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The Krull Dimension of Certain Semiprime
Modules Versus Their α-Shortness

S. M. Javdannezhad and N. Shirali

Abstract. We study the R-modules M which are finitely generated,
quasi-projective and self-generator (briefly called FQS modules). We
extend some basic results from semiprime rings to semiprime FQS mod-
ules. In particular, we show that any semiprime FQS module with Krull
dimension is a Goldie module. We also show that every FQS module
with Krull dimension has only finitely many minimal prime submod-
ules. Consequently, if M is an FQS module with Krull dimension, then
k-dimM is equal to k-dim M

P
for some prime submodule P of M. More-

over, we observe that an FQS module has the classical Krull dimension
if and only if it satisfies ACC on prime submodules. Finally, we prove
that a semiprime FQS module M is α-short if and only if n-dimM = α,
where α ≥ 0.
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1. Introduction

In 1972, Lemonnier introduced the concept of the deviation of an arbitrary
poset (E,≤) in [23], similarly to the concept of Krull dimension of mod-
ules, see also [24]. The Krull dimension of a module M, which is denoted
by k-dim M and measures its deviation from being Artinian, was first in-
troduced by Gabriel and Rentschler (for finite ordinals) in 1967. Later, this
definition was extended to infinite ordinals by Krause in 1970, see [17,18,21].
Lemonnier also defined the concept of the dual Krull dimension of E which
he named the codeviation of E, as being the Krull dimension (i.e., the devia-
tion) of E0, the opposite poset of E, see [18]. We remind the reader that the
dual Krull dimension of modules measures the deviation of a module from
being Noetherian. We should emphasize, for the sake of the reader, that the
dual Krull dimension of a module is also known as the Noetherian dimen-
sion and N -dimension of that module, see [19]. Let us denote the dual Krull
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dimension of a module M by n-dim M. These dimensions have been investi-
gated by many authors, see for example [3,18,22–24]. On the other hand, the
notion of a prime ideal plays an important role in the theory of structures
of rings. There are some interesting relations between prime ideals and the
Krull dimension of a ring R. In what follows, we list some examples of these
relations:

(1) Any semiprime ring with Krull dimension is a Goldie ring.
(2) Any ring with Krull dimension has only finitely many minimal prime

ideals.
(3) Any ring with Krull dimension satisfies ACC on prime ideals.
(4) Let R be a semiprime ring with Krull dimension. Then: k-dim R =

sup
{
k-dim R

E + 1 : E ≤e R
}

.

(5) If R is a ring with Krull dimension, then k-dim R is equal to k-dim R
P ,

for some prime ideal P of R.
(6) If R is a ring with Krull dimension and P is an ideal of R, maximal

with respect to k-dim R
P = α, then P is a prime ideal.

Moreover, the classical Krull dimension of a ring R, denoted by cl.k-dim R,
was originally defined to be the supremum of the lengths of all chains of
prime ideals in R. These facts led us to our investigation of prime submod-
ules in a class of modules with Krull dimension. In this paper, we extend
the above results and some other useful facts to this class of modules. We
should remind the reader that the concept of prime submodules and prime
modules is introduced in the literature by various authors. Some of these def-
initions are slightly different and, therefore, the objects which are introduced
by these definition are not necessarily the same, see for example [8,14,25,27].
We should emphasize that we use the notion of a prime submodule in the
sense of [27]. Let us give a brief outline of this paper. In Sect. 2, we recall
some known facts about prime and semiprime (sub)modules, Goldie modules
and non-M -singular modules and give some new facts about these modules.
Sanh et al. [27] have shown that if M is a finitely generated, quasi-projective
and self-generator with certain properties, then S = EndR(M) enjoys these
properties too. This led us to our definition of FQS modules. Let us recall that
an R-module M is called FQS if M is finitely generated, quasi-projective and
self-generator. In Sect. 3, we investigate FQS modules. We show that if M
is an FQS module, then M is Goldie (critical, dual critical, etc.) if and only
if S = EndR(M) has all the latter properties, respectively. Section 4 is de-
voted to FQS modules with Krull dimension. In this section, we extend some
important facts from prime ideals and semiprime rings to prime submodules
and semiprime FQS modules. For example, we show that any semiprime FQS
module with Krull dimension is a Goldie module and any FQS module with
Krull dimension has only finitely many minimal prime submodules. Conse-
quently, if M is an FQS module with Krull dimension, then k-dim M is equal
to k-dim M

P , for some prime submodule P of M. We also observe that an
FQS module has the classical Krull dimension if and only if it satisfies ACC
on prime submodules. In the last section, we study α-short modules and α-
DICC modules, see [13,19]. We prove that any semiprime FQS module M is
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α-short if and only if n-dim M = α, where α ≥ 0, which is a generalization
of [13, Proposition 2.18]. Finally, we show that any semiprime FQS module
M is α-DICC if and only if k-dim M = α or n-dim M = α.

Throughout this paper, all rings are associated with 1 �= 0, and all
modules are unital right modules. It is convenient, when we are dealing with
the above dimensions, to begin our list of ordinals with −1. Let M be an
R-module and S = EndR(M) its endomorphism ring. We denote AX =∑

f∈A f(X), IX = {f ∈ S : f(M) ⊆ X} and Ker(A) = ∩f∈A ker(f) for any
submodule X ⊆ M and A ⊆ S. Let us recall that an R-module N is said
to be (finitely) generated by M or (finitely) M -generated if there exists an
epimorphism

⊕
Δ M −→ N for some (finite) index set Δ. Moreover, an R-

module M is called self-generator if it generates all its submodules. We note
that an R-module M is self-generator if and only if for each submodule N of
M, there exists Δ ⊆ S such that N =

∑
f∈Δ f(M). A submodule N of M is

called essential (or large) in M, denoted by N ≤e M, if K ∩ N �= 0 for every
non-zero submodule K of M. The full subcategory of R-Mod, subgenerated
by M, is denoted by σ[M ], see [15,28]. An R-module N is called singular in
σ[M ] or M -singular if N ∼= L

K for some L ∈ σ[M ] and K ≤e L. We recall that
every module N ∈ σ[M ] contains the largest M -singular submodule which is
denoted by ZM (N). Then, N is M -singular if ZM (N) = N and if ZM (N) = 0,
N is called non-M -singular. The reader is referred to [7,15,18,26,27] for
undefined terms and notations.

2. Preliminaries

Let us briefly recall some basic definitions and results from the literature.
An R-module M is called quasi(or, self)-projective if it is M -projective. Note
that if R is a semisimple ring, then every finitely generated R-module is
quasi-projective, also every finite direct sum of quasi-projective modules is
quasi-projective, see [20, Theorem 2.1].

Theorem 2.1. [15, 3.4] Let M be a quasi-projective R-module and S = EndR

(M).
(1) For any finitely generated right ideal I of S, I = HomR(M, IM).
(2) Assume in addition that M is finitely generated. Then, for any right

ideal I of S, I = HomR(M, IM).

Theorem 2.2. [15, 4.1] Let M be an R-module. Then, the following statements
are equivalent.
(1) M is non-M -singular (i.e., ZM (M) = 0).
(2) For any 0 �= N ∈ σ[M ] and 0 �= f : N → M, ker(f) �e N.

Theorem 2.3. [15, 4.5] Let M and N be R-modules, N be M -singular and
f ∈ HomR(M,N). If M is quasi-projective and f(M) is finitely generated,
then ker(f) ≤e M.

A submodule X of M is called fully invariant if f(X) ⊆ X for any
f ∈ S = EndR(M). According to [27, Definition 1.1], a fully invariant proper
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submodule P of an R-module M is called prime if for any ideal I of S,
and any fully invariant submodule X of M, IX ⊆ P implies X ⊆ P or
IM ⊆ P. An R-module M is called prime if 0 is a prime submodule of M.
Any maximal of the set of all fully invariant submodules of M is prime, see
[26, Proposition 1.6].

Theorem 2.4. [27, 1.2] Let P be a proper fully invariant submodule of M.
Then, the following conditions are equivalent.
(1) P is a prime submodule.
(2) For any φ ∈ S = EndR(M) and fully invariant submodule U of M, if

φ(U) ⊆ P, then either φ(M) ⊆ P or U ⊆ P.
Moreover, if M is quasi-projective, then the above conditions are

equivalent to:
(3) M

P is a prime module.

The next result is a consequence of [27, Lemmas 2.5, 2.6]. We give a
short proof for completeness. It is easy to see that if A is a fully invariant
submodule of a module M and P

A is a fully invariant submodule of M
A , then

P is a fully invariant submodule of M.

Theorem 2.5. Let X be a fully invariant submodule of a quasi-projective R-
module M. Then, P

X is a prime submodule of M
X if and only if P is a prime

submodule of M contains X.

Proof. By the assumption, we immediately conclude that M
X is quasi-

projective. By Theorem 2.4(3), P
X is a prime submodule of M

X if and only
if M/X

P/X is a prime module if and only if M
P is a prime module, equivalently

P is a prime submodule of M. �

According to [27, Definition 2.1], a fully invariant submodule X of an
R-module M is called semiprime if it is an intersection of prime submodules
of M. An R-module M is called semiprime if 0 is a semiprime submodule
of M. Also, a submodule U ≤ M is called M -annihilator if U = Ker(A) =
∩f∈Aker(f) for some A ⊆ S = EndR(M).

Remark 2.6. Let M be an R-module and S = EndR(M). It is easy to see that
Ker(A) = {x ∈ M : f(x) = 0,∀f ∈ A} = r.annM (A) for each A ⊆ S. If there
is no confusion, we briefly write rM (A) or r(A) instead of r.annM (A). Note
that U is an M -annihilator submodule of M if U = r(A) for some subset A
of S. It is well known that r(A) = rlr(A) and so if U is an M -annihilator
submodule of M, then U = ker{f ∈ S : U ⊆ ker(f)}.

Theorem 2.7. Let M be an R-module and S = EndR(M).
(1) If M satisfies ACC on M -annihilator submodules, then S satisfies ACC

on right annihilator ideals.
(2) If M is self-generator, then the converse of (1) holds.

Proof. (1) It is proved in [26, Lemma 3.2].
(2) Suppose that M is self-generator and S satisfies ACC on right annihi-
lator ideals. If U1 � U2 � U3 � · · · is an ascending chain of M -annihilator
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submodules of M, then Mi = Ker(Si) where Si = {f ∈ S : Ui ⊆ ker(f)}
by Remark 2.6. This gives S1 � S2 � S3 � · · · (note, if f ∈ Sn+1, then
Un+1 ⊆ Ker(f) so that Un ⊆ Ker(f) and f ∈ Sn). This implies that
r.annS(S1) ⊆ r.annS(S2) ⊆ r.annS(S3) ⊆ · · · . Since Sn � Sn+1, then there
exists g ∈ Sn−Sn+1 and we conclude that g(Un) = 0 �= g(Un+1). Note that M
is self-generator and hence Un+1 =

∑
f∈Δ f(M) for some Δ ⊆ S, thus there

exists f ∈ Δ such that gf(M) �= 0. Hence, f �∈ r.annS(g) and f �∈ r.annS(Sn).
Now, let ϕ ∈ Sn+1. Then, ϕf(M) = ϕ(f(M)) ⊆ ϕ(Un+1) = 0 and ϕf = 0.
This implies that f ∈ r.annS(Sn+1) and we have r.annS(S1) � r.annS(S2) �
r.annS(S3) � · · · , a contradiction. �

3. FQS modules

We begin with a formal definition of the central concept of the article.

Definition 3.1. An R-module M is called FQS if it is finitely generated, quasi-
projective and self-generator.

Lemma 3.2. Let M be an FQS module. Then, M
A is an FQS module for each

fully invariant submodule A of M.

Proof. By our assumption, it is clear that M
A is finitely generated and quasi-

projective; hence, it suffices to prove that M
A is self-generator. Let X

A be a
submodule of M

A . Hence, we conclude that X =
∑

f∈Δ f(M) for some Δ ⊆
S = EndR(M). Now for each f, we define f̄ : M

A −→ M
A by f̄(m+A) = f(m)+

A. Since A is fully invariant, f̄ is well defined and so f̄ is an R-homomorphism.
Hence, we have

∑
f∈Δ f̄(M

A ) =
∑

f∈Δ(A+f(M)
A ) =

A+
∑

f∈Δ f(M)

A = A+X
A = X

A

and, consequently, M
A is self-generator. �

Example 3.3. (1) Every finitely generated semisimple module is an FQS
module. Also, if R is a semisimple ring, then every finitely generated
R-module is an FQS module.

(2) For every prime number p and every n ∈ N, the additive group Zpn is
an FQS module.

One can easily prove the following result.

Lemma 3.4. Let M be an R-module and S = EndR(M). Then, for any sub-
module X of M and each right ideal A of S, we have the following statements.

(1) IX is a right ideal of S and if X is a fully invariant submodule of M,
then IX is an ideal of S. Moreover, IXM ⊆ X and in case M is self-
generator, IXM = X.

(2) AM is a submodule of M and if A is an ideal of S, then AM is a fully
invariant submodule of M. Moreover, A ⊆ IAM and in case M is a
finitely generated and quasi-projective module, IAM = A.

Theorem 3.5. Let M be an FQS module and S = EndR(M). Then, for any
submodule X of M, the following statements are hold.
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(1) X is a maximal (minimal) submodule of M if and only if IX is a max-
imal (minimal) right ideal of S.

(2) X is an essential submodule of M if and only if IX is an essential right
ideal of S.

Proof. (1) It is a consequence of Lemma 3.4 (note., X � Y if and only if
IX � IY where X and Y are two submodules of M).
(2) The sufficiency comes from [26, Lemma 3.6]. Conversely, assume that
IX ≤e SS and X ∩N = 0, for some submodule N of M. By Theorem 2.1 and
Lemma 3.4, we have 0 = Hom(M,X ∩ N) = Hom(M,X) ∩ Hom(M,N) =
Hom(M, IXM) ∩ Hom(M,N) = IX ∩ Hom(M,N). Hence, we conclude that
Hom(M,N) = 0. This implies that N = 0 and hence X ≤e M. �
Remark 3.6. For each f ∈ S, r.annS(f) = Iker(f).

The next result is also in [16, Proposition 4.4] by different statement.

Theorem 3.7. Let M be an FQS module and S = EndR(M). Then

Z(S) = {f ∈ S : ker(f) ≤e M}.

Proof. As noted above, for each f ∈ S, r.annS(f) = Iker(f) so f ∈ Z(SS) if
and only if r.annS(f) ≤e SS if and only if Iker(f) ≤e SS and this is equivalent
to ker(f) ≤e MR by Theorem 3.5(2). �
Theorem 3.8. Let M be an FQS module and S = EndR(M). Then, M is a
non-M -singular module if and only if S is a nonsingular ring.

Proof. First, suppose that 0 �= f ∈ Z(S). Thus, ker(f) ≤e M and we conclude
that ZM (M) �= 0 by Theorem 2.2. Conversely, suppose that ZM (M) �= 0.
Since M is self-generator, there exists 0 �= f : M → M such that f(M) ⊆
ZM (M). This implies f(M) is M -singular. Since M is an FQS module, M
is quasi-projective, also M and so f(M) is finitely generated. Thus, we have
ker(f) ≤e M by Theorem 2.3. This implies that f ∈ Z(S) by Theorem 2.2
and so Z(S) �= 0. �
Lemma 3.9. Let X be a fully invariant submodule of M and A be an ideal of
S = EndR(M). Then, we have the following.
(1) If X is a prime submodule of M, then IX is a prime ideal of S. Moreover,

if M is self-generator, then the converse is true.
(2) If M is an FQS module and A is a prime ideal of S, then AM is a

prime submodule of M.

Proof. (1) It is proved in [26, Theorem 1.10].
(2) Since M is finitely generated and quasi-projective, we have A = IAM .
Moreover, M is self-generator and A = IAM is a prime ideal of S. Hence,
according to part (1), AM is a prime submodule of M. �

The next result is a consequence of Lemma 3.9 and Theorem 3.5.

Corollary 3.10. Let M be an FQS module, S = EndR(M) and P be a fully
invariant submodule of M. Then, P is a minimal prime submodule of M if
and only if IP is a minimal prime ideal of S.
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Let us recall that any nonzero ideal of each prime ring R is an essential
right ideal. The following is a counterpart of this fact.

Lemma 3.11. Let M be a prime FQS module. Then, every nonzero fully in-
variant submodule of M is an essential R-submodule.

Proof. Let 0 �= X be a fully invariant submodule of M. Suppose that Y is
a submodule of M such that X ∩ Y = 0. Note that M is self-generator and
hence we have Y =

∑
g∈Δ g(M) for some Δ ⊆ S = EndR(M). On the other

hand, X is fully invariant so we have g(X) ⊆ X ∩ Y = 0 for each g ∈ Δ.
Since M is prime, we conclude that g(M) = 0 and Y = 0. �

It is well known that every prime ideal is either a minimal prime ideal
or an essential right ideal. The following is a counterpart of this fact.

Theorem 3.12. Let M be an FQS module. Then, every prime submodule P
of M is a minimal prime or an essential R-submodule.

Proof. Since P is a prime submodule, IP is a prime ideal of S by Lemma 3.9.
If P is not essential, then IP is not an essential right ideal of S by Theo-
rem 3.5. Hence, IP is a minimal prime ideal of S. Thus, P is a minimal prime
submodule of M by Corollary 3.10. �

Theorem 3.13. Let M be an FQS module and S = EndR(M). Then, M is
semiprime if and only if S is a semiprime ring.

Proof. It is clear by Theorem 2.9 in [26] and Proposition 2.3 in [27]. �

4. FQS Modules with Krull Dimension

We begin this section with the following result which is a consequence of
Theorems 1.1 and 1.3 and related remarks in [16]. We recall that if M and
N are right R-modules and S = EndR(M), then HomR(M,N) is a right
S-module.

Theorem 4.1. Let M be a finitely generated quasi-projective R-module, S =
EndR(M) and N be an R-module. Then, the lattice of M -generated submod-
ules of N and the lattice of S-submodules of HomR(M,N) are isomorphic.

The next useful theorem is a natural consequence of Theorem 4.1 and
the routine proofs for these facts will be left to the reader.

Theorem 4.2. If M is an FQS module and S = EndR(M), Then:
(1) L(M), the lattice of R-submodules of M and L(S), the lattice of right

ideals of S are isomorphic. More generally,
(2) L(X), the lattice of R-submodules of X and L(IX), the lattice of right

ideals of S which is contained in IX , are isomorphic for every R-submodule
X of M.

(3) L(M
X ), the lattice of R-submodules of M

X and L(HomR(M, M
X )), the lat-

tice of S-submodules of HomR(M, M
X ) are isomorphic, for every fully

invariant submodule X of M.
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The above theorem gives us a good motivation to investigate and com-
pare results concerning lattice theory between L(M), the lattice of submod-
ules of M and L(S), the lattice of right ideals of S. In the next theorem, we
give some of these facts. We should remind the reader that the first item is
proved in [26, Theorem 3.1].

Theorem 4.3. Let M be an FQS module, S = EndR(M) and X be a submodule
of M. Then, we have
(1) G − dim MR = G − dim SS .
(2) k-dim MR = k-dim SS , if either side exists.
(3) k-dim X = k-dim IX .
(4) n-dim MR = n-dim SS , if either side exists.
(5) n-dim X = n-dim IX .
(6) k-dim M

X = k-dim S
IX

, if X is fully invariant.
(7) n-dim M

X = n-dim S
IX

, if X is fully invariant.

Proof. By applying Theorem 4.2, we only need to show the validity of the
facts in parts (6) and (7). To see (6), k-dim M

X = k-dim HomR(M, M
X ) by

Theorem 4.2(3). Now, it is suffices to show that HomR(M, M
X ) ∼= S

IX
. We

define ϕ : S −→ HomR(M, M
X ), by ϕ(f) = πf, where π is the canonical

projection. It is clear

ker(ϕ) = {f ∈ S : πf = 0} = {f ∈ S : f(M) ⊆ X} = IX .

Thus, S
IX

can be embedded in HomR(M, M
X ). Moreover, M is quasi-projective

so for each g ∈ Hom(M, M
X ), there exists f ∈ S such that g = πf. This

means that ϕ is an epimorphism. Now by the first isomorphism theorem,
HomR(M, M

X ) ∼= S
IX

and we are done. The proof of (7) is similar. �

The following result is now immediate.

Corollary 4.4. Let M be an FQS module and S = EndR(M). Then, M is a
uniform module if and only if S is a right uniform ring.

We recall that an R-module M is called Goldie if it has finite Goldie
dimension and satisfies ACC on M -annihilator submodules, see [26].

Theorem 4.5. Let M be an FQS module and S = EndR(M). Then, M is a
Goldie module if and only if S is a right Goldie ring.

Proof. The necessity is proved in [26, Theorem 3.3]. To prove the sufficiency,
we assume that S is a Goldie ring. Hence, G−dim SS is finite and S satisfies
ACC on right annihilator ideals. Now, we conclude that G − dim MR is fi-
nite and M satisfies ACC on M -annihilator submodules by Theorems 4.3(1)
and 2.7. This means that M is a Goldie module. �

It is well known that a semiprime ring R is right Goldie if and only if
Zr(R) = 0 and G − dim RR < ∞, see [24, Theorem 2.3.6]. The following is a
generalization of this fact to FQS modules.

Theorem 4.6. Let M be an FQS module. Then, the following statement is
equivalent.
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(1) M is a semiprime Goldie module.
(2) S is a semiprime right Goldie ring.
(3) S is semiprime, G − dim SS < ∞ and Zr(S) = 0.
(4) M is semiprime, G − dim M < ∞ and ZM (M) = 0.

Proof. (1) ⇔ (2) This is a consequence of Theorems 3.13 and 4.5.
(2) ⇔ (3) It is proved in [24, Theorem 2.3.6].
(3) ⇔ (4) This is a consequence of Theorems 3.13, 4.3(1) and 3.8. �
We recall that if R is a right nonsingular ring and RR has finite rank

and x ∈ R then x is regular if and only if r.annR(x) = 0, see [17, Lemma 5.7].

Corollary 4.7. Let M be a semiprime Goldie FQS module and f ∈ S =
EndR(M). Then, f is regular if and only if f is monomorphism.

Proof. f ∈ S is regular if and only if r.annS(f) = Iker(f) = 0. This is equiva-
lent to ker(f) = 0, that is f is a monomorphism. �

The following theorem is a generalization of a result first proved by
Lemonnier for semiprime rings, see [18, Corollary 3.4].

Theorem 4.8. Any semiprime FQS module with Krull dimension is a Goldie
module.

Proof. By Theorems 3.13 and 4.3(2), we conclude that S is a semiprime ring
with Krull dimension and, hence, it is a right Goldie ring. Thus, M is a Goldie
module by Theorem 4.5. �

We recall that if α is an ordinal number, an R-module M is called α-
critical if k-dim M = α and k-dim M

N < α for every non-zero submodule N
of M. A critical module is one which is α-critical for some α. For example, a
module if 0-critical if and only if it is simple. Also, an R-module M is called
α-dual critical if n-dim M = α and n-dim N < α for every proper submodule
N of M. A dual critical is one which is α-dual critical for some α (note, dual
critical modules are also known as conotable, N-critical, and atomic).

Theorem 4.9. Let M be an FQS module, S = EndR(M) and X be a submodule
of M. Then:
(1) M is α-critical if and only if S is an α-critical ring.
(2) M is α-dual critical if and only if S is an α-dual critical ring.

Proof. (1) If M is α-critical then k-dim M = α and so k-dim S = α by
Theorem 4.3(2). Now we assume that 0 �= A is a right ideal of S, then
AM is a nonzero submodule of M and so k-dim M

AM < α. This implies that
k-dim S

IAM
< α by Theorem 4.3(6). But A = IAM by Lemma 3.4 and so

k-dim S
A < α. Hence, we conclude that S is α-critical. Conversely, suppose

that S is α-critical then k-dim S = α and so k-dim M = α by Theorem 4.3(2).
If 0 �= X is a submodule of M, then IX is a nonzero right ideal of S and so
k-dim S

IX
< α. Again, Theorem 4.3(6) implies that k-dim M

X < α and so M is
an α-critical module.
(2) If M is α-dual critical, then n-dim M = α and so n-dim S = α by The-
orem 4.3(4). We suppose that A be a proper right ideal of S, then AM is a
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proper submodule of M and so n-dim AM < α. Therefore, n-dim IAM < α by
Theorem 4.3(5). Since IAM = A we have n-dim A < α and hence S is α-dual
critical too. Conversely, if S is an α-dual critical ring, then n-dim S = α so
n-dim M = α by Theorem 4.3(4). If X is a proper submodule of M, then
IX is a proper right ideal of S, thus n-dim IX < α and so k-dim X < α by
Theorem 4.3(5). This means that M is an α-dual critical module. �

Next, we study prime submodules of FQS modules. We start with the
following result which is a generalization of [18, Proposition 7.3].

Theorem 4.10. Let M be an FQS module with Krull dimension. Then, M has
only finitely many minimal prime submodules.

Proof. The ring S = EndR(M) has Krull dimension by Theorem 4.3(2).
Hence, we conclude that S has only finitely many minimal prime ideals. Sup-
pose that P1, P2, . . . , Pn are all minimal prime ideals of S. By Corollary 3.10,
P1M, P2M, . . . , PnM are minimal prime submodules of M. Now suppose
that Q is a minimal prime submodule of M, then IQ is a minimal prime
ideal of S by Corollary 3.10 and so IQ = Pi for some i. This implies that
Q = IQM = PiM, and hence {PiM : 1 ≤ i ≤ n} is the set of all minimal
prime submodules of M. �

Corollary 4.11. Let M be an FQS module with Krull dimension and X be a
fully invariant submodule of M. Then, the set of all minimal prime submod-
ules of M containing X is finite.

Proof. It is clear that M
X is an FQS module by Lemma 3.2. Thus, M

X has
only finitely many minimal prime ideals. We know that there is one-to-one
correspondence between the set of all minimal prime submodules of M

X and
the set of all minimal prime submodules of M containing X. Therefore, the
set of all minimal prime submodules of M containing X is finite. �

It is well known that if R is a ring with Krull dimension, then k-dim R =
k-dim R

P for some prime ideals of R, see [18, Corollary 7.5]. We now generalize
this fact for the class of FQS modules with Krull dimension.

Theorem 4.12. Let M be an FQS module with Krull dimension. Then, k-dim M =
k-dim M

P for some prime submodule P of M.

Proof. The ring S = EndR(M) has Krull dimension by Theorem 4.3(2), and
so k-dim S = k-dim S

Q for some prime ideal Q of S. In this case, P = QM is
a prime submodule of M and IP = Q, again by Theorem 4.3(2) we conclude
that

k-dim M = k-dim S = k-dim
S

Q
= k-dim

S

IP
= k-dim

M

P
.

�

Lemma 4.13. [17, 13.6] Let M be a right R-module with Krull dimension and
f ∈ S = EndR(M) be a monomorphism, then k-dim M

f(M) < k-dim M.

The following result is a generalization of [24, Proposition 3.10].
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Theorem 4.14. Let M be a semiprime FQS module with Krull dimension.
Then, k-dim M = sup{k-dim M

E + 1 : E ≤e M}.

Proof. Consider α = sup{k-dim M
E +1 : E ≤e M}. Hence, we have k-dim M ≤

α by [18, Proposition 1.5]. Conversely, suppose that E ≤e M, then we con-
clude that IE is an essential right ideal of S. Since S is a semiprime Goldie
ring, there exists a regular element f ∈ IE that is a monomorphism by Corol-
lary 4.7. Hence, k-dim M

f(M) < k-dim M by Lemma 4.13. Note that f(M) ⊆ E

and so k-dim M
E ≤ k-dim M

f(M) < k-dim M. This implies that α ≤ k-dim M

and hence α = k-dim M. �

Corollary 4.15. Let M be a semiprime FQS module with Krull dimension and
E ≤e M, then k-dim M = k-dim E.

The next result is a generalization of [18, Theorem 7.1] to FQS modules.

Theorem 4.16. Every FQS module with Krull dimension satisfies the ACC
on prime submodules.

Proof. Let M be an FQS module and P1 � P2 be prime submodules of M. It
is clear 0 �= P2

P1
< M

P1
. Hence, M

P1
is a prime FQS module by Lemma 3.2 and

Theorem 2.4. Also, we conclude that P2
P1

≤e
M
P1

and k-dim M/P1
P2/P1

< k-dim M
P1

by Lemma 3.11 and Theorem 4.14. Thus, any strictly ascending chain P1 �
P2 � P3 � · · · of prime submodules of M gives a strictly descending sequence
k-dim M

P1
> k-dim M

P2
> k-dim M

P3
> · · · of ordinal numbers, a contradiction.

�

Theorem 4.17. Let M be an FQS module with Krull dimension and P be a
fully invariant submodule of M, maximal with respect to the condition that
k-dim M

P = α. Then, P is a prime submodule.

Proof. By Lemma 3.9, it suffices to prove that IP is a prime ideal of S =
EndR(M). We have k-dim S

IP
= α by Theorem 4.3(6). Now let Q be an ideal of

S such that IP � Q. This implies that IP M = P � QM and so k-dim M
QM <

α by our assumption. Clearly, Q = IQM and k-dim S
Q = k-dim M

QM < α

by Theorem 4.3(6). Hence, we conclude that IP is maximal with respect to
k-dim S

IP
= α. Consequently, Ip is a prime ideal and we are done. �

Next, we introduce an analogue of the classical Krull dimension for
modules.

Definition 4.18. Let M be an R-module. We denote the set of all prime
submodules of M by Spec(M). Let X(M) = Spec(M) and X0(M) denote
the set of all maximal fully invariant submodules of M. For an ordinal number
α > 0, Xα(M) denote the set of all prime submodules P of M such that each
prime submodule Q properly containing P belongs to Xβ for some β < α.
Hence, we have X0(M) ⊆ X1(M) ⊆ X2(M) ⊆ · · · . The smallest ordinal α
for which Xα(M) = X(M) is called the classical Krull dimension of M and
is denoted by cl.k-dim M.
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If M is an R-module and S = EndR(M) then in view of Lemma 3.9,
one can easily see that X(S) = {IP : P ∈ X(M)} and X(M) = {AM : A ∈
X(S)}. The following is an important and useful fact.

Lemma 4.19. Let M be an FQS module and S = EndR(M). Then, for each
ordinal number α ≥ 0 :
(1) Xα(S) = {IP : P ∈ Xα(M)}.
(2) Xα(M) = {AM : A ∈ Xα(S)}.

Proof. (1) We proceed by transfinite induction on α. First, let A ∈ X0(S),
i.e., A is a maximal ideal of S, then P = AM is a fully invariant submodule
of M and A = IP by Lemma 3.4. Now if Q is a fully invariant submodule of
M properly containing P then IQ is an ideal of S properly containing A. This
implies that IQ = S and so Q = M. Thus, P is a maximal fully invariant
submodule of M and P ∈ X0(M). Conversely, suppose that P ∈ X0(M) then
IP is an ideal of S by Lemma 3.4. If A is an ideal of S properly containing
IP then AM is a fully invariant submodule of M properly containing P, so
AM = M and hence A = S by Lemma 3.4. Now, we conclude that IP is a
maximal ideal of S. i.e., IP ∈ X0(S). Let us assume it is true for ordinals
less than α. We prove that it is true for α. If A ∈ Xα(S), then P = AM
is a prime submodule of M and A = IP by Lemmas 3.4 and 3.9. If Q is a
prime submodule of M properly containing P, then IQ is a prime ideal of
S properly containing A and so IQ ∈ Xβ(S) for some ordinal β < α. By
induction hypothesis, Q ∈ Xβ(M) and we have P ∈ Xα(M). Conversely, if
P ∈ Xα(M) then IP is a prime ideal of S by Lemma 3.9. If A is a prime
ideal of S properly containing IP then AM is a prime submodule of M
properly containing P and hence AM ∈ Xβ(M) for some β < α. Thus,
IAM = A ∈ Xβ(S) by induction. Hence, we conclude that IP ∈ Xα(S) and
we are done.
The proof of (2) is similar to the proof of (1) and, hence, it is omitted. �

The following result is now immediate.

Corollary 4.20. Let M be an FQS module, S = EndR(M) and α be an ordinal
number. Then, Xα(M) = X(M) if and only if Xα(S) = X(S).

Proof. First, suppose that Xα(M) = X(M). If A ∈ X(S) then P = AM is
a prime submodule of M and so P ∈ Xα(M). This implies that IP = A ∈
Xα(S) by Lemma 4.19. This shows that Xα(S) = X(S). The converse is
similar. �

In view of the previous corollary, we have the following result.

Theorem 4.21. Let M be an FQS module and S = EndR(M). Then, M has
classical Krull dimension if and only if S has classical Krull dimension and
in this case cl.k-dim M = cl.k-dim S.

It is well known that a ring R has the classical Krull dimension if and
only if it satisfies the ACC on prime ideals, see [1, Proposition 1.4]. Thus, an
FQS module M has classical Krull dimension if and only if S satisfies ACC on
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prime ideals, equivalently, M satisfies the ACC on prime submodules. Hence,
we have the following result which is a counterpart of [1, Proposition 1.4].

Theorem 4.22. Let M be an FQS module. Then, M has classical Krull di-
mension if and only if M satisfies the ACC on prime submodules.

We recall that if R is a ring with Krull dimension, then R has the
classical Krull dimension too and cl.k-dim R ≤ k-dim R, see [18, Proposition
7.9]. We conclude this section with the next theorem, which is a counterpart
of the above fact.

Theorem 4.23. Let M be an FQS module with Krull dimension. Then, it also
has classical Krull dimension and cl.k-dim M ≤ k-dim M.

Proof. The proof is clear by Theorems 4.3, 4.21 and [18, Proposition 7.9]. �

5. α-Short and α-DICC FQS Modules

An R-module M is called α-short if for each submodule N of M, either
n-dim N ≤ α or n-dim M

N ≤ α and α is the least ordinal number with this
property, see [13]. Clearly, each 0-short module is just a short module in the
sense of [9]. Also, every (α+1)-dual critical module is an α-short module. We
note that if M is an α-short module, then every submodule and every factor
module of M is β-short for some ordinal β ≤ α. In [13], the authors have
shown that if M is an α-short module then M has Noetherian dimension and
n-dim M = α or n-dim M = α + 1. Moreover, they proved that a semiprime
ring R is α-short if and only if n-dim R = α, see [13, Proposition 2.18].
O.A.S. Karamzadeh has informed us that the latter proposition is not valid
for α = −1 and the statement of the proposition may simply be corrected as
follows: A ring R is α-short if and only if it is a division ring, where α = −1
and when R is a semiprime non-division ring, it is α-short if and only if
n-dim R = α, where α ≥ 0.
Clearly, the proof of the first part follows from the definition and that of
the second part is exactly the proof of [13, Proposition 2.18], without even
changing a single word. Now the following facts seem to be interesting. Before
stating the next result, the reader is reminded that a module is simple if and
only if it is −1-short, hence as observed above, a ring is a division ring if
and only if it is −1-short, see also [13, Remark 1.15]. Considering the above
comment of Karamzadeh, the following result is a natural connection between
the α-shortness of an FQS module M and that of S = EndR(M) as a ring.

Theorem 5.1. Let M be an FQS module and S = EndR(M), then M is an
α-short module if and only if S is an α-short ring.

Proof. Let us first get rid of the case when α = −1. If M is −1-short then M
is simple; hence, S is a division ring, by Schur’s Lemma, which implies that
it is −1-short, too. Conversely, if S is −1-short then it is a division ring. Now
we may invoke part (1) of Theorem 4.2 to infer that M is simple and hence
it is −1-short, too. For α ≥ 0, one can invoke Theorem 4.3, to complete the
proof. �
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The following result partially settles one of the questions which are
raised in the comment preceding [13, Proposition 2.18].

Theorem 5.2. Let M be a semiprime FQS module. Then, M is α-short if and
only if n-dim M = α, where α ≥ 0.

Proof. By Theorems 3.13 and 5.1, we conclude that M is a semiprime α-short
module if and only if S is a semiprime α-short ring if and only if n-dim S = α,
by the above correction of the statement of [13, Proposition 2.18] and this is
also equivalent to n-dim M = α, by Theorem 4.3. �

The Double Infinite Chain Condition (DICC for short) was introduced
by Contessa [10–12]. As a generalization of the concept of a DICC module, the
notion of an α-DICC module was introduced by Karamzadeh and Motamedi
[19]. An R-module M is called α-DICC if for any double infinite chain of
submodules

· · · ⊆ M−2 ⊆ M−1 ⊆ M0 ⊆ M1 ⊆ M2 ⊆ · · ·
there exists an integer k such that k-dim Mi+1

Mi
< α for all i ≤ k or n-dim Mi+1

Mi

< α for all i ≥ k and α is the least ordinal with respect to this property.
Clearly, a 0-DlCC module is just a DlCC module in the sense of Contessa.

The following fact is an immediate consequence of Theorem 4.3 and its
easy proof is left to the reader.

Theorem 5.3. Let M be an FQS module, S = EndR(M) and α be an ordinal
number. MR is an α-DICC module if and only if S is an α-DICC ring.

Finally, let us recall that a semiprime ring R is α-DICC if and only if
either k-dim R = α or n-dim R = α, see [19, Corollary 1.1] and [19, Theo-
rem 1.1]. This fact naturally raises the question of whether this is also true for
a semiprime FQS modules. We conclude this paper with the next observation
which shows the validity of this fact for semiprime FQS modules, too.

Theorem 5.4. Let M be a semiprime FQS module. Then, M is an α-DICC
module if and only if k-dim M = α or n-dim M = α.

Proof. By Theorems 3.13 and 5.3, M is a semiprime α-DICC module if and
only if S is a semiprime α-DICC ring if and only if k-dim S = α or n-dim S =
α, by the above comment. This is also equivalent to either k-dim M = α or
n-dim M = α, by Theorem 4.3. �
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