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Abstract
Artificial neural network (ANN) is the backbone of machine learning, specifically deep 
learning. The interpolating and learning ability of an ANN makes it an ideal tool for mod-
elling, control and various other complex tasks. Fractional calculus (FC) involving deriva-
tives and integrals of arbitrary non-integer order has recently been popular for its capability 
to model memory-type systems. There have been many attempts to explore the possibilities 
of combining these two fields, the most popular combination being the use of fractional 
derivative in the learning algorithm. This paper reviews the use of fractional calculus in 
various artificial neural network architectures, such as radial basis functions, recurrent neu-
ral networks, backpropagation NNs, and convolutional neural networks. These ANNs are 
popularly known as fractional-order artificial neural networks (FANNs). A detailed review 
of the various concepts related to FANNs, including activation functions, training algo-
rithms based on fractional derivative, stability, synchronization, hardware implementations 
of FANNs, and real-world applications of FANNs, is presented. The study also highlights 
the advantage of combining fractional derivatives with ANN, the impact of fractional 
derivative order on performance indices like mean square error, the time required for train-
ing and testing FANN, stability, and synchronization in FANN. The survey reports interest-
ing observations: combining FC to an ANN endows it with the memory feature; Caputo 
definition of fractional derivative is the most commonly used in FANNs; fractional deriv-
ative-based activation functions in ANN provide additional adjustable hyperparameters to 
the networks; the FANN has more degree of freedom for adjusting parameters compared to 
an ordinary ANN; use of multiple types of activation functions can be employed in FANN, 
and many more.

Keywords Fractional calculus · Fractional-order neural networks · Gradient descent · Least 
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FANN  Fractional-order artificial neural network
NN  Feural network
CNN  Convolutional neural network
RNN  Recurrent neural network
DRNN  Deep recurrent neural network
R-L  Riemann-Liouville ( derivative)
G-L  Grunwald-Letnikov ( derivative)
M-L  Mittag-Leffer function
RBF  Radial basis function
FGD  Fractional gradient descent-based
BP  Backpropagation
LMS  Least mean square
NLMS  Normalized least mean square
Fx-NLMS  Filtered-x normalized least mean squares
MSE  Mean squared error
FNCC  Fractional normalized convex combination
LSTM  Long-short term memory
ARFIMA  Auto regressive fractional integrated moving average
GRNN  Generalized regression radial basis neural network
MAE  Mean absolute error
MAPE  Mean absolute percentage error
FNPK  Fractional neutron point kinetics
F-ROM  Fractional reduced-order model
LMI  Linear matrix nnequality
FHNN  Fractional Hopfield NN
FODHNN  FO discrete Hopfield NN
MWCFONN  Multiple weighted coupled FANN
FOQVNN  FO quaternion-valued NN
fPIRNN  FO physics-informed RNN
FQVBAMNN  Fractional-order quaternion-valued bidirectional associative memory 

neural network
BAM  Bidirectional associative memory
FMNN  Fractional-order memristor neural network
FMBAMNN  Fractional-order memristive BAM neural network
MWCFCNN  Multi-weighted complex structure on fractional-order coupled neural 

network
FPGA  Field programmable gate array
FODHNN  Fractional-order discrete hopfield neural network
WT  Wavelet transform
MLP  Multilayer perceptron
AFDA  Adaptive fractional differential algorithm
FODPSO  Fractional order darwinian particle swarm optimization
DCNN  Deep convolutional neural network
FOC  Fractional optimal control
PSNR  Peak signal to noise ratio
CSFCO  Cat swarm fractional calculus optimization
CSO  Cat swarm optimization
MAPSO-EFFO  Aadaptive particle swarm optimization and the enhanced fruit fly 

optimization
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VdPDO  Van der pol-duffing oscillator
FLANN  Functional link ANN
MOESP  Multivariable output error state space
FCVNN  Fractional complex-valued neural Network
FBAMNN  Fractional-order BAM neural network
MDFNN  Memristor-based delay fractional-order neural network
FMBFII  Free-matrix-based fractional-order integral inequality
FDTNN  Fractional-order discrete-time neural network
FDNNDA  Fractional-order delayed neural network with discontinuous activations
FOMCVNN  Fractional-order memristive complex-valued neural network
PCA  Principal component analysis
FOS  Fractional order system
SiLU  Sigmoid weighted linear units
dSiLU  Derivative of SiLU
RreLU  Randomized leaky ReLU
SreLU  S-shaped ReLU
PreLU  Parametric rectified linear units
LreLU  Leaky ReLU
ELU  Exponential linear units
PELU  Parametric exponential linear unit
SELU  Scaled exponential linear units
EliSH  Exponential linear squashing
FRBF  Fractional radial basis function
FORNN  Fractional recurrent NN
FBNN  Fractional deep backpropagation NN
FCNN  Fractional convolutional NN
GELU  Gaussian error linear unit
NLP  Natural language processing
MNIST  Modified national institute of standards and technology database

1 Introduction

An artificial neural network (ANN) is endowed with features like parallel computing, han-
dling large datasets, and performing nonlinear operations Sivanandam and Deepa (2007). 
Due to these features, ANN processing exploits various areas like medical analysis, educa-
tion, agriculture, industry, weather forecasting, tourism, textiles, manufacturing industry, 
defense, governance, marketing, and many more fields for various applications involving 
recognition, prediction, decision-making, classification, region-based traffic flow predic-
tion, image processing, an image measuring system, etc (Sivanandam and Deepa 2007; 
Cheng et al. 2023; Zhang et al. 2022; Liu et al. 2022a, b). It can also be used for the analy-
sis of nonlinear systems in presence of noise and provide accurate results.

In general, any ANN consists of three layers, an input layer, a hidden layer, and a output 
layer. Each layer can have only a dozen units or nodes or millions of units depending upon 
the complexity of the system. When the complexity of function and data increases, the 
number of hidden layers is increased, NNs thus formed by the addition of more layers are 
called deep neural networks. This deep NN is used for the analysis and processing of big 
and complex data. ANNs are trained using a training set. For example, to train an ANN 
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to recognize the picture of a lion, thousands of images of lions are shown, these thousand 
images are called training sets. Once the ANN is trained, to check whether ANN can rec-
ognize a Lion or not, some unknown images are given and checked whether ANN can 
identify or not. If ANN is identified incorrectly, then backpropagation algorithm is used to 
adjust whatever it has learned during training. Backpropagation is employed by updating 
the weights of the connections in ANN nodes based on the error obtained. This process 
continues until the ANN can correctly recognize a lion in an image with minimal possible 
error rates.

The branch of mathematics dealing with integrodifferential operators with arbitrary 
non-integer order (real or complex) is popularly known as fractional calculus (FC). The 
history of FC dates back to seventeenth century. There is now abundant literature avail-
able clearly pointing towards the superiority of fractional calculus as a mathematical tool 
in physics, chemistry, biology, engineering, finance, and many more (Hilfer 2000; Shen 
2018; Ionescu et al. 2017; Debnath 2003; Bukhari et  al. 2020; Li et  al. 2023; Zhou and 
Zhang 2022). The fractional derivative operators, by definition, involve an integration, 
making them nonlocal operators as opposed to classical integer-order derivative operators. 
This non-locality property of fractional derivatives is exploited in modelling systems with 
memory and spatially distributed dynamics (Loverro 2004; Valério et al. 2013; De Oliveira 
and Tenreiro Machado 2014; Gutierrez et al. 2010).

When the ANNs are modeled by employing fractional differential equations (FDE), they 
are named fractional artificial neural networks (FANNs). The FDE describes the dynamic 
behavior of the ANNs neurons accurately. Hence, engineering systems can be modeled 
more efficiently and accurately by FANN. Recently in ANN, authors have employed FC 
either in activation functions (Zamora Esquivel et al. 2019; Ivanov 2018) or in the back-
propagation algorithm for updating weights (Khan et al. 2018a, b; Bao et al. 2018; Sheng 
et al. 2020). Application of FANN is observed in various areas like image processing, bio-
medical, finance, control systems, energy, system identification, digital signal processing, 
5G wireless technology, etc. FANN has been successfully used to operate several underwa-
ter unmanned vehicles (Liu et al. 2022). The main advantages of using FC in these applica-
tions are efficient information processing and accurate results.

Experiments have shown the improved performance of FANN in terms of various 
parameters like better accuracy, stability, and synchronization. In Viera-Martin et  al. 
(2022), Maiti et al. (2022), Raubitzek et al. (2022), a review related to the ANN involved 
with FC is carried out. Specifically, in Viera-Martin et al. (2022), the analytical and numer-
ical methods employed to solve the differential equations and fractional differential equa-
tions are presented. It also overviews the optimization algorithms employed for the training 
of ANN involved with FC and the control strategies employed to synchronize and stabilize 
ANN involved with FC. In Maiti et al. (2022), the critical review of various advances in the 
fractional-order form of hopfield, cellular, memristive, complex-valued, and other neural 
networks, and their applications has been presented. An review of how fractional deriva-
tives could improve machine learning techniques has been presented in Raubitzek et  al. 
(2022).

In several science and engineering fields, a neural network is used as a mathematical mod-
eling tool for complex dynamic systems. An ANN ‘remembers’ the input-output applied to it 
by virtue of its learning capability. On the other hand, the nonlocal fractional derivative opera-
tors are well known for faithfully modelling systems with memory. These two facts conse-
quently lead to a promising possibility that the use of fractional derivatives in an ANN might 
very well enhance its learning capabilities and accuracy (Zhang et al. 2017a, b). The survey 
confirms this fact. ANNs are used extensively in machine learning and deep learning. So any 
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improvement in the performance of an ANN will contribute to better AI and ML algorithms. 
Due to memory effect and heredity characteristics fractional calculus is mainly employed in 
neural networks to model the reality of the system. This provides system stability, synchroni-
zation, and parameters training by applying optimum algorithms. Nowadays memristive net-
works have gained much attention (Huang et al. 2012; Kaslik and Sivasundaram 2012; Chen 
et al. 2013, 2014; Stamova 2014; Zhang et al. 2015; Wu and Zeng 2017; Bao et al. 2018; Li 
et al. 2019).

In Rakkiyappan et al. (2015), Rakkiyappan et al. (2016) authors have proposed fractional-
order-based neural networks. In these papers, it is demonstrated that fractional-order feedfor-
ward neural networks are easier and faster to convergent compared to integer-order feedfor-
ward neural networks. Due to faster convergence, memory, and heredity properties, authors 
have proposed fractional-order neural networks to model complex dynamic systems to 
improve stability and synchronization (Chen 2013).

In addition, this survey also reports the use of fractional activation functions, the effect of 
fractional derivative order on the stability and synchronization of the ANNs, deep FANN and 
its applications, and hardware implementation of FANNs. In this paper, we present a state of 
the art review of fractional-order artificial neural networks, use of fractional activation func-
tions, the impact of fractional order on the stability, and synchronization of FANN. This work, 
probably for the first time, presents a detailed review on the following topics related to FANN: 

(1) Training algorithms in FANN.
(2) Stability and synchronization in FANN.
(3) Sensitivity analysis of FANN.
(4) Hardware implementation of FANN.
(5) Applications of FANN.

The paper is organized as follows. Section 2 presents the fundamentals of fractional calculus. 
Introduction to fractional artificial neural networks is given in section 3. Section 4 details the 
training algorithms used for FANN. Section 5 presents the review of stability and synchroni-
zation analysis for FANN. Review on the topic of sensitivity analysis of FANNs is given in 
section 6. Section 7 discusses the hardware implementation of FANN. Section 8 lists major 
applications of ANNs involved with fractional derivatives. The overview of the survey includ-
ing the challenges and probable future directions in the area of combining fractional calculus 
and artificial neural networks is discussed in section 9. Conclusion is given in section 10.

2  Preliminaries

In this section, a brief about fractional calculus and fractional artificial neural networks is pre-
sented. We review the theory of arbitrary-order integrals and derivatives, which generalize and 
integrate the concepts of integer-order differentiation and n-fold integration.

2.1  Fractional calculus (FC)

Fractional calculus (FC) is a powerful mathematical tool for modeling a wide range of 
complex real-world and engineering systems (Carpinteri and Mainardi 1997; Machado 
et al. 2011). The three popular fundamental definitions of fractional derivatives (FDs) are: 
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(1) Grunwald-Letnikov (GL) derivative of fractional order � ∈ ℝ
+ Das (2011): It is defined 

as 

 where, [x] is the integer part of x and �Cj is the binomial coefficient.
(2) Riemann–Liouville (RL) derivative of fractional order � ∈ ℝ

+ Das (2011): It is defined 
as 

 for n − 1 < 𝛼 < n, n ∈ ℤ
+ and Γ(⋅) is the Gamma function.

(3) Caputo derivative of fractional order � ∈ ℝ
+ Das (2011): It is defined as 

 for n − 1 < 𝛼 < n, n ∈ ℤ
+ , where f n(�) is the nth-order derivative of the function f(t).

It should be noted that for a causal (initially relaxed) function, all the three definitions 
coincide. The Caputo definition, though more restrictive, is widely employed as it allows 
the use of physical initial conditions.

Apart from the above definitions, Weyl, Marchaud, Hadamard, Chen, Davidson-Essex, 
Coimbra, Canavati, Riesz, and Osler derivative formulae have been defined. Fractional 
integrals’ definitions like R-L (left-sided), R-L (right-sided), Hadamard, Weyl, Chen (left-
sided), Chen (right-sided), Erd-elyi (left-sided), Erd-elyi (right-sided) integral, Kober 
(left-sided), and Kober (right-sided) have been defined De Oliveira and Tenreiro Machado 
(2014). Different tools for the usage of FC in different areas have been described in Li 
et al. (2017). A new fractional green function related to the fractional telegraph equation 
has been described Figueiredo Camargo et al. (2008). The fundamental theorem of FC in 
various versions like R-L, Liouville, Caputo, Weyl, and Riesz has been explained Grigo-
letto and de Oliveira (2013). A new conformable fractional derivative has been derived in 
Abdeljawad (2015).

Simplification of discrete FC for difference equations has been described in Atici and 
Eloe (2009). A newly discovered simple definition of the fractional derivative and frac-
tional integral has been described Khalil et al. (2014). From 1974 to 2010, including docu-
ments and events, FC’s past has been described (Machado et al. 2011). The work based on 
fractional differential equations and fractional calculus in different areas by various authors 
till 2013 has been reviewed in Karniadakis et al. (2015). Two new criteria for fractional 
operators have been derived, which can be accessed by the G-L, R-L, and Caputo deriva-
tives, and the Riesz are proposed in Ortigueira and Tenreiro Machado (2015). Fractional 
derivatives of basic functions like exponential, sine, cosine, etc. are computed and analyzed 
in Kleinz and Osler (2000). Geometric and physical interpretations for various fractional 
integrations and differentiations have been proposed in Podlubny (2002). In Borredon et al. 
(1999), basic definitions of fractional derivatives and integrals have been defined with 
illustrative examples. The evolution of FC, its history, and contribution of different authors 
in FC has been reported in Machado et  al. (2014). The basics, theory, and applications 
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of FC have been represented in Ortigueira (2011), Samko et al. (1993), Diethelm (2010), 
Davies (2002), Herrmann (2018), Liu et al. (2022). The definition of R-L fractional deriva-
tive has been derived in Samko et al. (1993). Riesz potential operators’ new definitions are 
discussed in Ortigueira (2006a), Ortigueira (2006b) and the designing of problems based 
on digital Riesz FC has been illustrated in Tseng and Lee (2014).

In Song et al. (2022), the new discrete Hadamard FC is presented using time-scale the-
ory. The boundedness theorem of general FC has been presented in Fan et al. (2022). It 
is widely trendy in continuous time random walks. Fractional difference equations have 
recently gained popularity in FC. By utilizing the Laplace transform, solutions of semi-lin-
ear equations are proposed in Baleanu and Wu (2019). Here, new fractional sum equations 
are developed using Picard’s approach.

2.2  Mittag‑Leffler function

Mittag-Leffler function is a generalization of the exponential function, which has a major 
role in FC Haubold et al. (2011). This function can be represented in generalized form as 
follows,

where �, � ∈ ℝ
+ , ℝ+ ∈ ℂ , Γ(.) represents the Euler’s gamma function, and ℂ represents the 

set of complex numbers. Substitution �=1, gives 1-parameter MLF:

The Mittag-Leffler function is widely used in various applications (Haubold et al. 2011). It 
plays a crucial role in stability studies of FANN.

3  ANN based on fractional derivatives (FANN)

Due to long-term memory feature of fractional derivatives, ANNs are modeled by employ-
ing fractional differential equations (FDE). Such networks are named fractional artificial 
neural networks (FANNs). In an ANN, the activation functions play an important role to 
provide accurate output. However, if we employ fractional derivative-based activation 
functions in ANN, it provides additional adjustable hyperparameters to the networks. 
In this section, we present a brief review of activation functions. For example, the Step 
function is not compatible with some NN architectures, specifically, the backpropagation 
architecture Werbos (1974). ReLU can destroy neurons during training so that they do 
not activate for any data set Karpathy and Fei-Fei (2015). To solve this problem, ELUs in 
Clevert et al. (2015), Leaky ReLUs in Maas et al. (2013), the PReLU in He et al. (2015), 
and the Swish activation functions have been proposed. It is also observed that by com-
bining different types of activation functions using fractional derivatives and modifying 
the order of the fractions, multiple types of activation functions can be employed in ANN 
Zamora Esquivel et al. (2019).

Table 1 describes the summary of the activation functions and their fractional deriva-
tive. The functions with exponential terms (trigonometric, hyperbolic) can be represented 

(4)E�,�(Z) =

∞
∑

k=0

Zk

Γ(�k + �)
,

(5)E�(Z) =

∞
∑

k=0

Zk

Γ(1 + �k)
.



 M. Joshi et al.

1 3

in terms of Mittag-Leffler (M-L). In Ivanov (2018), feedforward neural networks have 
been employed with M-L functions, thereby increasing the degree of freedom for adjusting 
parameters Ivanov (2018).

4  Training algorithms in FANN

FANN is trained by using algorithms that employ FO derivatives in weight updation. In 
this section, we present a detailed commonly used algorithms for FANN structure.

4.1  Gradient descent method

The gradient descent method is the most preferred method for ANN as it is an optimization 
algorithm to search local minima for differentiable functions. The meaning of gradient is 
the rate of change of output with respect to input. In other words, it is a differentiable func-
tion. It has been used to calculate the difference between the weights with respect to the 
change in error. The algorithm aims to find the coefficients in such a way that the value of 
the loss function or cost function is minimum. The weight is updated as follows,

where � represents the iteration number, � denotes the learning rate parameter and ΔEn rep-
resents the difference between the error function Bishop (2006).

In Wei et al. (2020), authors have proposed a method in which lower integral term is 
iterated and higher order terms are divided, and designed in a variable fractional order. 
RBFs, RNNs, backpropagation NNs and CNNs employ gradient descent algorithms for 
updating weights in the training process. Since the gradient descent weight update pro-
cess has a derivative in the weight updating formula and if fractional order derivative is 
employed then the gradient descent process is termed as the fractional gradient descent 
process. And all the neural networks employing the fractional weight update process are 
termed as Fractional order ANN architecture. Following are the general steps to employ 
the fractional gradient descent algorithm in FANN: 

(6)w�+1 = w� − �ΔEn,

Table 1  Summary of fractional derivative of activation functions Zamora Esquivel et al. (2019)

Sr.
No.

Activation
Function

Mathematical
Representation

Fractional derivative of activation function

1 ReLU [f (x) = x] for (x>0),
otherwise [f (x) = 0]

g(x) = Daf (x) =
Γ(2)

Γ(2−a)
x(1−a)

2 Sigmoid f (x) = log(1 + ex) g(x) = Daln(1 + ex)

G(x) = limh→0

1

ha

∑∞

n=0
(−1n)

Γ(a+1)ln(1+ex−nh)

Γ(n+1)Γ(1−n+a)

3 Hyperbolic
Tangent

f(x) = tanh(x) g(x) = Datanh(x)

G(x) = limh→0

1

ha

∑∞

n=0
(−1)n

Γ(a+1)tanh(x−nh)

Γ(n+1)Γ(1−n+a)



A survey of fractional calculus applications in artificial…

1 3

(1) Obtain output y(n) of FANN.
(2) Let d(n) is desired response of FANN.
(3) Obtain estimation error ΔEn of FANN. 

(4) The weight vector is updated as follows by following Eq. 6

(5) By using the fractional gradient descent algorithm, weights are updated as follows, 

 where �v and Dv are step sizes used for the fractional gradient descent algorithm and 
fractional derivative of order v respectively.

(6) Weights are updated till minimum error is obtained. FANN can be simulated by vary-
ing orders of v. For various values of v, the performance of FANN can be computed in 
terms of MSE, number of epochs, training time required to train the networks, etc.

Fractional gradient method is employed in various types of neural networks like radial 
basis functions, recurrent neural networks, convolution neural networks, backpropaga-
tion networks, complex-valued networks. These methods are reviewed in brief in the 
following subsections.

4.1.1  FC in radial basis functions (RBF)

An implementation of RBF-NN using fractional gradient descent-based learning algo-
rithm (FGD) has been presented in Khan et al. (2018a). This algorithm is a combination 
of conventional and modified R-L derivative-based fractional gradient descent methods. 
Fig. 1 represents the architecture of RBF.

Φi is the ith hidden neuron’s basis function. It uses the Gaussian kernel function. Wi 
represents the synaptic weights between the hidden layer and the output neuron, and Xn 
represents the input to RBFNN.

(7)ΔEn = d(n) − y(n).

w�+1 = w� − �ΔEn.

(8)w�+1 = w� − �vD
vΔEn,

Fig. 1  RBF neural network architecture Khan et al. (2018a)
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Reference Khan et al. (2018a) has applied this weight updation expression to the fol-
lowing applications:

• System identification: FRBF has required fewer epochs than RBF during the testing 
phase for a given SNR.

• Pattern classification: FRBF has achieved slightly better accuracy compared to RBF 
and required a lower number of epochs and the convergence rate has been improved.

• Time series Prediction: While testing, FRBF MSE is lower compared to RBF.
• Function Approximation: Improved accuracy during training and testing and better con-

vergence.

Gradient descent algorithms based on the Caputo fractional derivative for the training 
of RBF have been implemented in Xue (2021) . The algorithm considers momentum 
while training NN. Results illustrate that the proposed design based on Caputo frac-
tional derivative has better performance.

4.1.2  FC in Recurrent NN

In Khan et  al. (2018b), Pu et  al. (2017), recurrent NN has been implemented using a 
gradient descent algorithm, proposing a new weight-updating formula. Fig. 2 illustrates 
the architecture of recurrent NN. Weights have been updated by fractional gradients and 
have been obtained by using the chain rule. The proposed algorithm implemented for 
three different applications illustrate improved results in terms of better accuracy and 
less MSE compared to the same algorithm without fractional calculus. In Yao and Wang 
(2020), a new algorithm has been proposed for echo state networks that have a frac-
tional order. The Echo State Network belongs to the class of RNN, where the RNN’s 
hidden layer is replaced with a dynamical reservoir. In this network, only output weights 
have been trained. Other weights are considered to be random values (Jaeger and Haas 
2004; Jaeger 2001; Zhang et al. 2014).

Reference Khan et al. (2018b) has applied this weight-updated formula to the follow-
ing applications:

• Non-linear system identification: Slightly improved accuracy (less MSE) has been 
obtained for fractional order RNN (FORNN) compared to RNN.

• Pattern classification: During testing of the network, better accuracy of FORNN has 
been obtained as compared to RNN.

It has required slightly more time for training for almost all types of FRNN compared to 
integer-order RNN.

Fig. 2  A simple two-neuron 
recurrent neural network Khan 
et al. (2018b)



A survey of fractional calculus applications in artificial…

1 3

4.1.3  FC in backpropagation (BP) neural networks

A deep backpropagation (BP) neural network model using Caputo derivative fractional-
order and L2 regularization is described in Bao et al. (2018). L1 (Lasso Regression) and L2 
(Ridge Regression) are two types of regularization described in the literature. In L2 regular-
ization, the squared magnitude of the coefficient is multiplied by � and it is constant. The 
value of � should be properly selected. It will result in under-fitting if its value is high. This 
regularization has been used to minimize over-fitting problems. Different conditions have 
been derived to meet the convergence of the algorithm. Finally, the impact of fractional 
order and regularization effect on convergence has been discussed.

The Caputo derivative-based training process in the same network but without using 
L2 regularization has been proposed in Wang et  al. (2017), Chen and Zhao (2019). An 
architecture of multi-layers has been implemented to recognize handwritten digits from 
the Modified national institute of standards and technology database (MNIST) dataset. In 
Chen et al. (2020), an algorithm for backpropagation networks has been proposed that uses 
a combination of extremal optimization of initial weight parameters and fractional order 
gradient descent weight update process. The given network has been used to recognize 
MNIST handwritten digits. Results show that the proposed combined algorithm has more 
accuracy (in training as well as testing) compared to the integer order network.

4.1.4  FC in convolutional neural networks (CNN)

CNN’s architecture consists of several layers, including convolution and pooling layers. 
The layer is serially connected to the other layer as shown in Fig. 3 and loss functions are 
added.

In Sheng et al. (2020), CNN has been implemented using Caputo derivative-based frac-
tional gradient method for backpropagation. Between two different layers, integer order 
gradients have been used, but within layers, fractional gradients have been used, which will 
update parameters, keeping the chain rule. Caputo FO gradient method has been used by 
authors in Chen et al. (2022) to enhance the dynamic updating efficiency of CNN’s biases 
and weights.

Fig. 3  An architecture of CNN Sheng et al. (2020)
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4.1.5  Complex valued FANN

Fractional gradient descent can be used for complex-valued neural networks, as in Wang 
et  al. (2017), where authors have trained complex neural networks using the Caputo 
derivative-based gradient descent algorithm. In Khan et al. (2019), an adaptive stochas-
tic gradient descent has been proposed, which is fractional in nature, and has more flex-
ibility for designing and has more control parameters. The proposed method has been 
compared with the stochastic gradient descent method and found to be fast convergent 
and accurate.

Table 2 summarizes the results of various FANNs that use the fractional order gradi-
ent descent method. For each FANN, the type of FC using the weight update formula 
and applications are depicted. Also, the performance of FANN in terms of MSE and 
accuracy compared to integer order NN is reported.

The used notations used in Table 2 are: ek : Estimation error; � : Mixing parameter of 
gradient FO; Wkj

 : Weight at kth neuron; �k : Local gradient for kth neuron; Yj : Output of jth 
neuron; E: Total error of NN; EL2

 : Error after introducing L2 Regularization; � : Learn-
ing rate; L: Loss function; � : Iterative step size; Wl

ji
 : Weight matrix between lth layer and 

(l + 1)th layer; t: Integer representing tth iteration; Wl
k
 : Weight matrix between fully con-

nected layers
In Khan et  al. (2018a), Khan et  al. (2018b), it is shown with extensive simulation 

studies that FANN requires less time for training compared to integer-order NN, albeit 
at the cost of increased time for testing.

Table 2  Summary of weight updating formula of various FANN architectures

Sr.
No.

Type of
ANN

Type of
FC used

Final weight updation 
formula by using FC and
gradient descent

Performance of FANN

1 FRBF Khan et al. 
(2018a)

Modified
R-L
derivative

Wi(n + 1) = Wi(n)

+ek[�n + (1 − �)nvW
(1−V)

i
(t)]Φi(x, xi).

Improved parameters
(accuracy, MSE) of FRBF
are obtained
compared to RBF.

2 FORNN Khan et al. 
(2018b)

R-L
derivative Wkj(n + 1) = Wkj(n) +

n
∑

t=n−h−1
�k(t)

∗ [�n + (1 − �)�f W
(1−f )

Kj
(t)]Yj(t − 1).

Slightly improved accuracy
(less MSE) is obtained for
FORNN compared to RNN.

3 FBNN
Bao et al. (2018)

Caputo
derivative

(Wl
ji
)(t+1) = (Wl

ji
)(t) − �Dv

(wl
ji
)
t E,

without L2 Regularization
(Wl

ji
)(t+1) = (Wl

ji
)(t) − �Dv

(wl
ji
)
t EL2,

with L2 Regularization

Improved accuracy
during training and
testing of FBNN
including L2 regularization.

4 FCNN
Sheng et al. (2020)

Caputo
derivative

W
(l)

[k+1]
= W

(l)

[k]
− �

��L

�W [l]�
. Slightly improved accuracy

during training and
testing of FBNN is
obtained for few cases.
As FO increases, better
accuracy is obtained.
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4.2  Particle swarm optimization (PSO)

Swarm-based algorithms, a potent family of optimization approaches, have been developed 
as a result of studying the group behavior of social animals. In PSO, swarms of particles 
move around the parameter space, and their movements are guided by their own best-
known position in the parameter space as well as the entire swarm’s best-known position. 
When improved positions are obtained, it helps in guiding the movements of the swarm or 
trajectory (Marini and Walczak 2015).

The PSO algorithm for optimization of the training process in FANN has been imple-
mented in Tlelo-Cuautle et al. (2022). In Zhang and Yang (2020), FO-based CNN has been 
modeled using the G-L derivative and the PSO algorithm has been applied for the compu-
tation of smaller control energy. Zhang and Yang have investigated the ideal quasi-synchro-
nization issue for delayed FMNN. A stochastic inertia weight-PSO has been implemented 
to synchronize Caputo fractional-order based FMNN in Chang et al. (2020). In Waseem 
et al. (2020), a feed-forward ANN using Darwinian-PSO (D-PSO) optimized algorithm has 
been used to solve non-linear differential equations of second order. The use of algorithms 
has aided in determining the optimal weight values in ANN.

4.3  Levenberg–Marquardt algorithm (LM)

To solve the convergence issues while working with the gradient descent algorithm in 
ANN, Gauss–Newton iteration can be employed. The LM algorithm is a newly developed, 
improved technique that combines Gauss–Newton iteration and gradient descent algorithm. 
The following update rule defines it Ranganathan (2004).

where xi = (x1, x2,… , xn) is a vector, H is the Hessian matrix calculated at xi , and I is an 
identity matrix. It uses the following update rule.

• If the value of error after updation is less, the value of � is reduced.
• If the value of error after updation is more, the value of � is increased.

In Hadian-Rasanan et  al. (2020), different kinds of Lane–Emden equations are approxi-
mated using FANN. The FO of the Legendre function has been utilized as a hidden layer 
activation function and the LM optimization approach has been applied in ANN training 
for weight optimization. FO differential equations have been implemented using the FANN 
in Hadian Rasanan et al. (2020). In this, FO Jacobi functions have been used by FANN as 
the activation functions for the hidden layer and LM optimization technique for training the 
network.

4.4  Interior point algorithm (IPA)

Constrained optimization issues can be effectively solved using IPA. It is based on Kar-
markar’s algorithm Karmarkar (1984). In Lodhi et  al. (2019), FO differential equations 
have been implemented using the FANN, and IPA technique is used for training the 

(9)xi+1 = xi − (H + �I)−1∇f (xi),
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network in the weight update process. Modeling has been performed in an unsupervised 
fashion. To verify the accuracy of the approach, various Bagley–Torvik equation options 
have been taken into account for simulation.

Nonlinear systems that are created using arbitrary-order Riccati equations have been 
implemented using FANN in Lodhi et al. (2019). With the use of the error function, FANN 
has been used to construct the system’s energy function. IPA has been used as an opti-
mized algorithm for the energy function’s design parameter.

5  Stability and synchronization in FANN

Stability and synchronization are the two important features of any system involving ANN. 
In this section, we present a review of the work carried out in the FANN system and the 
important results.

5.1  Stability analysis in FANN

In neural networks, problems like oscillation, divergence, or instability arise due to time 
delay. Moreover, dynamic systems face a problem of stability. The existence, uniqueness, 
and global asymptotic stability (GAS) of the equilibrium point are some of the most stud-
ied issues in nonlinear circuit theory. A GAS neural network is actually guaranteed to cal-
culate the global optimal solution regardless of the beginning situation, which further sug-
gests that the network is free of erroneous suboptimal responses (Forti and Tesi 1995). Due 
to the availability of numerous stable equilibrium points, one real drawback is that errone-
ous suboptimal answers are likely to emerge. There should be a single globally asymp-
totically stable equilibrium point. To prevent the occurrence of false answers and to ensure 
convergence toward the global ideal solution, GAS is an essential characteristic (Forti et al. 
1994).

In literature, the stability analysis for neural networks has been performed includ-
ing time delays, specifically the stability of fractional-order based neural networks. Here, 
time delays in the time derivatives of states have been analyzed. In this section, we present 
research carried out in the area of stability in FANN. Various stability methods are avail-
able in the literature such as fractional Lyapunov method, Razumikhin-type theorem, Bar-
balat lemma, Matrix measure approach, extended impulsive differential inequality, Holder, 
Gronwall Bellman inequality, inequality scaling skills, Cauchy–Schiwartz inequality, and 
others have been used to achieve stability in FANN.

These stability methods are employed in different types of neural networks based on 
different fractional order derivatives as mentioned in Table 3. Most of the analysis is car-
ried out using Caputo, R-L, and G-L derivatives based on fractional order (Defined in 
section 2). In all these different types of FANN, stability obtained is either robust, global 
robust, asymptotic, uniform, exponential, finite-time, or Mittag-Leffler. The methods to 
obtain stability of FANN are described as follows: 

(1) Mittag–Leffler stability:
  A review of the literature reveals that a combination of Mittag–Leffler functions 

(one or two-sided) and some inequality theorems or properties, such as the fractional 
Lyapunov method, can be used to achieve stability. As in Ali et al. (2019), the Mittag-
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Leffler stability has a faster convergence speed than the exponential stability near the 
origin.

(2) Uniform stability:
  The uniform stability of the FO complex valued NN has been proposed in Li et al. 

(2021). Two different forms of activation functions have been considered. The Banach 
fixed point theorem has been used to obtain stability for NN.

(3) Asymptotic stability:
  Asymptotic stability implies that solutions that begin close enough to the equilibrium 

not only stay close enough but also eventually converge to the equilibrium (Liang et al. 
2015).

(4) Finite-time stability:
  In Rakkiyappan et al. (2014), a finite-time stability, which has faster convergence, 

improved robustness, and disturbance rejection properties has been obtained.
(5) Global Robust stability:
  The stability of a class of multiple variable FANN with uncertainties is proposed 

in Gai et al. (2016). Several issues relating to the robust stability of such networks 
are discussed. In such networks, inequality theorems and properties such as the linear 
matrix and the fractional Lyapunov direct method are used to achieve robust stability.

(6) Exponential stability:
  A new FO differential inequality has been introduced. Using this new inequality, �

-exponential stability is obtained. The network’s convergence rate is determined by the 
order of the differential equation (Yu et al. 2012).

Figure 4 presents the number of papers available in the literature for stability analy-
sis in various FANN. From Table 3 and Fig. 4, the literature survey reveals that a lot of 
research work is carried out on Mittag–Leffler stability using the fractional Lyapunov 
method as compared to other methods of stability, it is so because the fractional Lyapu-
nov Method is used to analyze nonlinear systems without the need for differential equa-
tion simplification. If the Lyapunov function is chosen as the system’s candidate, the 

Fig. 4  Research contributions towards stability analysis in FANN



A survey of fractional calculus applications in artificial…

1 3

system is found to be stable. This stability serves as a tool for analyzing the stability of 
nonlinear systems and addresses a variety of stability issues (Sabatier et al. 2010).

The general procedure to achieve stability using Mittag–Leffler functions is as follows: 

1. Decide or select a type of FANN.
2. Choose fractional calculus definitions like Caputo, R-L, G-L, etc.
3. Define Mittag–Leffler functions.
4. Apply Laplace transform to Mittag–Leffler functions.
5. Describe FANN with differential equations (basic definitions like Caputo).
6. Apply the Laplace transform to step 5.
7. To obtain FANN stability, use inequality theorems such as the fractional Lyapunov 

method.

5.2  Lyapunov method

Following steps are used to implement Lyapunov stability in both direct and indirect meth-
ods (The direct approach is applicable for the simplification of large-dimensional problems 
while the indirect approach is applicable for the simplification of more complex problems) 
Trigeassou et al. (2011), 

1. Define linear FO differential equation. 

 where m1 < m2 < ⋅ ⋅ ⋅ < mN are fractional derivation orders, M ≤ N , y(t) is output and 
u(t) is input.

2. Apply Laplace transform to the equations of the system as defined in Eq. 10.
3. Determine a frequency state model (matrix form) of discrete nature.
4. Describe direct and indirect Lyapunov approaches.

5.3  Summary of stability

To obtain stability, the following steps are used. 

1. Any fractional definition can be used to define the system equation. Initial conditions 
are also defined. The given function should be locally Lipschitz.

2. Various definitions are used to define the equilibrium point of a system equation for 
cases when this point is at the origin and when it is not at the origin.

3. To prove the existence and uniqueness of the above system, the following theorem is 
used. 

 where f(t, x) is a continuous real-valued function. It is defined in the G domain. In this 
domain, the above Lipschitz condition with respect to x is defined. l is constant and 
positive.

4. A relation is obtained between FO systems and the Lipschitz condition. Theorems like 
triangle inequality are used.

(10)
DmN (y(t)) + aN−1D

mN−1 (y(t)) + ⋅ ⋅ ⋅ + a1D
m1 (y(t)) + a0y(t)

= bMD
mM (u(t)) + ⋅ ⋅ ⋅ + b1D

m1 (u(t)) + b0u(t),

(11)∣ f (t, x1) − f (t, x2) ∣≤ l ∣ (x1 − x2) ∣,
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5. This method is extended for FO systems, which generate stability like Mittag-Leffler 
stability. To achieve this stability, a method like the fractional Lyapunov method can be 
used. For the analysis of systems, the Laplace and inverse Laplace transforms can be 
used.

From this research work, some important conclusions can be drawn as follows,

• In Zhang et al. (2015), Zhang et al. (2017), Wang et al. (2014), Pratap et al. (2019), it is 
illustrated that the convergence rate is dependent upon fractional order. It increases as 
the fractional order is varied from 0 − 1.

• From Wei et al. (2017), it is observed that fractional order has an impact on finite-time 
stability, it is proved that for higher values of fractional order finite-time stability is 
achieved at a faster rate.

• In Yu et al. (2012), fractional order exponential stability is defined as follows, 

 where, t is the positive value, ∥ ∥ represents the Euclidean norm. Where M and � are 
two positive constants, x0 and y0 are two initial values.

• Linear Matrix Inequality (LMI) based condition of stability has been defined in Yang 
et  al. (2018). It is observed that by using these conditions, more calculations are 
required as this stability is dependent on the whole matrix of the system.

• A simple LMI-based stability condition for delayed FANN has been investigated in Jia 
et al. (2020). A linear state feedback controller has been designed. But controller design 
is not feasible for high-dimensional FANNs.

• A finite-time stability of FO complex-valued neural networks (CVNN) has been stud-
ied in Hu et al. (2020). The results are a little bit conservative.

• In Wang et al. (2019), stability analysis of fractional CVNN (FCVNN) demonstrates 
that the computational complexity increases as the system are divided into real and 
imaginary parts since it is a complex-valued FANN.

• In Liang et al. (2015), the asymptotic stability of FO cellular NN has been investigated 
and results obtained are a little bit conservative.

• Research on the stability of FO neutral-type delayed NN is in the development and 
exploitation stages in comparison to integer order NN Chen et al. (2013).

• According to Pratap et al. (2019), the majority of the results on stability and synchro-
nisation has dealt with LMI. But as the number of neurons increases, computational 
complexity also increases. By using matrix elements, the number of matrices required 
is less.

5.4  Synchronization analysis in FANN

A synchronization is a tool that can be used for controlling the chaos of practical applica-
tions Ma et  al. (2015). Pecora and Carroll introduced chaos synchronization. There has 
been a lot of research on the synchronization of NN after this introduction. In this section, 
we present a review of synchronization analysis in FANN.

Each neuron has its own state which changes With respect to time. The state is repre-
sented by x1, x2,⋯ , xn . The update of this state value depends upon interconnections and 

(12)∥ x(t) − y(t) ∥≤ M ∥ x0 − y0 ∥ exp(−�t�),
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the initial value of the state Yueh and Cheng (2006). If neuron i has state xi(t) and neuron j 
has state xj(t) , NN is said to be synchronized if and only if

A NN’s parameters cannot be calculated properly if there are external distractions and vari-
ations in the model. There are unpredictable changes in networks’ responses, including sta-
bility and synchronization. Real-time applications require fast synchronization.

In any system, synchronization error can be computed as follows Bao et al. (2015), 

1. Obtain x(t) of the drive system of NN.
2. Obtain y(t) of the response system of NN.
3. Obtain e(t) which is the synchronization error of the system. It is the difference between 

y(t) and x(t).
4. Controllers are built to achieve the lowest possible error. Here e(t) → 0 as t → ∞ 

(i = 1, 2,⋯ , n) , indicates that the drive and response systems are synchronized.
5. If limt→+∞ ∥ y(t) − x(t) ∥= 0 , systems x(t) and y(t) are global asymptotic synchroniza-

tion.

Various methods are available in the literature to achieve synchronization such as SMC, 
linear feedback, state feedback control, output feedback, data feedback, adaptive controls, 
and period intermittent control methods. Some inequality theories, as well as stability con-
ditions, are also employed to achieve system synchronization.

These synchronization methods have been employed in different types of FANN as 
illustrated in Table 4. It is observed that the maximum research work is carried out in the 
Caputo and R-L-based fractional derivative neural networks. In all these FANN, synchroni-
zation achieved is either Quasi or asymptotic or Mittag-Leffler or finite-time or exponential 
or projective synchronization. Numerous methods to obtain synchronization of FANN are 
described as follows: 

 1. Projective synchronization:
  Projective synchronization allows for faster communication and it has a proportional 

feature. Because of these characteristics, this method is preferred over others Juan et al. 
(2014).

 2. Global Mittag Leffler synchronization:
  The global Mittag-Leffler function is used to achieve FANN synchronization (Li et al. 

2020; Kao et al. 2021; Xiao et al. 2020).
 3. Finite-time synchronization:
  In this type of synchronization, the upper bound of the synchronization’s setting time 

is estimated (Li et al. 2020; Kao et al. 2021).
 4. Adaptive synchronization:
  Adaptive synchronization of FANN is obtained by using adaptive and feedback control 

(Bao et al. 2015; Wu and Huang 2019; Xiao et al. 2016).
 5. Quasi-Uniform synchronization:
  In practice, there are fewer cases for synchronization implementations in which the 

synchronization error approaches zero with respect to time. These numbers change. 
This is referred to as Quasi synchronization (Kaslik and Rădulescu 2017).

(13)lim
t→+∞

∥ xi(t) − xj(t) ∥= 0.
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 6. Robust synchronization:
  A synchronization of a fractional-order memristor neural network (FMNN) through 

the development of a Lyapunov function and efficient conditions has been proposed 
in Liu et al. (2019). The system is synchronized robustly using discontinuous R.H.S. 
based on FO and Mittag-Leffler stability.

 7. Asymptotical synchronization:
  LMI and algebraic methods are established by the state feedback controller. These are 

robust asymptotical synchronization analysis methods (Pratap et al. 2020).
 8. Exponential synchronization:
  In Zhang and Yang (2018), exponential synchronization of fractional-order memristive 

bidirectional associative memory neural networks (FMBAMNN) including time delay 
has been obtained. An exponential function is used to study the FO differential system. 
Various cases after the implementation of impulsive effects have been described by 
design. A wide range of these effects has been affected by �.

 9. Global synchronization:
  In Yin et al. (2017), two types of output feedback controllers have been implemented 

to obtain Global O (t−�) synchronization of FANN. FANN is said to be Global O (t−�) 
synchronized if FANN is Globally O (t−�) stable.

 10. Chaos synchronization:
  If a chaotic system generates a signal, the signal cannot be synchronized with another 

system Pecora and Carroll (2015). The chaos synchronization of FANN with time 
delay is determined Zhu et al. (2008).

 11. Outer synchronization:
  In Cheng et al. (2019), a data sampling method and fractional calculus have been 

employed to achieve FANN outer-synchronization with a deviating argument.

Figure 5 presents the no. of papers available in the literature for synchronization analysis 
in various FANN. From Table 4 and Fig. 5, it is observed that a lot of research work is car-
ried out on projective synchronization as compared to other methods of synchronization.

From these papers following facts have been observed,

Fig. 5  Research contributions towards synchronization analysis in FANN
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• The synchronization of fractional-order memristor-based neural networks is impacted 
by the fractional order of the derivative (Bao et al. 2015).

• If 0 < 𝜇 < 𝛼 , the impulsive effect of � affects the synchronization of FMBAMNN. 
Here, � ∈ (0, 1) is a positive constant If 𝜇 > 𝛼 , in fact, causes instability of the system. 
To control the unfavorable impulse, a feedback controller has been used (Zhang and 
Yang 2018).

• When � = 1 , reference (Zheng et al. 2017) has demonstrated that projective synchroni-
zation can be converted to complete synchronization and anti-synchronization of driver 
response systems when � = −1.

• In Bao and Cao (2015), Zhang et al. (2018), Ding and Shen (2016), Zheng et al. (2017), 
it is demonstrated that for the value of � = 1 and � = −1 , the projective synchroniza-
tion can be converted to complete synchronization and anti-synchronization of driver 
response systems respectively.

• Synchronization of FANN with time delay has been affected by fractional order (Gu 
et al. 2019).

• Settling time is dependent on � . The greater the value of � , the greater the value of set-
tling time (Li et al. 2018; Zhang and Yang 2020).

• The convergence speed of matrix-projective synchronization erroris faster for larger 
values of � (He et al. 2020).

• Adaptive control is dependent on � . Fractional order has affected synchronized adap-
tive feedback gains. For one reason, FMNN can provide more secure communication 
compared to integer order NN (Bao and Cao 2015; Ding and Shen 2016).

• For the following condition expression, the master and slave systems are �-exponen-
tially synchronized (Yu et al. 2012): 

 where M and � are two positive constants, x0 and y0 are two initial values.

6  Sensitivity analysis of FANN

Sensitivity analysis in ANN is crucial as it helps in identifying the variables and param-
eters that influence the output model and its performance. It also allows us to assess the 
impact of the selected input variables on the output variables and insignificant variables. 
Sensitivity analysis is performed by observing the impact of perturbed input within the 
linear region on the output of the network (Novak et al. 2018).

The measure of the network sensitivity is termed as “quotient of error increase.” It indi-
cates how many times the network error will increase after the removal of a given variable 
in relation to the network error with all the analyzed variables. The network error is deter-
mined as follows,

where yi is the observed value and yp is the theoretical value of the output variable deter-
mined based on the model. By removing the input variables from the network input, run-
ning the training procedure again, and calculating a new network error Errori , the relevance 
of the input variables may be evaluated. The ratio of the error obtained at the network 

(14)∥ x(t) − y(t) ∥≤ M ∥ x0 − y0 ∥ exp(−�t�),

(15)Error =
1

n

n
∑

i=1

(yi − yp),
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startup for a data set without one variable Errori and the Error obtained for a dataset with 
all the variables is defined as the quotient of error as follows:

It signifies that with the greater quotient error after the rejection of the variable, the net-
work is more sensitive to the lack of this variable. Deleting the variable has no impact on 
the network quality and may even make it better if the error quotient is 1 or less (Mrzygłód 
et al. 2020).

Sensitivity is one of the important characteristics of FANN. Fractional Hopfield NN 
(FHNN) can be employed as a defense against chip cloning threats for anticounter-
feiting because of features like FO-stability and FO-sensitivity (Pu et  al. 2017). Ini-
tial value sensitivity is a property of both chaotic and traditional nonlinear dynamic 
systems. The FO discrete Hopfield NN (FODHNN), which is employed as a pseudor-
andom number sequence generator in the encryption process, has a better encryption 
effect due to the sensitivity of initial values and complicated chaotic behaviors of FO 
discrete systems (Chen et al. 2020). The most common characteristic of nonlinear sys-
tems is chaos. It is distinguished by a high sensitivity to the dynamics of the system’s 
initial conditions. High sensitivity to external stimuli is demonstrated by the NN model 
(Allehiany et al. 2021).

Sensitivity analysis is performed for various FANN structures. Sensitivity analy-
sis has been performed and the system performance of photovoltaic, Fuel Cells, H2 
storage tanks, and Electrolyzers based on the cost variation have been computed in 
Guo et al. (2021). Reference (Wang et al. 2022) focuses on the sensitivity of the FO 
parameters to the performance of the proposed FORNN with physics-informed battery 
knowledge. Experiments under dynamic operation conditions are conducted to analyze 
various sensitivities such as FO gradient sensitivity, impedance sensitivity, loss weight 
sensitivity, etc. Parameter sensitivity was first analyzed and then FO physics-informed 
RNN (fPIRNN) was trained with the sampled federal urban driving schedule; partial 
differential equation; data in accordance. Using sampled groups of the various param-
eters, Pearson correlation coefficients are produced to quantify sensitivity (Wang et al. 
2022). The most sensitive parameter of the delayed FANNs is found via a sensitivity 
analysis of the crucial bifurcation values. The method proposed here can be used to 
solve various FO differential equation bifurcations (Li et al. 2022).

Recently, there have been some studies reporting the key sensitivity analysis for 
FANNs. The results will alter significantly if the encryption and decryption keys are 
even slightly different. Even though the key only deviates slightly, the cipher picture 
cannot be accurately deciphered. A lot of security analyses including key space analy-
sis, key sensitivity analysis, histogram analysis, information entropy analysis, and cor-
relation analysis are examined to show the applicability of the proposed cryptosys-
tem in Roohi et al. (2020). This sensitivity analysis has been addressed in Wang et al. 
(2020). This analysis is also performed in a three-neuron FODHNN. It serves as a gen-
erator of pseudo-random chaotic sequences. With the help of the secret key created by 
a five-parameter external key and the plain image’s hash code, its initial value may be 
determined. The FODHNN discrete step size and order are both included in the exter-
nal key. This guarantees a substantial secret key space, enhances algorithm sensitivity 
to the plain image, and results in good key sensitivity for the encryption and decryp-
tion procedures (Chen et al. 2020). Reference Li et al. (2022) considers two FO chaotic 

(16)W =
Errori

Error
.
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NNs to explore the application of this FANN in image encryption. The key sensitivity 
of the encryption algorithm is performed to evaluate its security.

7  Hardware implementation of FANN

A lot of research work has been carried out in the design of FANN for various applications, 
analysis of stability and synchronization, but the challenge is in the implementation of 
FANN. Very few works describe the hardware implementation of FANN as in Pu (2016), 
Pu et  al. (2017). Here authors have implemented a Hopfield neural network circuit with 
fractional order. Specifically, the analog circuit of FANN has been implemented as a refer-
ence with the help of a fractor. Its model has been depicted, in which each neuron has one 
op amp in addition to its other components. Every FO neuron has the same circuit configu-
ration. It is demonstrated mathematically that the FANN’s operation rule is the FO partial 
differential equation. The performance of the circuit has been tested by simulating it. A 
multilayer FANN circuit for any fractional order has been implemented in Yifei (2005). 
Its electrical circuit has been depicted in which every neuron has been formed by three 
operational amplifiers and associative components (resistor and capacitor) according to the 
circuit. FC has been defined using the Caputo definition.

In Tolba et al. (2019), authors have used FPGA to implement an Izhikevich neuron of 
fractional order. The Izhikevich model has been represented by the following expression. 
In the FO domain, it is generalized with fractional orders � and �.

where
V: the membrane potential; U: the recovery variable which is used to provide negative 

feedback to V; I: external current stimulus; a, b: input parameters.

An algorithm for the approximation of FO differential equation solution:

1. Input to the approximation algorithm is the FO differential equation.
2. Uniform and non-uniform segmentation.
3. Grouping.
4. Address mapping.
5. Each segment has been approximated by (17).

Input has been partitioned into segments, and the following expression has approximated 
each segment in the following form.

where, Co,C1,C1 : constant coefficients.
X: input segment.
Y: second-degree polynomial.

(17)
��V

�t�
= 0.04V2 + 5V + 140 − U + I,

(18)��U

�t�
= a(bV − U),

(19)Y = C2X
2 + C1X + Co,
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The hardware circuit is illustrated in Tolba et al. (2019). This model has been imple-
mented using the Xilinx Virtex 5 FPGA kit. Here synchronization of the neurons for vari-
ous FO has been studied. In Malik and Mir (2020), FPGA has been used to implement a 
Hindmarsh Rose (HR) neuron of fractional order. The dynamic properties of FO and inte-
ger HR neurons differ in a variety of ways.

In Malik and Mir (2020), FPGA has been used to implement a model based on Hind-
marsh Rose (HR) neuron of fractional order. The dynamic properties of FO and integer 
HR neurons differ in a variety of ways. For the particular set of parameters, integer order 
models have the same neuron’s firing characteristics as that of the FO model, however, 
FO models have shown different dynamical behaviors. The firing frequency of neurons is 
dependent on the fractional order of FC. This model is implemented in two steps, in the 
first step, the digital realization of various FO operator approximations is performed. The 
second step involves the use of a fractional integrator to obtain a low-power and low-cost 
hardware implementation. This model has been employed on a low-voltage, low-power cir-
cuit and has been compared with the equivalent integer order circuit. Various dynamical 
behaviors of HR neurons of fractional order have been demonstrated with the proposed 
hardware model.

In Dar et  al. (2021), FO spiking NN has been implemented for application purposes 
after studying their dynamics. Both software and hardware approaches have been proposed 
for implementation purposes. Since the behavior of biological neurons has been governed 
by FO dynamics, several FO models and implementations have been proposed Dar et al. 
(2021). In this work, the technical aspects of designing the FO FitzHugh-Nagumo neuron 
model in analog and digital domains have been considered. Hence, this model provides 
enhanced dynamics and design flexibility.

8  Applications of FANN

From the analysis, it is found ANN combined with FC has been used in the approximation 
of functions, description of chaos, estimation, global dissipativity, periodicity, and mod-
eling heat transfer process. Some research has been applied to the different areas of science 
and engineering, such as medicine, image processing and encryption, robotics, and many 
more. The most important applications of FANN are described in this section. There are 
two main applications of FC in NNs.

• FANNs.
• Use of NN methods to solve fractional differential equations.

8.1  FANNs

8.1.1  Digital image processing

A digital image can be displayed in two dimensions. It is a collection of digital picture ele-
ments. Digital image processing is required to improve the quality of pictorial information 
and process this digital data for various applications. Fig. 6 depicts the steps involved in 
image processing (Gonzalez and Woods 2009).
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An additional degree of freedom can be obtained by adding FC with extra parameters. 
These additional parameters increase the flexibility of optimization. Because of this, FC 
is used in various stages of digital image processing. Following steps are used in image 
processing.

Algorithm of FO image processing:

1. Input is an image. For this image proper model/equation/operator is finalized by using 
a differential/integral equation. The obtained form is in integer.

2. Implementation of FC (by using a suitable equation like R-L, Caputo, G-L, etc) which 
will convert integer order to fractional order.

3. An approximated numerical solution is obtained by using a suitable discretization 
method.

In literature, FANN is used for various image processing applications like noise removal, 
image encryption, and image enhancement using different fractional derivatives. A sum-
mary is presented in Table 5.

8.1.2  Biomedical engineering

In Anem et al. (2020), a deep-convolution long-short term memory a (deep-ConvLSTM) 
network has been used to remove artifacts from an EEG signal. For weight selection and 
updation, the Optimum algorithm cat swarm fractional calculus optimization (CSFCO) 

Fig. 6  Image processing steps Gonzalez and Woods (2009)
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and FC have been employed. The algorithm is a hybrid of FC and cat swarm optimization 
(CSO).

The following steps have been followed to remove artifacts from an EEG signal, 

1. Detection of EEG signals from various patients.
2. Pre-processing of signals to improve the quality of the signal.
3. Feature extraction using the wavelet transform.
4. Application of the CSFCO algorithm, which is a combination of the cat swarm optimi-

zation algorithm and FC.
5. Deep-Conv LSTM has been used to remove artifacts from EEG signals.

A fractional derivative order-based model is proposed for identifying the human immu-
nodeficiency virus (HIV) in Sharafian et al. (2020). Generally, uncertainties and distur-
bances have an impact on the model. Here, uncertainties have been solved by a neu-
ral network, and disturbances have been removed using a sliding mode observer. The 
network has been stabilized using Mittag-Leffler stability. When compared to other 
models, this fractional model is the most accurate. In Zuñiga-Aguilar et al. (2020), a 
recurrent neural network based on the G-L derivative has been implemented to predict 
glucose levels from a blood sample. The outcomes have been compared with methods 
like LSTM-CNN, DRNN-LSTM, and LSTM in terms of the root mean squared value. 
Muscle Artifacts (MA) cause noise to be added during the recording process. In Nagar 
and Kumar (2022), CNN combined with the FO gradient descent algorithm has been 
employed to remove noise from an EEG signal. The best denoisation has been obtained 
with Caputo fractional derivative at � = 1.2.

8.1.3  Finance

In Bohner and Stamova (2018), NN has been proposed to train a financial system 
model. The non-local property and flexibility of fractional order differences suits to 
create the financial model and indicators. A stochastic term has been included to aid in 
determining the effects of noise disturbances on financial assets. The dynamic behavior 
of the model has been properly controlled by including impulsive perturbations and 
the time delay parameter. The fractional Lyapunov method has been used to determine 
network stability.

Traditional networks are incapable of forecasting stock market prices. In Bukhari 
et al. (2020), authors have proposed a LSTM network with Fc to predict unconfirmed 
variation in financial markets. Auto-regressive fractional integrated moving average 
(ARFIMA) model is a compatible tool used for models requiring a large amount of 
memory. The combined ARFIMA-LSTM model is a recurrent network that reduces 
volatility and avoids the problem of neural network overfitting. The model’s perfor-
mance is assessed in terms of mean absolute error (MAE), root mean squared error 
(RMSE), and mean absolute percentage error (MAPE) and has been compared to 
other models such as ARIMA, autoregressive fractional integrated moving aver-
age (ARFIMA), and generalized regression radial basis neural network (GRNN) and 
shows an improvement in accuracy of 80 percent when compared to other conventional 
methods.
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Authors have proposed a design phase and antiphase synchronization between two-
fractional order CNNs (3-cell) and the financial system in Yaghoubi and Zarabadipour 
(2012). Three-cell CNN is used as a driving system. In Wang (2019), the authors com-
bine two methods: Principal component analysis (PCA) and ANN (BPNN), and pro-
pose a model based on fractional calculus that is capable of predicting and forecasting 
stock market indexes and foreign exchange rates. ANN is used to reduce prediction 
time. The wavelet transform can also be used to maintain a constant window for vary-
ing frequencies.

8.1.4  Controller

A controller is required to achieve stability and synchronization in FANN. Non-linear sys-
tems also necessitate the use of a controller. The design of a controller for a fractional 
order system is a difficult task. In literature, various types of controllers are cited. Here, we 
review the important controller such as SMC.

Sliding mode controller (SMC)
SMC is the most commonly used controller for nonlinear systems because it addresses 

two major challenges, stability and robustness (Slotine and Li 1991; Utkin 1992; Iordanou 
and Surgenor 1997). SMC has been used in applications such as robotic manipulators, 
process control, defense, derive control for power electronics, and so on Gambhire et al. 
(2021). SMC’s structure and implementation have been simplified depending on the sys-
tem dynamics so that it is less sensitive to disturbances. Several designs have been pro-
posed consisting the integration of neural networks and sliding mode controllers (Lee and 
Choi 2000; Visioli and Legnani 2002; Lin 2006; Huh and Bien 2007; Chen 2008; Xu et al. 
2009; Ak and Cansever 2009; Xiaojiang and Yangzhou 2008; Chaoui et al. 2007; Ak and 
Cansever 2006; Sadati et  al. 2005). Many researchers have used fractional order-based 
NN to implement SMCs. The addition of FC for such controllers has improved controller 
design freedom and accuracy as compared to integer order. BPNN forming manipulator 
inversion system has been proposed in Xu et  al. (2015). This system has been cascaded 
with an industrial robot to form a linear system that improves robot control. BPNN design 
is based on fractional order sliding mode control. The Lyapunov function has been used to 
ensure network stability.

A fractional order SMC and adaptation laws have been proposed to synchronize FANN 
using the theory of the Lyapunov theorem in Liu et al. (2018). FO adaptation laws have 
been intended for online system parameter estimation (unknown). In Zhang and Yang 
(2019), authors have created a stable FANN of the hopfield type using optimal discontinu-
ous control. To achieve system stability, properties, and theorems, the Mittag Leffler func-
tion has been used. FC has been defined using the Caputo definition. In Wang (2017), Ding 
and Shen (2016), He et al. (2021), Song et al. (2018), He et al. (2019), SMCs have been 
employed to obtain projective synchronization of FANN.

To achieve Global Projective synchronization of two non-identical FANNs in finite-
time, authors have employed a sliding mode controller using FC. Here the properties of 
global asymptotic stability over finite-time have been demonstrated and the amount of time 
required for this synchronization has been calculated in Wu et al. (2017).
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8.1.5  System identification

In Yin et  al. (2020), Aguilar et  al. (2020), the combination of FC and NN has been 
described as a system identification tool. Specifically, in Yin et  al. (2020) an algorithm 
that is a combination of least mean square (LMS) and newly developed LMS to improve 
the accuracy of a nonlinear system (such as Van der Pol-Dung oscillator) identification has 
been proposed. For the generation of input samples with varying time shifts, a functional 
link ANN (FLANN) (a single-layered ANN) filter has been used and the computational 
timing of different algorithms has been investigated.

The NN learning algorithm in Aguilar et al. (2020) is based on G-L as a fractional oper-
ator and has been used for system identification. The Gradient descent algorithm has been 
modified and used to identify three different systems. The performance of this model has 
been compared to other system identification models in terms of RMSE and goodness of 
fit. This model requires fewer parameters and has is more accurate.

In Rahmani and Farrokhi (2020), authors have described a hybrid of RBFNN and the 
fractional-order system (FOS) fractional order model for identifying nonlinear dynamic 
systems. In this model, the system identification process has been divided into two stages. 
The first stage identifies the structural parameters of FOS in the frequency domain and the 
second stage calculates the RBFNN weights and FOS parameters. To achieve system sta-
bility, the Lyapunov stability theory has been used. In Zúñiga-Aguilar et al. (2022), a new 
NN methodology for system identification has been proposed using optimal parameters to 
eliminate uncertainties that exist between the real system and the proposed model. A three-
layered neuronal compensation has been used to discover the relationship between deriva-
tive fractality and Caputo.

8.1.6  Heat transfer process

Discrete FANN has been used in Sierociuk and Petráš (2011) to model the heat transfer 
process. A model for the heater has been created using G-L-based fractional derivatives. 
Simulations demonstrated that FANN can accurately describe unknown dynamics of the 
process.

8.1.7  Sustainable energy

Variable order FANN with a single layer and multiple layers has been implemented in 
Aslipour and Yazdizadeh (2019) for the identification of nonlinear systems in wind tur-
bines applications. Aslipour and Yazdizadeh (2019), Aslipour and Yazdizadeh (2020) 
employ FANN based on Caputo derivatives and PSO to identify the system accurately.

8.1.8  Deep FANN and various applications

Deep FANN structures consist of more layers compared to FANN. The number of layers 
is based on the complexity of the application. However, as the number of layers increases, 
so does the computational complexity of algorithms involving FC and more layers. Due 
to computational complexity, very little work is available on Deep FANN as in Bao et al. 
(2018), Wang et  al. (2017), Anem et  al. (2020), Fractional (2020), Sheng et  al. (2020), 
Chen et al. (2022), Admon et al. (2023), Saneifard et al. (2022).
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Specifically, in Bao et  al. (2018) and Wang et  al. (2017), deep FO BPNN has been 
implemented for digit recognition based on Caputo fractional derivatives. In Anem et al. 
(2020), deep FOConvLSTM has been implemented to remove artifacts from EEG signals. 
In Fractional (2020), deep FO LSTM has been proposed to predict unconfirmed variation 
in financial markets. Authors have proposed FOCNN for digit recognition using Caputo 
fractional derivatives in Sheng et al. (2020), Chen et al. (2022).

8.1.9  Formation and dynamical analysis

For discrete data, fractional discrete-time models are proposed in Huang et al. (2020). This 
model is employed in NNs and enables short memory effects. This NN is found to be stable 
by using the Banach fixed point technique. A class of semilinear fractional difference equa-
tions is introduced in Wu et al. (2019). The fixed-point theorem and the discrete Mittag-
Leffler function are used to demonstrate that NN is stable. Since the discrete FC, defined as 
a finite sum, has been used, memory effects are exact, allowing for the application of big 
data and long-term models.

8.2  Use of NN methods for solving fractional differential equations

An ANN architecture has been proposed for approximating fractional order derivative 
operators using GL and Caputo in Kadam et al. (2019). Training is performed using the 
LM algorithm. Changing the net size and the type of mathematical function based on the 
FO derivative yields different MSE values. Network efficiency is tested using DSP proces-
sors and discovered to be stable and fast in computation.

The NN method for solving the time-fractional Fokker–Planck equation is suggested in 
Wei et al. (2022). A gradient descent algorithm is implemented for weight updating. The 
L1 numerical scheme is used to approximate the Caputo derivative. Any activation function 
can be used to solve equations. In Qu et al. (2022), NN method is presented to simplify the 
spatiotemporal variable-order fractional advection-diffusion equation. The network is built 
with shifted Legendre orthogonal polynomials with variable coefficients. The loss function 
of NN is theoretically deduced using the properties of variable fractional derivative. The 
NN method is used in Biswas et al. (2023) to solve the spatiotemporal FO nonlinear reac-
tion-advection-diffusion equation. The properties of a FO derivative are used to calculate 
the loss function of a NN. In Jafarian et al. (2022), a suitable three-layered feed-forward 
neural architecture has been implemented to approximate the solution of an ordinary lin-
ear FO integrodifferential equation . The gradient descent algorithm is used for the weight 
updating of NN. In Biswas et al. (2023), the NN method is employed to solve an equation 
like spatio-temporal FO nonlinear reaction-advection-diffusion. The properties of a FO 
derivative are applied to calculate the loss function of a NN.

A deep feedforward NN is recommended to solve fractional differential equations using 
a vectorized algorithm in Admon et al. (2023). To solve Caputo FDEs, a new scheme based 
on deep feedforward NN with vectorized algorithm and selected first-order optimization 
techniques such as gradient descent, momentum method, and adaptive moment estimation 
method has been proposed in Admon et al. (2023).It is observed that feedforward NN with 
one or two hidden layers performed better. In Saneifard et al. (2022), four-layered feed for-
ward NN architecture is proposed to approximate the solution of FO linear Volterra-type 
integrodifferential equations. Here steepest descent algorithm is employed for learning NN. 
.



 M. Joshi et al.

1 3

9  Discussion

From the aforementioned review, it is observed that integration of the concepts of ANN 
and fractional calculus has tremendous research and application potential, albeit with many 
challenges. From this review, some important facts can be stated as follows: 

 1. Optimized fractional algorithm

• A review of the literature reveals that FANN is used in a variety of applications. 
Weights are updated by fractional values due to the addition of fractional terms 
in the weight-updating process. More time is required for training and testing. 
Researchers face a challenge in developing a new algorithm for weight updation 
using FC with improved speed. Thus speed is still a constraint. Some work states 
that the implementation of PSO and IPA algorithms can be used for the optimiza-
tion of the training process.

• The literature survey reveals the implementation of algorithms like PSO and IPA 
algorithms for optimization.

 2. FC Definition in the weight update process In many works, FANN is employed by 
using fractional derivatives like R-L, Caputo, and G-L. However, very little work 
is available using new fractional derivatives such as the Antagana-Baleanu and the 
Caputo-Fabrizio. Thus FANN based on Antagana-Baleanu and the Caputo-Fabrizio 
can be explored for various applications.

 3. Fractional activation Function
   In NN architecture, fractional order activation functions are employed to improve 

accuracy, however, it is observed that a few of the activation functions cannot be uti-
lized by a specific NN architecture. For example, BPNN cannot use the step function. 
ReLU can destroy neurons most of the time during training, so it will not activate the 
network for any data. To solve this problem, ELUs, Leaky ReLUs, the PReLU, and the 
Swish activation functions have been proposed. Manually, various activation functions 
are selected and implemented for FANN structures. But by using fractional derivatives, 
different types of activation functions can be combined by changing the order of frac-
tion. There have been few attempts to describe a technique for changing the activation 
of a neural network. Designers face a significant challenge in implementing various 
adaptive activation functions.

 4. Rate of convergence
  The network faces convergence issues due to the inclusion of fractional order-based 

derivatives. Improvement in the rate of convergence remains a challenge for designers.
 5. The training time of FANN
  From the review of FANN networks, it is observed that FANN requires more time 

for training as compared to integer-order NN in most of the applications. Improving 
training time is a real challenge for designers.

 6. Accuracy of FANN
  Results have proved that FANN structures have slightly more accuracy as compared 

to integer order NN in various applications at the cost of computational complexity. 
Faster training algorithms with optimum parameters are a real challenge in FANN 
implementation in the real world.
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 7. Stability of FANN
  A review of various methods for determining the stability of various types of FANN 

structures illustrates that considerable efforts have been made using various inequality 
theorems, LMI-based conditions and the fractional Lyapunov method.

  The results have demonstrated that the order of the fractional derivative (�) greatly 
effects convergence and finite stability of FANN structures. By increasing the value 
of (�) , the values of convergence and finite stability have been improved. It is also 
observed that the LMI-based conditions of stability necessitate more calculations and 
a greater number of neurons. Researchers proposed methods to create matrices that 
would reduce the number of calculations.

 8. Synchronization of FANN
  A review of the various methods for synchronization between systems of the same 

dynamical behavior reveals the use of SMC, state feedback control, adaptive controls, 
and period intermittent control methods available in the literature to achieve FANN 
synchronization.

  The results illustrate that fractional order ( � ) affects on the synchronization of FANN 
structures. Complete synchronization and anti-synchronization has been obtained by 
choosing � = 1 and � = −1 respectively. For larger values of � , the convergence speed 
of matrix-projective synchronization error is faster. Settling time and adaptive control 
is also affected by �.

 9. Hardware implementation of FANN
  There have been fewer reports on the implementation of hardware for FANN structures. 

This is a promising area for investigation.
 10. Deep FANN
  There have been fewer reports on implementing deep FANN structures due to the 

complexity of deep FANN. This is a promising area for investigation with a need for 
optimized algorithms.

Fig. 7  Research contributions 
towards FANN in chronological 
order
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 11. Number of publications in last 2 decades
  Figure 7 summarizes the contributions from various researchers in the field of FANN 

in the last two decades. According to the review, it is observed that more papers are 
published in 2017-2019 than in previous years. In this list, major contributions in the 
FANN area are considered. The number of papers is rigorous but not exhaustive.

10  Conclusion

This paper provides an up-to-date survey of modeling systems that involve fractional arti-
ficial neural networks (FANNs), including their challenges, issues, and applications across 
various fields. The article summarizes various equations used to calculate fractional deriv-
atives in different FANN networks. Fractional derivatives are observed to be an effective 
tool for describing the memory and hereditary properties of various processes, making sys-
tems or processes employing FANNs more accurate than their integer-order counterparts.

The study examines learning and optimization algorithms for FANN structures, includ-
ing the gradient descent algorithm, PSO, LM, and IPA. It also outlines fractional activation 
functions that provide the adaptive nature of activation functions. Regularization is sug-
gested as a means of removing over-fitting of FANN networks. However, due to fractional 
weights, training a FANN can take some time, and convergence issues may arise.

To determine FANN stability criteria, a rigorous review of various techniques, includ-
ing the fixed-point theorem, fractional-order differential equations theory, the Lyapunov 
direct method, linear matrix inequality approach, is presented. The work also summarizes 
several synchronization criteria, such as the fractional Lyapunov method, Mittag-Leffler 
function, matrix eigenvalue theory, some inequality techniques such as Young’s inequality, 
fractional order Razumikhin theorem, and various controllers like sliding mode control and 
many more.

The paper also presents reviews on hardware implementations of FANN, various FANN 
application areas, and work related to deep FANN. Overall, the research community’s 
focus on fractional calculus theory in ANN is helping develop efficient and accurate sys-
tems using optimal resources.
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