AN EXACT COLUMN-GENERATION APPROACH FOR THE LOT-TYPE DESIGN PROBLEM – EXTENDED ABSTRACT

MIRIAM KIESSLING, SASCHA KURZ, AND JÖRG RAMBAU

Abstract. We consider a fashion discounter that supplies any of its many branches with an integral multiple of lots whose size assortment structure stems from a set of many applicable lot-types. We design a column generation algorithm for the optimal approximation of the branch and size dependent demand by a supply using a bounded number of lot-types.

Keywords: lot-type design, real world data, column generation

1. Introduction

Our business partner, a fashion discounter with more than 1500 branches, orders all products in multiples of so-called lot-types from the suppliers and distributes them without any replenishing. A lot-type specifies a number of pieces of a product for each available size, e.g., lot-type $(1, 2, 2, 1)$ means two pieces of size M and L, one piece of size S and XL, if the sizes are (S, M, L, XL).

We want to solve the following approximation problem: which (integral) multiples of which (integral) lot-types should be supplied to a set of branches in order to meet a (fractional) expected demand as closely as possible? An ILP formulation was introduced in [3], but unfortunately for many practical instances the set of applicable lot-types is so large that it cannot be solved directly. In this paper, we therefore propose an exact column generation approach, which simultaneously generates columns and cuts. For similar approaches see, e.g., [2, 4]. Unifying general remarks can be found in [1, 5].

2. Formal problem statement

Data. Let B be the set of branches, S be the set of sizes, and $M \subset \mathbb{N}$ be the set of possible multiples. A lot-type is a vector $(l_s)_{s \in S} \in \mathbb{N}^{|S|}$ satisfying $\min_c \leq l_s \leq \max_c$ for all $s \in S$ and $\min \leq \sum_{s \in S} l_s \leq \max$. By L we abbreviate the set of applicable lot-types. There is an upper bound \bar{T} and a lower bound \underline{L} given on the total supply over all branches and sizes. Moreover, there is an upper bound $k \in \mathbb{N}$ on the number of lot-types used. By $d_{b,s} \in \mathbb{Q}_{\geq 0}$ we denote the demand at branch b in size s.

Decisions. Consider an assignment of a unique lot-type $l(b) \in L$ and an assignment of a unique multiplicity $m(b) \in M$ to each branch $b \in B$. These data specify that $m(b)$ lots of lot-type $l(b)$ are to be delivered to branch b.

Objective. The goal is to find a subset $L \subseteq L$ of at most k lot-types and assignments $l(b) \in L$ and $m(b) \in M$ such that the total supply is within the bounds $[\underline{L}, \bar{T}]$, and the deviation between inventory and demand is minimized.
3. Modelling

With binary assignment variables $x_{b,l,m}$ indicating whether $l(b) = l$ and $m(b) = m$ and binary selection variables y_l indicating whether $l \in L$, we can formulate the following integer linear program. As an abbreviation we use $|l| := \sum_{s \in S} l_s$.

\begin{align*}
(1) \quad & \min \sum_{b \in B} \sum_{l \in L} \sum_{m \in M} c_{b,l,m} \cdot x_{b,l,m} \\
(2) \quad & \sum_{l \in L} \sum_{m \in M} x_{b,l,m} = 1 \quad \forall b \in B \\
(3) \quad & \sum_{l \in L} y_l \leq k \\
(4) \quad & \sum_{m \in M} x_{b,l,m} \leq y_l \quad \forall b \in B, l \in L \\
(5) \quad & I \leq \sum_{b \in B} \sum_{l \in L} \sum_{m \in M} m \cdot |l| \cdot x_{b,l,m} \leq 7 \\
(6) \quad & x_{b,l,m} \in \{0, 1\} \quad \forall b \in B, l \in L, m \in M \\
(7) \quad & y_l \in \{0, 1\} \quad \forall l \in L,
\end{align*}

where $c_{b,l,m} = \sum_{s \in S} |d_{b,s} - m \cdot l_s| \geq 0$.

4. A custom-made branch-and-price algorithm

The parameters $\min_c = 0$, $\max_c = 5$, $\min_t = 12$, $\max_t = 30$, and $|S| = 12$ result in a set of applicable lot-types of size 1159533584. Thus, the number of variables and constraints of the stated ILP formulation is, in many practical settings, very large. Some algorithmic observations on real-world data:

- The integrality gap of our ILP model is small (see [3]).
- Solutions generated by heuristics perform very well (see [3]).
- For small subsets $\mathcal{L}' \subset \mathcal{L}$ the problem can be solved efficiently, e.g. by the proposed ILP formulation.
- A proof of optimality is wanted.

The LP relaxation of the master problem can be restricted to a manageable sized restricted master problem (RMP) by the following: We consider a (small) subset $\mathcal{L}' \subseteq \mathcal{L}$ of lot-types. For each branch $b \in B$ we consider a subset $\zeta(b) \subseteq \mathcal{L}'$ of these lot-types and for each $l \in \zeta(b)$ we consider a subset $\eta(b, l) \subseteq M$. To overcome the integrality gap we utilize cover-cuts, see Inequality (13), where the \mathcal{C}_t are subsets of the set of lot-types.

\begin{align*}
(8) \quad & \min \sum_{b \in B} \sum_{l \in \zeta(b)} \sum_{m \in \eta(b,l)} c_{b,l,m} \cdot x_{b,l,m} \\
(9) \quad & \sum_{l \in \zeta(b)} \sum_{m \in \eta(b,l)} x_{b,l,m} = 1 \quad \forall b \in B \\
(10) \quad & \sum_{l \in \mathcal{L}'} -y_l \geq -k
\end{align*}
\begin{equation}
T \geq \sum_{b \in B} \sum_{l \in \zeta(b)} \sum_{m \in \eta(b,l)} m \cdot |l| \cdot x_{b,l,m} \geq L \tag{11}
\end{equation}

\begin{equation}
\sum_{m \in \eta(b,l)} -x_{b,l,m} + y_l \geq 0 \quad \forall b \in B, l \in \zeta(b) \tag{12}
\end{equation}

\begin{equation}
\sum_{i \in \mathcal{I}} -y_i \geq -(k-1) \quad \forall i \in \mathcal{I} \tag{13}
\end{equation}

\begin{equation}
x_{b,l,m} \geq 0 \quad \forall b \in B, l \in \zeta(b), m \in \eta(b,l) \tag{14}
\end{equation}

\begin{equation}
y_l \geq 0 \quad \forall l \in L' \tag{15}
\end{equation}

This led us to the following branch-and-price algorithm:

1. Use the heuristics from [3] to determine a starting solution \((x^*, y^*)\).
2. Initialize the RMP (see below), as follows: For each branch \(b\) we compute the three (locally) best fitting lot-types and add them to \(\zeta_b\). Additionally we add all lot-types used in \((x^*, y^*)\). We set \(L' = \bigcup_{b \in B} \zeta(b)\). For each branch \(b \in B\) and each lot-type \(l \in \zeta(b)\) we compute the corresponding optimal multiplicity \(\hat{m}\) and set \(\eta(b,l) = \{\hat{m} - 1, \hat{m}, \hat{m} + 1\} \cap \mathcal{M}\).
3. Let \((x', y')\) be the optimal solution of RMP. If the costs are smaller than the costs of \((x^*, y^*)\), then we set \(\mathcal{L} = \{l \in L' \mid y'_l \geq \varepsilon\}\), where \(\varepsilon\) is a small constant, e.g., \(\varepsilon = 0.15\), and branch on \(\mathcal{L}\), i.e. we perform step (5).
4. We solve the pricing problem and possibly add lot-types from \(L'\) to a \(\zeta_b\), enlarge a \(\eta(b,l)\), or add a new lot-type to \(L'\), i.e. we generate new columns and rows, go on with step (3), or stop otherwise.
5. Solve the lot-type design problem restricted to the set \(\mathcal{L}\) of applicable lot-types and possibly update the best solution \((x^*, y^*)\). Add the cover-cut \(\sum_{l \in \mathcal{L}} y_l \leq k - 1\) with \(\zeta_i = \mathcal{L}\) to RPM and go to step (3).

5. Computational results

In this section we evaluate our proposed branch-and-price algorithm, see Table 2, using ILOG CPLEX 12.1.0. The key parameters of some selected representative problem instances, where \(|\mathcal{M}| = 3\), are summarized in Table 1.

<table>
<thead>
<tr>
<th>Instance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>(</td>
<td>\mathcal{B}</td>
<td>)</td>
<td>10</td>
<td>10</td>
<td>1303</td>
</tr>
<tr>
<td>(</td>
<td>\mathcal{S}</td>
<td>)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(</td>
<td>\mathcal{L}</td>
<td>)</td>
<td>50</td>
<td>1211</td>
<td>1211</td>
</tr>
<tr>
<td>(</td>
<td>\mathcal{L}, \overline{T}</td>
<td>)</td>
<td>[54.66, 11 900, 12 100]</td>
<td>[9702, 9898]</td>
<td>[15 500, 16 200]</td>
</tr>
</tbody>
</table>

Table 1. Key parameters for some selected problem instances.

The number of columns and cuts as well as the number of branch-and-price-and-cut nodes necessary for our method to find an optimal solution and prove its optimality is manageable in all test instances. Instance 5 is typical for real-world data and could not be solved statically. Therefore, our algorithm makes optimal lot-type design possible for industrial scale problem sizes.
<table>
<thead>
<tr>
<th>Instance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU time [s]</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>937</td>
</tr>
<tr>
<td># variables (initial LP)</td>
<td>74</td>
<td>76</td>
<td>20952</td>
<td>7975</td>
<td>13129</td>
</tr>
<tr>
<td># constraints (initial LP)</td>
<td>43</td>
<td>43</td>
<td>7944</td>
<td>5315</td>
<td>6642</td>
</tr>
<tr>
<td># variables (final LP)</td>
<td>76</td>
<td>76</td>
<td>20952</td>
<td>9937</td>
<td>64877</td>
</tr>
<tr>
<td># constraints (final LP)</td>
<td>44</td>
<td>43</td>
<td>7944</td>
<td>6248</td>
<td>32183</td>
</tr>
<tr>
<td># variables (complete ILP)</td>
<td>1550</td>
<td>37541</td>
<td>3634211</td>
<td>5140650</td>
<td>2.375·10^{12}</td>
</tr>
<tr>
<td># constraints (complete ILP)</td>
<td>513</td>
<td>12123</td>
<td>1212003</td>
<td>1714451</td>
<td>7.908·10^{11}</td>
</tr>
<tr>
<td># cover cuts</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td># pricing steps</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>141</td>
</tr>
</tbody>
</table>

Table 2. Performance of the column generation algorithm from Section 3.

References

Lehrstuhl für Wirtschaftsmathematik, Universität Bayreuth, 95440 Bayreuth, Germany, {miriam.kiessling,sascha.kurz,joerg.rambau}@uni-bayreuth.de