature is unchanged as in normal condition. Then, the
selected indicators, Normalised Vm , Normalised Im , and FF , are
calculated using Equations (3) to (5) as shown in Figures 6(b) to
(d), respectively.

From the presented Figure 6(b), it is observed that the
Normalized Vm significantly declined in cases LL1 and LL2. For
Normalised Im , it decreased in OPEN1 and OPEN2 cases as
shown in Figure 6(c). Moreover, the third indicator FF is influ-
enced and declined in cases Shad1 and Shad2 as shown in
Figure 6(d); the reason is that these fault types have a direct
impact on Vm and Im (refer Figure 4). Based on the aforemen-
tioned discussions, the selected three indicators are mainly and
differently influenced by the fault type, which, in result, indi-
cates the ability of the proposed methodology to detect and
classify different kind of faults. Additionally, this would help
to decrease overlapping between the collected data samples,
and hence, raise the proposed method efficiency. Finally, the
conclusion of the three indicators distribution is summarised
in Table 3.

3.2 CNN structure

CNN is commonly utilised in image recognition and classifica-
tion. It has been successfully used to identify faces, different
objects and so forth. Therefore, CNN is an important machine-
learning tool for most practitioners today.

The one-dimensional CNN, which is used in this study, con-
sists of two consecutive steps [26] as illustrated in Figure 7:

1. The first step is the feature extraction which contains three
stages: The input layer, convolutional, and pooling stages.
The convolutional layer is to extract the features across the
raw data of the input layer by a filtre and stores them as a con-
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FIGURE 6 The distribution of the selected indicators in normal and different fault conditions in three days. (a) The environmental conditions of module
irradiance and temperature, (b) the Normalised Vm, (c) the Normalised Im, and (d) the FF

volved feature, which can be conducted using sigmoid acti-
vation function. The pooling layer function is to reduce the
size of the convolved feature, which progressively reduces
the computational time in the network. Max-pooling is the
method that usually utilised to complete the process of the
pooling layer.

2. The second step is classification, which contains the fully
connected and the output stages, where the inputs of fully
connected stage are the features attained from the pooling
stage, and then classification task using softmax in the out-
put stage is performed.

The samples dataset is collected from the PV simulation
model under normal and abnormal conditions. This dataset rep-
resents a three-dimensional matrix for data of the three indica-
tor samples calculated in Section 3.1.

3.3 The proposed fault diagnosis method

A feature map is conducted based on a one-dimensional struc-
ture, where the pooling layer is used to reduce the dimension
of the conventional layer at every individual feature map. Dur-
ing the training process of the CNN, weights are updated using
the gradient descent method to minimise the loss (classification
error) function value. This implies that the larger magnitude of a

TABLE 3 The indicators variation of PV array in case of normal and
different fault cases

Faults Normalised Vm Normalised Im Fill factor (FF)

Normal 0.68–0.8 0.9–0.95 0.7–0.75

LL1 0.5–0.54 – –

LL2 0.38–0.44 – –

OPEN1 – 0.6–0.62 –

OPEN2 – 0.3–0.31 –

Shad1 0.68–0.73 – 0.6–0.63

Shad2 0.69–0.74 – 0.56–0.58

Note: (-) means no change compared with normal case.

FIGURE 7 The proposed convolutional neural network (CNN) architec-
ture
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FIGURE 8 The proposed CNN-based model for fault classification

given weight, to the extracting features significant for classifica-
tion. Also, zero-padding is applied to prevent shrinking as well
as information loss happening at the borders. The flowchart
of applying the proposed CNN model can be shown in
Figure 8.

4 RESULTS ANALYSES

The proposed model is validated in this section theoretically and
physically for assessing the classification accuracy.

4.1 Simulation tests

In order to validate the proposed method, a case study is per-
formed in this part using MATLAB Simulink software. The
data samples distribution between the three indicators are col-
lected in three-dimensional matrix for generating the input of
the proposed CNN model. The data is gathered as shown in
Figure 9 as described previously in Section 3.1. This data will

follow, first, the pre-processed operation for data filtering, elim-
ination of noise and so forth. Then, the dataset are separated
for two stages: The training and testing stages for diagnosing
the CNN model. The total dataset consists of 1239 = (177*7)
including normal and six different fault cases, each sample has
the three selected input indicators.

4.1.1 Training results

The dataset at the training stage is assessed by using 80% of
the total dataset (118 dataset samples for each normal and fault
cases). To perform the training process, the CNN technique was
trained using the selected parameters shown in Table 4. Grid
search technique is conducted to get these parameters by try-
ing some combinations to the best one suitable for the training
dataset.

One of the key points for preventing the early conver-
gence process for better model performance is to choose
the suitable optimisation algorithm, which helps to increase
the training computational speed and the accuracy of fault
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FIGURE 9 The data samples distribution of the three indicators

TABLE 4 The parameters of the proposed CNN

Parameters Value

Input 25

Feature input dimension 16

Batch dimension 128

Learning rate 0.01

RMSprop optimiser variables

No. of epochs 50

Input layer nodes 32

Fully connected layer nodes 40

Softmax layer nodes 6

classification in the CNN model. As stated in [27], there
are three types of the commonly used algorithms, namely,
RMSprop, Adam and Adadelta. In this study, the RMSprop
algorithm is implemented to obtain the learning rate, batch
size, and number of epochs related to the technical implemen-
tation. The optimisation implementation is obtained based on
calculating the mean data of the nearest amount of the grade
weight. It is useful to process the dynamic data variables such
as the current, and voltage data at normal and faulty conditions.
For better monitoring and analysis of the training process, the
training accuracy and loss values between CNN model output
and labelled ground truth are measured during the number of
batches.

Furthermore, the results in Table 5 which show the confusion
matrix of the training samples evaluate that a few data samples
are misclassified in the training stage. Based on these efficient
classification outcomes, the proposed method with the associ-
ated model gained from the training data samples can be used
for predicting new fault types with average accuracy of 98.3%.

TABLE 5 The confusion matrix of CNN classification model for the
training samples

Case Normal LL1 LL2 OPEN1 OPEN2 Shad1 Shad2

Normal 98.23 0 0 0 0 1.77 0

LL1 0 98.6 1.4 0 0 0 0

LL2 0 1.66 98.34 0 0 0 0

OPEN1 0 0 0 100 0 0 0

OPEN2 0 0 0 0 100 0 0

Shad1 1.04 0 0 0 0 96.91 2.05

Shad2 1.45 0 0 0 0 1.5 97.05

TABLE 6 The confusion matrix of CNN classification model for the
testing samples

Case Normal LL1 LL2 OPEN1 OPEN2 Shad1 Shad2

Normal 99.1 0 0 0 0 0.9 0

LL1 0 98.69 1.31 0 0 0 0

LL2 0 1.24 98.74 0 0 0 0

OPEN1 0 0 0 100 0 0 0

OPEN2 0 0 0 0 100 0 0

Shad1 1.04 0 0 0 0 97.41 2.55

Shad2 1.45 0 0 0 0 1.5 97.05

4.1.2 Testing results

The testing process is developed to measure the performance
and accuracy of the proposed technique. The remaining total
dataset of 20% is used to test the proposed method. These data
samples are gathered in the test dataset including the three typi-
cal indicators. All the test cases are accurately detected and cat-
egorised in the relevant case. Also, the proposed CNN method
could distinguish successfully between the normal case and dif-
ferent faulty ones. These results are obtained in Table 6, which
shows the confusion matrix of the test dataset with the corre-
sponding cases. The observations show that the average classifi-
cation accuracy is 98.6% and with few data samples are wrongly
classified into different cases: Around 0.9 % for normal condi-
tion case classified inaccurately as Shad1 fault case, 1.31 % for
fault case LL1, and 1.24% for fault case LL2. Furthermore, in
case of Shad1 and Shad2, 2.55% and 1.5% are misclassified to
wrong fault case as shown, with 100% classification accuracy in
case of OPEN1 and OPEN2 because of large Euclidean dis-
tance between these cases and the others. These observations
approve that the CNN method can accurately detect and classify
the typical fault types. Moreover, the proposed method is effi-
ciently robust under noise condition, however, using high preci-
sion measurement sensors in real-time monitoring can raise the
classification accuracy and improve the proposed method per-
formance.
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FIGURE 10 The overall PV system with the investigated faults

FIGURE 11 The data samples of the three indicators during the experimental tests

4.2 Experimental tests

The proposed CNN model is implemented experimentally
using the 9.56 kW PV array installed at the rooftop of
North China Electric Power University. The overall PV sys-
tem consists of three strings containing 13 JKM245p mod-
ules connected in series, where the electrical parameters of the
module is previously presented in Table 1. In addition, the
PV system is connected to AC inverter including AC and DC
ammeter and voltammeter to the current, voltage, and power
data. Also, the inclined surface irradiance and surface tempera-

ture are measured by the small solar station. For full supervision
along the day, all the experiments are monitored by Supervi-
sory Control and Data Acquisition (SCADA) system and high
specification PC computer. The description of the system and
examined faults setting can be shown in Figure 10. The different
fault types are performed experimentally during seven consecu-
tive days to examine one normal condition, and six fault types,
where each type is performed along a day from 6:00 AM to 6:00
PM. The data samples of the three indicators are collected every
15 min step of full solar irradiance and surface temperature in
June, as shown in Figure 11. It is noticed that, compared with
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TABLE 7 The classification accuracy of the proposed model for the
experimental tests

Stage Training stage Testing stage

Max. 98.11 98.65

Min. 95.41 96.17

Mean 96.76 97.41

St. dev. 0.781 0.882

summary results of the indicators variation in Table 3 during the
simulated tests, the same impact is detected in case of the exper-
imental tests. For implementing the shading fault, the shaded
module is conducted by covering half of it by a physical solid
opaque.

For checking the classification accuracy, similarly to simula-
tion tests, the collected dataset is divided for performing the
training and testing processes. Then, the classification accura-
cies for both processes are recorded in Table 7, including max,
min, mean, and standard deviation (St. dev.) for the examined
cases. From the results, the mean accuracies for the training and
testing processes are decreased to be 96.76% and 97.41% com-
pared with 98.3% and 98.6% in the simulation tests, respec-
tively. The reason is that a misclassification problem might
have occurred for unknown faults. Moreover, the measurement
errors of ammeter and voltammeters may lead to reduce the
proposed model accuracy.

4.3 Comparison with traditional methods

In this section, we present a comparison between the pro-
posed method and other three traditional methods. First, a fault
classification method is built in [11] using normalised voltage
and current of the I-V curve and graph-based semi-supervised
learning (GBSSL) method. Although, it has high-classification
accuracy, this method needs to measure the voltage and cur-
rent from the practical PV array for implementation. In addi-
tion, only permanent faults are examined, that is, shading faults
are not included. Second, a fault detection method based on
pre-calculated thresholds to detect various PV fault case stud-
ies is presented in [28]. In this study, only partial-shading fault
is detected based on determining the indicators of power and
voltage ratios. However, the exact faulted module can be deter-
mined with help of the statistical t-test, the method accuracy
depends on the sensors efficiency for measuring power and
voltage values. Third, fault detection method is built based on
the comparison between normal and faulty thresholds. These
thresholds are calculated in ranges for different seven features,
which are determined from the I-V curves measurement in dif-
ferent fault cases. Although, the measured signals noise may
lead to wrong discrimination between different features, a prior
threshold ranges for each fault are needed. The comparison is
presented in Table 8.

From the results in Table 8, the advantage of our proposed
model is that it is capable, theoretically and experimentally, to

classify temporary faults (shading) as well as permanent faults
(OPEN and LL) with average high accuracy (98.5% during the
simulated tests). However, it is relatively complex in implemen-
tation and needs additional computational burden for the train-
ing process.

4.4 Comparison with AI models

In order to effectively compare between the other AI mod-
els, we selected four common benchmark factors to obtain this
assessment using the confusion matrix. For evaluating the four
models, these benchmarks are calculated for one normal and
six fault cases examined in this study. These benchmark factors
are as follows: precision (P), recall (R), and F-measure (Fm). The
values of P and R can be calculated as in Equation (10) [30].

P =
TC

TC + FC
, R =

TC
TC + FN

(10)

For calculating Pand R in different models, true positive (TC)
indicates the samples, which are correctly categorised as the
actual; false correct (FC) indicates that the samples are incor-
rectly categorised as the actual; true negative (TN) means the
samples do not belong to the class in prediction or actual; and
false negative (FN) means the samples are incorrectly predicted
but actually belong to the same class. From Equation (10), the
P definition is the percentage of relevant samples to the total
predicted samples in the same class. While R is the percentage
of relevant samples in individual class to the total actual samples
in the same class.

Then, generally when assessing some models, the F-measure
Fm is utilised to comprehensively evaluate the models due to
which the values of Pand R are evenly biased and do not reflect
the exact performance of the model. Therefore, the general for-
mula to obtain Fm for non-negative real m based on the Pand R
values is shown in Equation (11). In other words, Fm represents
the harmonic understanding of P and R, where the best value
of Fm is 1 at perfect values of them. According to experimental
evidence, we select m to be 0.3 to calculate Fm in all models as in
Equation (11).

Fm =

(
1 + m2

)
∗P∗R

m2∗P + R
(11)

The proposed CNN model is compared with three machine-
learning models: SVM, PNN, and ANN to measure the clas-
sification capability using the simulation dataset. This compar-
ison is shown in Table 9. For more details, first, a two stage
SVM is presented in [13], where various fault cases of LL
faults were investigated. Multiresolution-signal-decomposition
is utilised to extract the different features of LL faults manu-
ally from the input data samples of voltage and current. How-
ever, this manual features extraction may create errors during
the fault classification. Moreover, according to Table 9, the aver-
age fault classification P, R and Fm are obtained for LL fault
cases in the range of 90 % using SVM. These are due to the
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TABLE 8 The comparison with traditional methods

Ref. Year Method

No. of

indicators

Permanent/temporary

faults

Simulated

/experimental

validation Accuracy Limitations

[11] 2015 Measuring voltage and
current with
graph-based
semi-supervised
learning (GBSSL)*

2 Permanent Experimental 100 Need initial label samples

[28] 2016 Analysis of power loss 2 Temporary Experimental Not defined 1. Pre-calculated
threshold is needed

2. Detection accuracy
depends on measured
sensors

[29] 2017 I-V curves 7 Both Experimental Not defined Pre-calculated threshold is
needed

Proposed 2020 I-V curves with CNN 3 Both Both 98.5 (1) Time needed for
training stage

(2) Relatively complex

TABLE 9 The comparison of the proposed CNN model with other models

SVM [13] PNN [15] ANN [14] Proposed CNN- based

Fault

Cases P (%) R (%) Fm (%) P (%) R (%) Fm (%) P (%) R (%) Fm (%) P (%) R (%) Fm (%)

Normal 96.7 95.5 96.6 100.0 84.5 85.6 92.2 93.7 92.3 98.2 98.5 98.2

LL1 90.4 91.8 90.5 100.0 100.0 100.0 88.1 87.5 88.1 97.4 98.1 97.5

LL2 89.9 91.5 90.0 100.0 100.0 100.0 90.4 88.7 90.3 97.5 99.0 97.6

OPEN1 98.4 97.3 98.3 100.0 100.0 100.0 90.4 89.2 90.3 100.0 100.0 100.0

OPEN2 98.5 98.1 98.5 100.0 100.0 100.0 87.5 85.4 87.3 100.0 100.0 100.0

Shad1 93.4 95.8 93.6 100.0 100.0 100.0 86.2 84.7 86.1 96.2 97.4 96.3

Shad2 97.4 95.8 97.3 100.0 100.0 100.0 87.4 85.4 87.2 98.4 97.8 98.4

Overall 96.5 96.5 96.5 100.0 97.8 97.9 88.9 87.8 88.8 98.2 98.7 98.3

low accuracy of LL fault classification at low-solar irradiance
level.

Second, in [15], a PNN-based model is described for the fault
diagnosis in the PV system. The technique performance is anal-
ysed for comparison based on implementing the typical fault
types as shown in Table 8. Then, the classification accuracies of
P , R, and Fm are obtained from the confusion matrices stated
in the study. However, the PNN model has a good overall accu-
racy for typical fault classification, the R value in case of nor-
mal is the lowest at 84.5%, which means a lot of samples that
actually belong to normal condition are incorrectly predicted
as other fault classes. Therefore, the fault diagnosis technique
sends wrong signal alarms to the operators and may lead to sev-
eral power interruptions. In addition, it uses additional Gaussian
kernel FCM method with the PNN model to obtain the optimal
clusters for better representation of the data samples. Therefore,
the classification accuracy of this study will be influenced by the
method’s efficiency.

Lastly, in [14], the ANN-based fault detection method is
investigated based on the thresholds of the electrical characteris-
tics of I-V and P-V curves. The measurement-sensors accuracy
used in collecting the data samples has been taken into account
for effective detection of the different faults. However, man-
ual pre-calculated thresholds are required to classify the typi-
cal faults. In addition, the P, R and Fm of the ANN model is
the lowest for classifying the typical faults with values 88.9%,
87.8%, and 88.8%, respectively.

After this comparison, we found that the P, R and Fm of
the CNN model is 98.2%, 98.7%, and 98.3%, respectively,
which are nearly higher than the other AI models as shown in
Table 9.

Finally, the results of simulated, experimental, and compari-
son with the other techniques summarise that the CNN-based
model as a deep-learning method succeeded in competition
with the other methods for detecting and diagnosing the typi-
cal faults in PV system.
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5 CONCLUSION

One of the deep-learning models is employed in this study to
enhance the classification accuracy for detecting different faults
in DC side of the PV array, and to eliminate the errors due to
extracting the different features manually in other algorithms.
First, ITLBO optimisation algorithm is applied to obtain the
best values of the PV simulation model parameters to enhance
the system capability and efficiency. Second, three selected indi-
cators are calculated and analysed in case of normal and differ-
ent fault cases representing LL, open circuit, and shading faults
under atmospherical condition variations.

The proposed CNN model is successfully validated using
simulated and experimental tests to check the classification
accuracy. The proposed CNN model achieved average clas-
sification accuracies during the training and testing processes
around 98.3% and 98.9% in simulation tests, and 96.76% and
97.41 % in experimental tests, respectively. It has also enor-
mous efficiency during the rapid variation of the weather con-
ditions of solar irradiance and temperature of the PV system.
From the experimental tests observation, this high classification
accuracies for the typical faults enhanced the model capability
to be utilised in large-scale PV systems. In addition, it helps to
avoid unpredicted power interruptions. In addition, the com-
parison with other traditional and AI models concludes that the
proposed model provides automatic fault classification for both
temporary and permanent faults with low cost of implementa-
tion.

The proposed CNN model can be extended for more prac-
tical fault classification to examine partial shading faults con-
sidering different patterns and irradiance levels, multi-fault case
studies, and different PV configurations.

Nomenclature

Im,mod the module current at maximum power (A)
Im the array current at maximum power (A)
Io the diode current (A)

Iph photo-generated current (A)
Isc,mod the module short circuit current (A)
Isc,re f the short circuit current of reference module at S, and

T (A)
Np,mod number of parallel strings = 3

Np number of parallel cells = 1
Ns,mod number of series modules = 13

Ns number of series cells = 60
Pmax the module t maximum power (W)

Rs the equivalent series resistance of module (Ώ)
Rsh the shunt resistance of module (Ώ)

SSTC the solar irradiance at STC = 1000 (W/m2)
TSTC the surface temperature at STC = 25 (◦C)

Vm, mod the module voltage at maximum power (V)
Vm the array voltage at maximum power (V)

Voc,mod the module open-circuit voltage (V)
Voc,re f the module open circuit voltage of reference module

at S, and T (V)
Vth the thermal voltage (V)

FC false correct
FF the fill factor
FN false negative

I the module output current (A)
K Boltzmann’s constant
S the solar irradiance (W/m2)

T the module temperature (◦C)
TC true correct
V the module output voltage (V)

n the ideality factor
q the charge of the electron(Col.)
𝛼 the temperature coefficient of Im,mod (A∕C)
𝛽 the temperature coefficient of Vm,mod (V∕C)
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