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Chapter 17

Medicinal plants associated microflora as
an unexplored niche of biopesticide
Ved Prakash Giria,c, Shipra Pandeya,b, Satyendra Pratap Singha,d, Bhanu Kumard, S.F.A. Zaidie and
Aradhana Mishraa,b

aDivision of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India; bAcademy of Scientific and

Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India; cDepartment of Botany, Lucknow University, Lucknow, Uttar Pradesh, India;
dPharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India; eDepartment of Soil

Science and Agriculture Chemistry, Acharya Narendra Deva University of Agriculture and Technology, Faizabad, Uttar Pradesh, India

17.1 Introduction

17.1.1 Medicinal plant diversity in India

India is one of the most diverse countries in the world having a rich repository of high value, endemic and rare medicinal
plants (Kamboj, 2000; Krishnan et al., 2011). India is one of the 12 mega diversity countries in the world having four
biodiversity hotspots. Concerning plant diversity, India’s ranks 10th in the world and fourth in Asia (Singh and Chaturvedi,
2017). The reason behind this vast diversity is the presence of different climatic conditions such as alpine in the Himalayas
to arid zones in Rajasthan. There are tropical forests in the Western Ghats while plateaus, mountains and valleys in North-
Eastern states (Ganie et al., 2020). Apart from varying topography, soil, rainfall, temperature, humidity conditions also
differ from place to place which gives rise to huge phytodiversity. The microclimatic variations further leads to differences
in the phenology, metabolism, physiology, chemical profile and even morphology of plants in addition to growth patterns
across the geography (Ncube et al., 2012).

India is a repository of vast traditional knowledge and a deep-rooted system of indigenous medicine. According to a
report from the Government of India, about 75% of the Indian population including the majority of tribal and ethnic
communities are mostly dependent on the traditional knowledge and practices for primary health care needs (Kala et al.,
2006; Dhakal et al., 2020). The age-old Indian traditional medicine system “Ayurveda” is very extensive in terms of the
plants used, owing to the great phytodiversity of the country. In India, there are several traditional systems of the medicine
being practiced in different regions.

According to an estimate, more than 45,000 plant species are commonly found in India out of which flowering plants
constitute around 15,000e18,000; members of bryophytes are around 1800; algal species are 2500; 1600 lichens; 23,000
fungal species exist in India (Bharucha, 2006; Sharma et al., 2008). The surveys conducted by several workers have
revealed that approximately 20,000 plant species are having one or the other medicinal properties (Mukherjee, 2008;
Kumar et al., 2019). From Indian Himalayan Region (IHR) itself, 357 species of medicinal plants belonging to 237 genera
and 98 families were recorded. Asteraceae, Lamiaceae, Rosaceae, and Ranunculaceae were the dominant families in the
IHR region. The IHR alone supports about 8000 species of angiosperms (40% endemics), 44 species of gymnosperms
(15.91% endemics), 600 species of pteridophytes (25% endemics), 1737 species of bryophytes (32.53% endemics), 1159
species of lichens (11.22% endemics) and 6900 species of fungi (27.39% endemics) (Sharma et al., 2014).

The worldwide consumption of herbal medicines has markedly increased. According to the Secretariat of the
Convention on Biological Diversity, global sales of herbal products were estimated to be the US $60 billion in 2000. The
sale of herbal medicines is expected to get higher at an average annual growth rate of 6.4% (Inamdar et al., 2008). In 2008,
the global market for herbal remedies was about the US $83 billion with a steady growth rate ranging between 3% and 12%
per year (Zhang et al., 2012a,b). The market for herbal drugs has seen a good tendency of growth at a fast rate worldwide.
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There are several factors responsible for growth like increased general awareness in people to protect from the side effects
of synthetic medicine (Zahra et al., 2020), more inclination of masses toward Ayurveda and herbal treatment; require up-
gradation in quality and evaluation of efficacy and safety of herbal medicines in minimal cost (Calixto, 2000; Krishna et al.,
2020).

In India, the medicinal plant market is mostly unorganized at present. Most of the herbal drug manufacturers procure
the raw material from the wild by overexploitation of available natural resources (Laladhas et al., 2015). Due to un-
availability of sufficient quantity of raw material, adulteration of inferior quality raw material or similar-looking plant
species to the genuine drug is common practice in many of the herbal drug industries (Dubey, 2004; Kunle et al., 2012;
Shaheen et al., 2019a,b). The value of medicinal plants related trade in India is the US $5.5 billion, although its share in the
global export market of herbal drugs is less than 0.5%. The export potential of China in medicinal plants is nearly INR
18,000e22,000 crores. India exports crude drugs mainly to developed countries like the USA, Germany, France,
Switzerland, the UK and Japan. The Indian herbal drugs exported to foreign countries mainly include Aconite, Aloe,
Belladonna, Acorus, Cinchona, Cassia tora, Dioscorea, Digitalis, Ephedra, Plantago and Senna, etc. (Joshi, 2019). About
165 herbal drugs and their extract are exported from India (Prajapati et al., 2003; Ali, 2009). Overall, it can be said that
despite having huge biodiversity and endemic medicinal plants, whereas our herbal drug market has not yet grown to its
full potential. We are lagging behind in terms of herbal drug manufacture and export in comparison to countries like China
due to a lack of proper attention and governmental policy for the Indian herbal drug market potential. However, in recent
years the Ministry of AYUSH and related departments are taking care of these issues.

17.1.2 Niche of microflora

Microorganisms are considered as pillars of the existence of life on earth and represent the finest repertoire in molecular,
protein as well as chemical versatility in nature (Chatterjee, 2019). After the origin of life on earth, they are evolved in the
basics of life such as ecological processes, biogeochemical cycles and food chains even maintaining critical relationships
between themselves as well as with other organisms existing on earth (Dick, 2019; Matthews et al., 2020). As a result of all
contributions, microbes are efficiently reconstructing the geographical conditions, ecosystems and consequently providing
better conditions for the development and proliferation of multicellular organisms (Hunter-Cevera, 1998).

17.2 Plant-microbe association

Traditional medicinal plants have a great impact on pharmaceutical industries by contributing bio-active compounds as
herbal supplements and medicine development for human health care along with a nontoxic and cost-effective manner. The
World Health Organization (WHO) defined the medicinal plants as “the plant which one or more of their organs contains
substances that can be used for therapeutic purposes as well as used as precursors for chemosynthesis of pharmaceutical
drugs.” Many countries; Asia, China, Egypt and Africa’s primary health care is dependent on native medicinal plants as
written in their historic background. Bioactive compounds of medicinal plants known as their primary and secondary
metabolites viz: phenolics, alkaloids, steroids, flavonoids, tannins, terpenes, essential oils, saponins, and anthraquinones,
etc. used for the treatment of various diseases and body ailments (Egamberdieva and de silva, 2015). The plant microbiome
is an important factor for increasing the synthesis of bioactive compounds and the production of secondary metabolites.
They commonly reside along with the rhizospheric, phyllospheric, and endospheric region of the plants.

17.2.1 Rhizospheric association of microbes

The relationship between medicinal plants and microbes plays a pivotal role in the biosynthesis of metabolites. Soil, a
reservoir of bacterial, fungal and actinomycetes and their activities are the major driving factor for soil and plant health
(Compant et al., 2010; Aislabie et al., 2013; Müller et al., 2016). The rhizosphere is the surrounding area of the soil which
is intimately associated with the root system of the plant have great availability and activity of heterogeneous microor-
ganisms due to presence of root exudates and other organic nutrients (Hartmann et al., 2008; Poole, 2017; Hu et al., 2018).
Root exudates are partially translocate to the carbon and excretory substances that are fixed by photosynthesis and other
metabolic pathways in plants (Bais et al., 2006). The rhizospheric microbiome is highly productive than other part of plant
microflora associated with the rhizospheric region shows an array of interactions that influence the growth and metabolome
of medicinal plants (Huang et al., 2018). Several beneficial microbe’s interactions with plants and their functional features
mentioned in Table 17.1.
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TABLE 17.1 Beneficial microbe’s interaction with plants.

Sr.

No. Microbes Beneficial activity with plant References

Bacteria

Agrobacterium sp. Indol-3-acetic acid producing bacteria enhances plant growth
and development.

Mohite (2013)

Rhizobium
leguminosarum

Indol-3-acetic acid production; promoting growth after
inoculation on axenically grown rice seedlings.

Ruzzi and Aroca (2015)

Enterobacter sp. Fixed significantly higher amounts of atmospheric nitrogen
and produced higher amounts of Indol 3 acetic acid.

Kumar et al. (2017)

Azospirillum brasilense Mutual exchange of resources involved in producing and
releasing the phytohormone; production of IAA by the
bacterium, using tryptophan and thiamine.

Palacios et al. (2016)

Bacillus subtilis Plant growth promotion by spermidine-production. Xie et al. (2014)

Paenibacillus polymyxa Produce plant growth regulating substances such as cytokinin. Poehlein et al. (2018)

Methylobacterium Induces the synthesis of cytokinin in soybean plants Holland et al. (2002)

Pseudomonas protegens Assessing the influence of fatty acid on antibiotic and
siderophore production.

Quecine et al. (2016)

Rhizobium
leguminosarum

Nodulation, nitrogen fixation and plasmid transfer. Boyer and Wisniewski-Dye
(2009)

Staphylococcus arlettae Reduction of Arsenic and availability of phosphorus. Srivastava et al. (2013)

Pseudomonas koreensis Prevent Heavy metal toxicity like Zn, Cd, As, Pb. Babu et al. (2015)

Pseudomonas sp. Phosphate solubilizing activity Otieno et al. (2015)

Gluconacetobacter
diazotrophicus

Colonization in rice plant and showing plant growth
promotion.

Santoyo et al. (2016)

Pantoea agglomerans Up-regulation of aquaporin genes and induction of salt
tolerance in tropical corn.

Gond et al. (2015)

Pseudomonas
vancouverensis

Tolerance to cold/chillimg stress and reduction of ROS. Subramanian et al. (2015)

Frankia sp. Induce the formation nodules on the roots of their
dicotyledonous host plants.

Van Nguyen and Pawlowski
(2017)

Nocardia sp. Root nodule formation in host plant and promoting seedling
growth.

Ghodhbane-Gtari et al.
(2018)

Kitasatospora sp. Indole-3-acetic acid production for soil applications. Shrivastava et al. (2008)

Fungus

Piriformospora indica Colonization in root and induces the plant innate immunity
evaluated by determining the phytoalexin and camalexin
concentration.

Peskan Peskan-Berghöfer
et al. (2015)

Trichoderma viride Produce auxins, small peptides, volatile compounds and other
active metabolites that promote root branching along
with plant growth and development.

López-Bucio et al. (2015)

Talaromyces wortmannii Emitted several terpenoids including b-caryophyllene which
inducing resistance of Brassica campestris L. var. perviridis
along with growth of plants.

Yamagiwa et al. (2011)

Aspergillus spp.,
Fusarium spp.,
Penicillium spp.,
Piriformospora spp.,
Phoma spp., and
Trichoderma spp.

Well-known fungal genera for plant growth promotion activity. Hossain et al. (2017)

Continued
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Several microbes present in the rhizospheric area shows plant growth-promoting (PGPR) activity (Kloepper, 1978),
they provide soil nutrients to plants and control the biotic and abiotic stresses. Mainly Bacillus, Pseudomonas, Azospir-
illum, Burkholderia, Bacillus, Enterobacter, Rhizobium, Erwinia, Serratia, Alcaligenes, Arthrobacter, Acinetobacter and
Flavobacterium has the potential to be a competent rhizospheric bacteria and express the PGPR activity (Berg et al., 2011;
Kushwaha et al., 2020). The PGPRs used as mainly bio-fertilizers have shown symbiotic behavior by root-nodulation and
nitrogen-fixing property, whereas phosphate solubilizing microbial inoculant provides insoluble or bound phosphate into a
soluble form (Bhat et al., 2015). Some species of Bacillus produce volatile organic compounds for plant growth promotion
(Bitas et al., 2013; Köberl et al., 2013). Similarly, Phyto-stimulators produce Auxins which involves in root elongation and
development. Several strains of Azospirillum enables plant growth promotion by producing the auxins, cytokinins and
gibberellins that are essential for plant health and growth (Çakmakçõ et al., 2020). Even though, rhizospheric microbial
load distinct in medicinal plants due to the secretion of specific bio-active secondary metabolites (Qi et al., 2012). PGPRs
indirectly boots the plant’s immune system by secretion of proteins and carbohydrate compounds which initiate signaling
and plant system recognized between pathogenic and non-pathogenic microbes (Macho and Zipfel, 2014; Pusztahelyi,
2018). Rhizoremediators; plant microbiome association reveal as a promising tool for the removal of soil pollutants and
contaminants. The rate of degradation of pollutants accelerates in the rhizospheric region due to the production of organic
acid and biofilm formation (Kumar et al., 2020; Saravanan et al., 2020).

TABLE 17.1 Beneficial microbe’s interaction with plants.dcont’d

Sr.

No. Microbes Beneficial activity with plant References

Piriformospora indica Symbiotic interaction with Arabidopsis thaliana and induces
the performance of plant and tolerance against stress.

Vahabi et al. (2015)

Neotyphodium lolii Superoxide dismutase (SOD) activity changed in host plants. Tian et al. (2008)

Westerdykella aurantiaca Promotes protein and carotenoid production. Srivastava et al. (2012)

Trichoderma
longibrachiatum

Increases salt tolerance of Wheat by improving the
antioxidative defense system and gene expression

Zhang et al. (2016)

Aspergillus niger Promotes accumulation of phenolic, salicylic acid, and
chlorophyll contents.

Anwer and Khan (2013)

Fusarium equiseti Inhibits proliferation of pathogen and disease resistance. Kojima et al. (2013)

Trichoderma asperellum Biocontrol activity against phytopathogens. Islam et al. (2016)

Penicillium chrysogenum Induces systemic acquired resistance (SAR), which enhances
defenses in plants.

Chen et al. (2018)

Trichoderma virens Antagonize biocontrol agent against pathogens of crop plants. Lamdan et al. (2015)

Aureobasidium pullulans Contribution in biological treatment slight increase contents of
tocols, alkylresorcinols and sterols in grains.

Wachowska et al. (2016)

Actinomycetes

Streptomyces rochei Promotes soil enzyme productivity. Jog et al. (2012)

Streptomyces
thermolilacinus

Streptomyces toxytricini Promotes the accumulation of phenolics and chlorophyll. Patil et al. (2011)

Streptomyces coelicolor
Streptomyces olivaceus

Promotes the production of ammonia, siderophore, IAA and
prevent water stress tolerance.

Yandigeri et al. (2012)

Streptomyces spp. Production of Siderophore, ammonia, phosphate solulization
activity, nitrogen fixation.

Kaur et al. (2013)

Thermomonaspora fusca Production of siderophore. Dimise et al. (2008)
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17.2.2 Phyllospheric association of microbes

Above ground portion of plants including stem, leaves, flowers and fruits are prominent compartments where the abun-
dance of the microbial community can be made a direct effect with the host plant (Mechan Llontop, 2020). Phyllospheric
microbiome performs several constitutive roles subjected to plant growth and development, in terms of N2 fixation,
60 kg N/ha only fixed by tropical plant phyllosphere and biosynthesis of various phytohormones for the protection of
associated plant against pathogenic invaders. Furthermore, they also have a lot of potentialities which can be useful for the
development of new strategies in agriculture practices. The phyllosphere microbial communities containing bacteria, fungi,
viruses, and algae their density can be reached up to 105e107 per cm2 (Alam, 2014). Phyllospheric microbial communities
are also beneficial to the survival of plants in harsh conditions such as, limited concentrations of organic substances,
variable pH, O2 concentration, temperature, UV, humidity, etc. (Verma et al., 2017). Because of the close attachment with
several environmental factors, the microbial load at the phyllosphere drastically fluctuating in the same species of plants as
well as at the same developmental stage (Bulgarelli et al., 2013). These significant alterations in microbial dynamics are
also the possible reason that imprinted the great versatility in the nutritional depositions at the phyllospheric region. The
appearance of leaf and other areal parts of the plant largely influenced by the microbial load on the plant. Therefore, the
narrow leaf containing grasses and wax containing broad-leaf plants having less microbial load as compared to cucumber
and beans plants (Sivakumar et al., 2020). Different microbial communities are associated with plants at specific sites
presumably because of differences in light or UV intensity, air flow rate, humidity, etc. For instance, pigment-producing
bacterial strains are mostly inhabiting at the epiphytic region whereas, mineral and humic acid utilizing bacterial com-
munities are found at the rhizosphere (Rana et al., 2020). This evidence was further authenticated by other findings where
common root colonizers such as Rhizobium and Bradyrhizobiaum are unable to colonize the epiphytic regions of the same
plant (Martínez-Hidalgo and Hirsch, 2017).

17.2.3 Endophytic microbiome association with medicinal plants

Plant associated endophytic microbiome strongly affects the quality and synthesis of bioactive secondary metabolites by
medicinal plants. Endophytes protect plants against abiotic and biotic stresses by producing secondary metabolites (El-
Deeb et al., 2013; Egamberdieva et al., 2017). Recently, Mishra et al. (2018) have observed the effects of endophytic
bacteria B. amyloliquefaciens (BA) and Pseudomonas fluorescens (PF) individual as well as in combination on
W. somnifera during A. alternata (AA) infection. Significant reductions in disease incidence and biotic stress amelioration
have been recorded after the treatment of endophytic inoculants, their visual observation represented in Fig. 17.1. Several
reports are highlighted the increased secondary metabolites production by endophytes and plant associations. Secondary
metabolites rich source of pharmaceutical and modern therapeutic products (Pan et al., 2013), because microbes can
produce a diverse range of metabolites includes terpenoids, alkaloids, antibiotics, alkaloids, polypeptides, isocoumarins,
quinones, phenylpropanoids, lignans and aromatic compounds (Zhang et al., 2006; Gao et al., 2010). Various novel
metabolites have been synthesized to the production of novel products for the anticancer, immune-modulatory agent, anti-
parasitic, insecticidal, pesticidal, antiviral, antimicrobial agents at the industrial level, some microbes known for increasing
the production of medicinal plant metabolites mentioned in Table 17.2. Apart from this, novel metabolites opens-up an
opportunity for the development of new drugs for antimicrobial resistance and anti-HIV. Due to the increasing demand for
potent metabolites and less availability of medicinal plants, endophytes are grown at a commercial level to enhance the
production at large amounts of metabolites. In addition, fungal endophytes are also an essential component of medicinal
microflora. Their symbiotic relationship with the mediational plant can considerably influence the secondary metabolite
production by participating in a mechanistic way of the metabolic pathway (Gupta and Chaturvedi, 2019).

FIG. 17.1 Effects of endophytic bacteria B. amyloliquefaciens (BA) and P. fluorescens (PF) singly as well as in combination on W. somnifera during
A. alternata (AA) infection. Image adopted from Mishra et al. (2018).
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TABLE 17.2 Microbial association with medicinal plants.

Sr.

No. Plant Microbes Function References

1. Andrographis
paniculata

Glomus mosseae and Trichoderma
harzianum

Improve Phosphorous uptake and
alkaloid production

Arpana and
Bagyaraj (2007)

2. Neptunia oleracea Rhizobium undicola IAA production Ghosh et al. (2015)

3. Ocimum sanctum,
Coleus forskohlii,
Catharanthus
roseus, Aloe vera

Azospirillum
Azotobacter
Pseudomonas

N2 fixation Karthikeyan et al.
(2008)

4. Ocimum
basilicum,

Bacillus lentus and Pseudomonas ACC-deaminase activity Golpayegani and
Tilebeni (2011)

5. Mentha arvensis Bacillus pumilus, Halomonas desid-
erata and Exiguobacterium
oxidotolerans

ACC-deaminase activity Bharti et al. (2014)

6. Origanum vulgare Pseudomonas, Stenotrophomonas Antioxidant activity increases Solaiman and
Anawar (2015)

7. Mentha piperita Pseudomonas fluorescens Essential oil contents (þ) pulegone
and (�) menthone enhance

Santoro et al. (2011)

8. Mucuna pruriens Rhizobium meliloti Siderophore production Arora et al. (2001)

9. Piper nigrum Pseudomonas and Azospirillum sp. phosphate-solubilizing ability Ramachandran
et al. (2007)

10. Ocimum sanctum Achromobacter xylosoxidants ACC-deaminase activity and lower
ethylene level

Barnawal et al.
(2012)

11. Bacopa monnieri Glomus mosseae Enhance plant growth and salinity
tolerance

Khaliel et al. (2011)

12. Sorghum bicolor Glomus mosseae or Glomus
intraradices

Enhanced production of alcohols, al-
kenes, ethers and acids

Sun and Tang
(2013)

13. Artemisia annua Glomus mosseae and Bacillus subtilis Enhance yield of artemisinin Awasthi et al.
(2011)

14. Musli Piriformospora indica and Pseudo-
monas
Fluorescens

Enhance survival rate Gosal et al. (2010)

15. Sphaeranthus
amaranthoides

Glomus walkeri Increases the production of phenols,
ortho-dihydroxy phenols, flavonoids,
alkaloids, and tannins

Sumithra and
Selvaraj (2011)

16. Zingiber
cassumunar

Arthrinium sp. Antioxidant and antimicrobial activity
against human pathogens

Pansanit and
Pripdeevech al.
(2018)

17. Basil Bacillus subtilis a-terpineol and eugenol Banchio et al.
(2009)

18. Teucrium polium Bacillus sp. and Penicillium sp. IAA production and antimicrobial
activity

Hassan (2017)

19. Azadirachta indica Phomopsis sp., Xylaria sp. Ten-membered lactones,
Sesquiterpenes

Wu et al. (2008),
Huang et al. (2015)

20. Rauwolfia
tetraphylla

Curvularia sp. and Aspergillus sp. Synthesis of antimicrobial
metabolites

Alurappa and
Chowdappa (2018)

21. Taxus brevifolia Taxomyces andreanae Biosynthesis of anticancer; taxol
component

Stierle et al. (1995)

22. Musa acuminata Phomopsis sp. Synthesis of anticancerous com-
pound; Oblongolide

Kharwar et al.
(2011), Mishra et al.
(2012)
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Biocontrol activity; many of the microbial inoculants have been recognized for antagonistic activity against phyto-
pathogens. Recently, Bacillus amyloliquefaciens and Pseudomonas fluorescens have investigated for the biocontrol ac-
tivity against Alternaria alternata causing leaf spot disease in Withania sominifera (Mishra et al., 2018). Scanning electron
micrographs of biocontrol activity of bacterial endophytes B. amyloliquefaciens (BA) and P. fluorescens (PF) against
A. alternata (AA) represented in (Fig. 17.2). Raptured mycelia of AA have shown after the treatment of bio-inoculant BA
and PF while untreated control remained healthy mycelia.

Moreover, plant’s root endophyte Arbuscular mycorrhiza (AM), colonization with the medicinal plant has shown
activities in plant growth promotion. 80% of terrestrial plant’s roots weaved with AM fungi (Manoharachary and Kunwar,
2015). AM fungi colonize in the root of plants and provide nutrition as well as enhance plant immune system by promoting
abiotic and biotic stress amelioration efficacy (Ceccarelli et al., 2010; Hart and Forsythe, 2012). Mycorrhiza Glomus
colonize with plants and enhance the metabolites viz: alcohol, ether, acids (Sun and Tang, 2013).

Some microbes have shown prime importance in pathogen suppression by antibiotic production, which has tremendous
industrial importance as Streptomyces gram-positive and spore-forming filamentous Actinobacteria, used for the pro-
duction of the largest family of antibiotic for controlling pathogenic microbes (Kemung et al., 2018). Pseudomonas,
Bacillus and Trichoderma spp. are well known for antibiosis responses (Sansinenea and Ortiz, 2013; Contreras-Cornejo
et al., 2016; Pandey et al., 2018). These microbes control phytopathogens by producing cell wall degrading enzymes,
toxins, bio-surfactants, minerals, etc. (Berg, 2009).

TABLE 17.2 Microbial association with medicinal plants.dcont’d

Sr.

No. Plant Microbes Function References

23. Cynara
cardunculus

Glomus intraradices, G. mosseae Increased total phenolic content in
leaves and flower heads of Cynara
cardunculus

Ceccarelli et al.
(2010)

24. Medicago sativa L. Sinorhizobium meliloti Enhance flavonoids in roots of
legume plants

Catford et al. (2006)

25. Trifolium repens, Glomus intraradices, Increases flavonoid content Ponce et al. (2004)

26. Forsythia suspensa Colletotrichum gloeosporioides Antioxidant activity, phillyrin Zhang et al.
(2012a,b)

27. Mentha arvensis G. fasciculatum Increase oil content Gupta et al. (2002)

28. Glycyrrhiza
uralensis

Glomus mosseae and Glomus
veriforme

Triterpenoid saponin, Glycyrrhizic
acid

Liu et al. (2007)

29. Ociimum
basilicum

G. mosseae Enhanced oil yield, Rosmarinic acids,
and caffeic acids

Toussaint et al.
(2008)

30. Pinellia ternata Bacillus cereus, Aranicola
proteolyticus, Serratia liquefaciens,
Bacillus thuringiensis, and Bacillus
licheniformis

Alkaloid production, Guanosine and
inosine

Liu et al. (2015)

31. Opium poppy
(Pappaver
sominiferum)

Marmoricola sp. Enhance alkaloid production, the
baine and codeine

Pandey et al. (2016)

32. Catharanthus
roseus

Staphylococcus sciuri and Micro-
coccus sp.

Vindoline, ajmalicine and serpentine
production

Tiwari et al. (2013)

33. Cynodon dactylon Rhizoctonia sp. Anti-Helicobacter pylori activity,
Rhizoctonic acid

Ma et al. (2004)

34. Angelica
archangelica

G. mosseae, G. intraradices Enhance monoterpenoids and
coumarins

Zitterl-Eglseer et al.
(2015)

35. Salvia officinalis G. intraradices Enhance essential oil content, 1,8-
cineole, bornyl acetate, camphor,
a-thujone, and b-thujone

Geneva et al. (2010)
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17.3 Relative factors between microflora and plants

Endophytes are the next important factor for microbial colonization at phyllospheric region of the plants. This could be also
possible that a particular microbial community is found from the plant habitat but the spores are migrating through the flow
of wind and colonize at the aerial part of the plant. Based on several studies has been found that air and erosols, water and
soil are the most important sources of microbial cells that able to appointed the microbial dynamics at the phyllospheric
region of the plants (Bulgarelli et al., 2013).

As similar, plant genotypic variation is also the significant driver of microbial diversity. Even though several plant
species are found in the same habitat and environmental conditions but they have specific microbial communities due to
diversity of genetic as well as metabolic variations. Geographical parameters also play a constitutive role in the designing
of the microbial matrix that influences the quality of the end products manufactured by the host plant (Saad et al., 2020).
However, it could be possible to analyze the distinct distribution of microbial matrix. These fluctuations are because of the
variations in carbon substrates (i.e. amino acids, glucose, xylose) and nutrients present in the host plants. Despite all, the
most common microbial colonizing communities are belongs to proteobacteria, actinobacteria, bacteroidetes and firmicutes
(Bodenhausen et al., 2013). Therefore, the introduction of new techniques is should be needed to modify with other taxa of
microbial communities associated with the diversified medicinal plants.

17.4 Conclusion and future perspectives

Biodiversity hotspots of India revealed as a rich repository of symbiotically beneficial microbes with endemic and rare
medicinal plants. Diverse microflora of medicinal plants leads to exploring an evolutionary relationship with the host plant.
Emphasis on novel applications of microbes for developing bio-based solutions that can avoid environmental damage and
health effects for humans. Microbiome engineering required purposeful strategies for isolation and identification of
indigenous communities for the dynamics of specific host and pathogen partners. A broad group of medicinal plants
associated microflora summarized in this chapter that an unexplored biopesticide agent. There is increasing interest in the
exploration of microbial inoculants for disease management as well as a mechanistic role in the biosynthesis of the
bioactive compound of medicinal plants. Aim of this chapter, introduce novel insight into the microbiome of medicinal
plants and their association with a specific host, a noticeable number of phytotherapeutic compounds produces due to the
microbial interactions with medically important plant. Besides, it highlighted the possibilities for elevating plant protection
along with plant growth and development and encouraging the commercial cultivation of medicinal plants to large scale
production of bioactive phytochemicals.

FIG. 17.2 Scanning electron micrographs of biocontrol activity of bacterial endophytes Bacillus amyloliquefaciens (BA) and Pseudomonas fluorescens
(PF) against Alternaria alternata (AA). Image adopted from Mishra et al. (2018).
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