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Abstract
Regulation of gene expression occurs at several levels in eukaryotic organisms and is a highly controlled process.
Although RNAs have been traditionally viewed as passive molecules in the pathway from transcription to transla-
tion, there is mounting evidence that their metabolism is controlled by a class of proteins called RNA-binding pro-
teins (RBPs), as well as a number of small RNAs. In this review, I provide an overview of the recent developments
in our understanding of the repertoire of RBPs across diverse model systems, and discuss the computational and ex-
perimental approaches currently available for the construction of posttranscriptional networks governed by them.
I also present an overview of the different roles played by RBPs in the cellular context, based on their cis-regulatory
modules identified in the literature and discuss how their interplay can result in the dynamic, spatial and
tissue-specific expression maps of RNAs. I finally present the concept of posttranscriptional network of RBPs and
their cognate RNA targets and discuss their cross-talk with other important posttranscriptional regulatory mol-
ecules such as microRNAs s, resulting in diverse functional network motifs. I argue that with rapid developments
in the genome-wide elucidation of posttranscriptional networks it would not only be possible to gain a deeper
understanding of regulation at a level that has been under-appreciated in the past, but would also allow us to use
the newly developed high-throughput approaches to interrogate the prevalence of these phenomena in different
states, and thereby study their relevance to physiology and disease across organisms.
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INTRODUCTION
Regulation of gene expression is a complex process

known to be controlled at several levels. In all or-

ganisms from the prokaryote Escherichia coli to the

higher eukaryotes, gene expression is first regulated

at the transcriptional level where transcription factors

facilitate the RNA synthesis in response to internal or

external stimuli [1–4]. On the other hand, at the

protein level, several posttranslational modifications,

such as phosphorylation by kinases, sumoylation by

ubiquitin ligases and acetylation by acetyl-

transferases, are known to spatially and temporally

control the availability of functional protein products

within the cell. However, a much less understood

level of regulation of gene expression, which occurs

between these two layers, is the posttranscriptional

control of RNAs. In contrast to prokaryotes where

transcription and translation are coupled, in eukary-

otes transcription takes place in the nucleus and

translation in the cytoplasm. This uncoupling of
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transcription and translation provides extensive

opportunities for an additional layer of gene expres-

sion control at posttranscriptional level. The presence

of this posttranscriptional control is also evidenced by

a number of studies, which showed that in general,

there is a poor correlation between the mRNA and

protein pools in eukaryotic cells [5–10]. It is now

increasingly accepted that this level is controlled by

a complex interplay of numerous RNA-associated

factors with the major protein players being the

RNA-binding proteins (RBPs) [11–14]. Therefore,

RBPs provide an additional layer of plasticity in con-

trolling gene expression. They have been shown to

be involved in the regulation of several biological

processes such as embryo development and stem

cell differentiation [15–17], T-cell activation [18],

angiogenesis [19], etc. To understand the mechanism

of how these processes are regulated and affected by

RBPs, several large-scale studies have been per-

formed to identify the genome-wide RNA targets

of RBPs using numerous recently developed meth-

ods [20–24]. Due to their central role in controlling

gene expression at the posttranscriptional level, alter-

ation in expression or mutations in either RBPs or

their binding sites in target transcripts have also been

reported to be the cause of several human diseases

such as muscular atrophies, neurological disorder and

cancer (reviewed extensively in [25–27]).

In this review, I provide a comprehensive over-

view of this rapidly developing area of posttranscri-

ptional regulatory networks, formed by RBPs and

their cognate RNA targets, due to the avalanche

of data from several high-throughput technologies.

I organize it into three major sections namely,

(i) computational and experimental methods for

identifying RBPs and their RNA targets, (ii) cis-
regulatory elements and the global regulation by

RBPs and finally, (iii) discuss the structure, dynamics

and cross-talk of these posttranscriptional networks

with other posttranscriptional players, namely

microRNAs (miRNAs), based on recent studies.

COMPUTATIONALAND
EXPERIMENTAL IDENTIFICATION
OF RBPSANDTHEIR RNA
TARGETS
A fundamental area of exploration in elucidating

posttranscriptional networks is the identification of

the repertoire of RBPs across organisms, and several

approaches both computational and experimental

have been developed in recent years. Computational

approaches typically involve either the sequence-

based identification of the set of protein-coding

genes containing the bonafide RNA-binding domains

or employing both sequence and structural protein–

RNA templates to predict novel proteins that have

the ability to bind to RNA. Sequence-based methods

rely on the assumption that homologous sequences

have the same broad biological function i.e.

RNA-binding ability and use a set of known RBPs

and/or their RNA-binding domains to identify

homologs across a genome, which is usually followed

by manual curation of the collected set to identify a

high-confidence set of RBPs [20, 28]. However, be-

cause lack of sequence similarity does not always re-

flect a lack of structural similarity, several

structure-based methods are increasingly being used

for predicting the repertoire of DNA/RNA-binding

proteins in genomic sequences to complement the

sequence-based methods [29–33]. Structure-based

methods commonly use machine learning techniques

to collect and train the sequence information on pro-

tein–RNA contacts for all available complexes from

protein databank, which is then employed for pre-

dicting new members of the structural family. As

such, structure-based methods encompass both

template-based methods which, employ known

structures as template to predict unknown structures,

as well as purely structure-based methods which work

only for proteins with known structures [34].

Structure-based methods, in addition to comple-

menting sequence-based methods, were shown to ex-

hibit about 10% improvement either in precision or

sensitivity than Position-Specific Iterative Basic Local

Alignment Search Tool (PSI-BLAST) and other sen-

sitive sequence search techniques [29, 31]. The ex-

perimental techniques comprise of employing the

protein chip of an organism of interest to probe for

the potential binding of the cellular RNA molecules,

and are analogous to the attempts at characterizing the

repertoire of DNA-binding proteins [35–38].

Another strategy developed to identify the RBPs at-

tached to known RNA molecules is the Peptide nu-

cleic acid (PNA)-assisted identification of RBPs

(PAIR) [39]. This assay utilizes a specific mRNA-

binding probe (PNA) that has the ability to cross the

cell membrane and bind to the RNA of interest. This

probe also contains the photoactivable amino acid

adduct p-benzophenylalaline (Bpa), which can cova-

lently cross-link with the RBP, associated with the

RNA, on photoactivation. After delivery of PNA,
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cells are exposed to ultra violet light for cross-linking

of PNA to RBPs associated with RNA of interest.

Cells are then lysed, treated with RNase, and

PNA-RBP adducts are isolated by using sense oligo

(bound to PNA)-coupled magnetic beads. Following

which RBPs are identified by mass spectrometry. This

method has been used to identify the RBPs associated

with ankylosis (ank) RNA, a pan-neuronal dendriti-

cally localized RNA [40]. The ank RNA encodes for

an inorganic pyrophosphate transporter and its muta-

tion is known to cause a generalized, progressive form

of arthritis accompanied by mineral deposition, for-

mation of bony outgrowths and joint destruction

[41]. The dendritic localization of RNAs is a rare

event occurring for only �5% of the cellular RNAs

[42]. Table 1 summarizes a list of commonly used

computational and experimental methods for iden-

tifying RBPs and their targets.

RBPs bind to their RNA targets with the help of

several domains having different specificity and affin-

ity. Some of the most common domains are RRM

(RNA recognition motif), KH (K homology

domain), SR (serine arginine domain), Zn-finger,

Pumilio/FBF (PUF domain) and Sm [11]. Table 2

shows the most frequently occurring RNA-binding

domains in the yeast, Saccharomyces cerevisiae, along

with the commonly appearing partner domains in

the conventional list of 560 RBPs reported by

Hogan et al. [20]. A large number of RBPs have

been predicted in several model organisms, including

humans on the basis of the presence of these com-

monly occurring domains. For instance, in

Caenorhabditis elegans, approximately 500 proteins are

annotated as RBPs on the basis of the presence of

one or more RNA-binding domains. In the yeast,

S. cerevisiae, about 560 proteins have been reported as

conventional RBPs using sequence-based searches

and literature mining [20], with an additional ap-

proximately 200 reported from proteomic screens

as unconventional RBPs [60, 61]. In humans, more

than 1000 proteins are considered as bona fide RBPs,

with 497 containing at least one RRM domain [62].

Other than these putative conventional RBPs (on

the basis of previously known RNA-binding do-

mains), several metabolic enzymes have also been

shown to bind to RNA molecules [63]. For example

Aco1, a TCA cycle enzyme, in yeast S. cerevisiae
binds to several RNAs encoded by the mitochon-

drial genome [20] with several other enzymes iden-

tified as novel RBPs from proteome-wide screens in

yeast [60, 61]. Likewise, recent studies have also

shown the ability of RBPs to bind to DNA, suggest-

ing that some of the known RBPs might act as un-

conventional DNA-binding proteins [35]. These

examples indicate the potential for the existence of

novel classes of RBPs in eukaryotes with yet to be

discovered functional roles. In fact, in a recent study

by Castello et al. [56], the authors described a com-

prehensive approach by integrating the two different

versions of the CLIP protocols followed by detailed

proteomic analysis, to define a high-confidence set

of 860 mRNA-binding proteins in the HeLa cells,

which suggested that RBPs are common in inter-

mediary metabolism, frequently function as kinases

and report the presence of novel domain architec-

tures that have the ability to bind to RNA but the

RNA-binding domain is yet to be discovered. The

study also strengthened the prevailing notion that

RBPs are significantly unstructured and enriched in

short repetitive motifs [56, 64].

Although several RBPs have been identified on

the basis of conservation of domains in different or-

ganisms, identifying the targets of these RBPs using

computational means has been a very challenging

task with relatively limited progress in recent years

[43]. However, several experimental methods have

been employed to identify the targets of RBPs, both

in vitro and in vivo. Traditionally, RNA targets for

known RBPs have been identified in vitro by using

cross-linking immunoprecipitation followed by elec-

tromobility shift assays [65, 66]. More recently, one

hybrid [67] and three hybrid assays [44] have been

used to identify the interaction of an RBP and

RNA molecule invivo. In addition to these methods,

there is increasing use of SELEX (systematic evolu-

tion of ligands by exponential enrichment)-based

approaches [68] for high-throughput elucidation of

the binding sites of RBPs [54, 55]. For instance,

Riordan et al. [54] took advantage of the yeast

genome-wide collection of Tandem Affinity

Purification (TAP)-tagged strains to conduct

SELEX binding reactions by adding in vitro tran-

scribed RNA pools, consisting of 30 randomized

bases flanked by two 20 base constant regions, to a

cell lysate containing the TAP-tagged RBP of inter-

est. This allowed them to represent in each reaction,

�600-fold coverage of all 20-mers in their rando-

mized pool. Four cycles of selection were performed

for each of the 12 different RBPs studied, which

allowed them to confirm or discover novel binding

sites for 10 of the RBPs. In an attempt to speed up

the discovery of consensus binding sites of RBPs
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Table 1: Different computational and experimental methods to identify novel RBPs, their targets or RBP^RNA
interactions

Method Description Reference

Sequence-based These methods to identify RBPs rely on the assumption that homologous proteins have the same broad
biological function, i.e RNA-binding ability and use a set of known RBPs and/or their RNA-binding
domains to identify homologs across a genome.

[20, 28]

Structure-based These methods integrate the currently available RNA^protein structural templates and sequence
properties of the binding interfaces to predict proteins that fall into the same structural scaffold.
Can be subdivided into template-based ones, which use known structures as template to predict un-
known structures or purely structure-basedmethods, which can only predict proteins whose struc-
tures are known. Similar methods are used to predict the binding sites of RBPs although most have
been attributed with limited success in predicting them [49].

[29^34]

Three hybrid In vivo yeast genetic method to detect and analyze the RNA^RBP interaction of known RNA and
RBPs. This method is based on the binding of bifunctional RNA to both of the two hybrid proteins
which activates the expression of reporter gene.

[53]

RNA compete In vitro identification of RNA-binding specificity of a RBP. High concentration of RNA is used and incu-
bated with tagged RBP. This high concentration provides competition for binding and hence this
technique gets its name. RBP^RNA complexes are purified and a microarray is used to identify the
specific binding sites of RBP.

[57]

RIP-chip In vivo identification of RNA targets of a RBP of interest. Cells are lysed and RBP^RNA complexes are
immunoprecipitated in native state. Target RNA is extracted from the RBP^RNA complexes and
identified by the microarray method where total RNA of the cell is used as a control.

[59]

CLIP In vivo identification of RNA targets for RBP of interest.Cells are treated with ultraviolet light to cova-
lently cross-link RBP^RNA complexes. Cells are then lysed and RBP^RNA complexes are immuno-
precipitated, and the RNA identified by RT^PCR. Modifications of this method employ sequencing
technologies to identify the RNA targets of an RBP (referred to as High-throughput sequencing of
RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) or CLIP-seq).

[22, 63]

iCLIP iCLIP is a modification of the CLIP protocol that captures the truncated cDNAs by replacing one of
the inefficient intermolecular RNA ligation steps with a more efficient intramolecular cDNA circu-
larization. This allows the sequencing of the truncated cDNAs, which are typically lost in CLIP,
thereby provide insights into the position of the cross-link site at nucleotide resolution.

[24, 65]

PAR-CLIP This method relies on the incorporation of photoreactive ribonucleoside analogs, such as 4-thiouridine
(4-SU) and 6-thioguanosine (6-SG) into nascent RNA transcripts by living cells. Irradiation of the
cells by UV light induces efficient cross-linking of photoreactive nucleoside-labeled cellular RNAs to
interacting RBPs. Immunoprecipitation of the RBP of interest is followed by isolation of the
cross-linked and coimmunoprecipitated RNA. The isolated RNA is converted into a cDNA library
and deep sequenced using Solexa technology.

[21, 64]

PAIR In vivo identification of novel RBPs. A mRNA-binding PNA probe is delivered into the cells. Cells are
then exposed to UV light that enables PNA to bind with RBP. Cells are lysed and PNA^RNA^RBP
complexes are immunoprecipitated and RBPs are identified by mass spectrometry.

[40]

SERF In vitro selection of RNA fragments that bind to RBP. A random pool of fragmented RNA is generated
and incubated with RBP in a test tube.The RBP^RNA complex is extracted by filtration on nitrocel-
lulose membrane. Selection cycle is repeated several times and selected RNA fragments are cloned
and identified by the consensus sequences binding to RBP.

[118]

TRAP In vivo system for identification of RNA^RBP interactions in yeast. This involves the transformation of
reporter mRNA encoding GFP protein and expression of RBP of interest. Fluorescence intensity of
the GFP is measured to know the binding of the RBP of interest. High affinity interactions lead to
low expression and low fluorescence intensity.

[119]

SNAAP In vitromethod used to identify mRNAs bound to specific RBPs. Purified tagged RBP is treated with cell
lysate. This is followed by immunoprecipitation of the mRNP using antibody against tag. Target
mRNA is identified by the differential display method

[120]

Ribotrap Expression of a reporter mRNA containing a 30 -UTR recognition site for a known RBP is followed by
RBP immunoprecipitation and analysis of associated RNP components by mass spectrometry.

[121]

SELEX Immunoprecipitation of RBPs bound to artificial RNAs in vitro, followed by cDNA sequencing to iden-
tify sequence motifs. In genomic SELEX genome-based RNA pool is used generated by random
priming and in vitro transcription to reduce complexity and increase sensitivity.

[55, 56]

Interactome
capture

In this approach two different versions of the CLIP protocols, i.e conventional and PAR, are applied to
the living cells and the resulting fractions are analyzed by high-resolution LC-MS/MS followed by de-
tailed proteomic analysis.

[47]

RaPID Identification of RNP components associated to RNA-aptamer tagged mRNA in vivo by mass spec-
trometry, which allows the detection of different RNA species captured in the same RNP by quanti-
tative real-time PCR

[122]

Quantitative
proteomics

In vitro method to identify RBPs bound to specific RNA sequences. An RNA aptamer is tagged with an
RNA sequence and then incubated with cell lysate.The RNA aptamer^RNA^RBPs complex is puri-
fied and RBPs are identified by using mass spectrometry.

[123]
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belonging to different families, in both structured

and unstructured RNA contexts, the Hughes

group [45] developed RNA-compete method,

which systematically analyzes binding specificities of

a complete range of k-mers in a single binding reac-

tion using the microarray technology. The authors

identified the binding sites of nine different RBPs

using this approach and concluded that it is sufficient

to represent the binding preferences of these RBPs

with a 7-mer. However, the above methods have

limitations in their ability to identify new targets

on a genomic scale in in vivo conditions. Therefore,

other in vivo assays have been developed to identify

the novel targets of a RBP such as RNP

(Ribonucleoprotein) immunoprecipitation-

microarray (RIP-chip), ultraviolet (UV) cross-

linking and immunoprecipitation (CLIP) and photo-

activatable-ribonucleoside-enhanced cross-linking

and immunoprecipitation (PAR-CLIP). These

high-throughput immunoprecipitation assays usually

work on a similar concept wherein (i) the RBP com-

plex together with its target RNAs is first purified

and (ii) the target RNA identified. However, they

differ in the specific procedure used for purifying

RBP–RNA complexes and identification of target

RNAs. In the RNP RIP-chip method, instead of

treating cells with UV light to cross-link RBP–

RNA complexes—which is the case in the other

two methods, cells are lysed directly and native

RBP–RNA complexes for the RBP of interest is

purified from the cell lysate using immunoprecipita-

tion. Following this, RNA is isolated from the com-

plexes and identified by using high-density

microarrays [46, 69]. The targets of the Puf family

of RBPs and other RBPs in S. cerevisiae have

been identified by using a modified RIP-chip

method, where TAP RBPs were used to facilitate

the immunoprecipitation step [20, 70]. These studies

showed that the RNA targets vary widely from 1 to

1300 for the studied RBPs in yeast. For instance,

Nop13, responsible for pre-18 s rRNA processing,

has two RNA targets, whereas Npl3 and Mex67,

both involved in mRNA export, have 1266 and

1150 RNA targets respectively [20, 71]. One of

the main drawbacks of RIP-chip is that indirect tar-

gets of an RBP, i.e. often those RNAs bound by

other members of an RNP complex, are also identi-

fied as targets of an RBP under study, thereby de-

tecting nonspecific interactions. In addition, in

RIP-chip protocol, RNA–protein complexes can

be rearranged after cell lysis, due to the absence of

cross-linking, thereby producing artifactual results

[72]. Moreover, because the resulting microarray

data is of low resolution, the binding site in the

co-purified RNA remains unresolved. To address

some of these challenges, UV CLIP method was de-

veloped [22]. In this method, cells are exposed to

UV C light of 254 nm to cross-link RBP–RNA

molecules in living cells. Then the cells are lysed

and cross-linked RBP–RNA complexes are immu-

noprecipitated using antibody against the RBP of

interest. Further, RNA is isolated from the com-

plexes and identified by RT–PCR or through one

of the sequencing protocols (which are referred to

as HITS-CLIP or CLIP-seq methods [23, 47]). For

instance, in a study to discover the targets of the

Table 2: Common RNA-binding domains in the putative list of RBPs from yeast, S. cerevisiae [20] along with their
frequency of occurrence

Domain Pfam
accession

Description Protein
frequency

Frequently occurring
partner domains

RRM_1 PF00076 RRM. Many eukaryotic proteins containing one or more
copies of this putative RNA-binding domain of about
90 amino acids. They are known to bind single-stranded
RNAs.

0.105 RRM_1, Lsm_interact

DEAD PF00270 DEAD/DEAH box helicase. Members of this family include
the DEAD and DEAH box helicases.

0.042 Helicase C,

KH_1 PF00013 KH is a domain of 70 amino acids and is present in diverse
RBPs.

0.015 KH_1

PUF PF00806 Pumilio-family RNA-binding repeat. Puf domain usually
occurs as a tandem repeat of eight domains.

0.013 PUF, RRM_1

WD40 PF00400 WD-40 repeats (also known as WD or beta-transducin
repeats) are short, approximately 40 amino acid
motifs, often terminating in aTrp-Asp (W-D) dipeptide.

0.013 WD40

Note: Also shown are the domainsmost often associatedwith these RNA-binding domains according to the Pfam [124] domain database.

Genome-scale analysis of posttranscriptional regulatory networks in eukaryotes 509
 by guest on O

ctober 27, 2015
http://bfg.oxfordjournals.org/

D
ow

nloaded from
 

http://bfg.oxfordjournals.org/


splicing factor Nova, 34 transcripts were identified

by using the CLIP method [22]. PAR-CLIP

method developed by Tuschl et al. [21, 49] relies

on the incorporation of photoreactive ribonucleoside

analogs, such as 4-thiouridine (4-SU) and

6-thioguanosine (6-SG) into nascent RNA tran-

scripts of living cells. Irradiation of the cells by UV

A light of 365 nm induces efficient cross-linking

of photoreactive nucleoside-labeled cellular RNAs

to interacting RBPs. Immunoprecipitation of the

RBP of interest is followed by isolation of the

cross-linked and co-immunoprecipitated RNA.

The isolated RNA is converted into a cDNA library

and deep sequenced, using Solexa technology. One

characteristic feature of cDNA libraries prepared by

PAR-CLIP is that the precise position of

cross-linking can be identified by mutations residing

in the sequenced cDNA, thereby making it possible

to separate them from the background of sequences

derived from abundant cellular RNAs. This is in

contrast to the most first generation UV-CLIP meth-

ods in which location of the cross-link is not readily

identifiable within the sequenced cross-linked frag-

ments, making it difficult to separate UV-cross-

linked target RNA segments from background

noncross-linked RNA fragments also present in the

sample. However, recently, the iCLIP (individual-

nucleotide resolution CLIP) method was introduced

which has the ability to capture many cDNAs that

truncate prematurely at the cross-linked nucleotide

and are lost during the standard CLIP library prep-

aration protocol but are otherwise, very informative

in identifying the position of the cross-link site

at base pair resolution [48, 73]. For instance,

this method has been applied to show that hnRNP

particles, which are widely believed to control

pre-mRNA processing in the nucleus, recognize uri-

dine tracts with a defined long-range spacing consist-

ent with the tetramer organization of the hnRNP C

proteins [24]. The authors also found that hnRNP

particles predominantly assemble on introns and

exons but remain generally excluded from splice

sites, whereas integration of transcriptome-wide

iCLIP data and alternative splicing profiles provided

insights into how the positioning of hnRNP particles

on the transcripts determines the inclusion of alter-

native exons.

Although all the CLIP variants discussed above

produce large amounts of sequencing data of high

quality, which can help in the identification of target

RNAs, as well as in the inference of binding sites,

they are not sufficient to quantitatively compare the

extent of binding nor are they a true reflection of the

binding affinities of different sites. This is because

CLIP read counts from all these techniques are not

necessarily a direct measure of RBP affinity, as they

can be affected by factors, such as half-life of the

bound RNA region or the cross-linking efficiency

of the given sequence. An additional factor to be

considered in this context is that, owing to biases

in the PCR amplification step, libraries can result

in thousands of sequences that originated from a

single cDNA. This can lead to data redundancy

with limited information content causing a bias in

interpreting the affinity of binding and hence current

CLIP protocols do not provide data at a resolution

which can be used for quantitative modeling of

posttranscriptional networks [73]. In addition, be-

cause the library preparation protocols for these tech-

niques require a large number of enzymatic steps,

they can also potentially affect binding site detection.

For instance, it is important to optimize the condi-

tions of partial RNase digestion, as over-digestion

can decrease the number of identified sites [74]. In

fact, the key to high resolution in CLIP methods is

the RNase treatment that removes unprotected

RNA fragments. Also the cross-linking efficiency

with UV C light (used for HITS-CLIP and iCLIP

techniques) or UV A light (used for PAR-CLIP)

varies significantly for different proteins and hence,

the optimal conditions need to be experimentally

determined individually for a protein of interest

[74]. Furthermore, because the number of steps

involved in all the CLIP protocols is large, significant

amount of material can be lost by the time cDNA

library is generated from cross–linked RNA. As a

consequence, the resulting cDNA libraries rarely

contain the full range of RNA-binding sites [73].

In addition to these common limitations of CLIP

methods, there are also technique-specific draw-

backs. For instance, whereas PAR-CLIP is limited

to cultured cells that can efficiently incorporate nu-

cleoside analogs, HITS-CLIP or iCLIP can provide a

challenge to data analysis for mining the binding site,

especially when the sequencing depth is low.

One frequent approach employed by recent studies

to identify functional interactions from a vast

number of sites identified in these screens and to

remove the false positives, is to integrate diverse

layers of complementary information obtained

from genome-wide studies using technologies such

as microarray and RNA-seq [23, 24, 75]. Such data

510 Janga
 by guest on O

ctober 27, 2015
http://bfg.oxfordjournals.org/

D
ow

nloaded from
 

http://bfg.oxfordjournals.org/


integration can not only provide new biological in-

sights but also provide an integrated view of the

posttranscriptional regulatory landscape. In the

future, it might be more common to integrate

CLIP data with other high-throughput technologies

like ribosome profiling [76] and native elongating

transcript sequencing (NET-seq) [77], developed re-

cently by Churchman and Weissman to gain a

deeper understanding of the interplay between di-

verse layers of regulatory control.

CIS-REGULATORY ELEMENTS
ANDGLOBALREGULATION BY
RBPS
RBPs are key regulators of different steps in the

metabolism of RNA in eukaryotes. They participate

in the processing of pre-mRNA, which includes

splicing, poly-adenylation and capping to produce

mature mRNA. Following which, they are respon-

sible for mediating the transport of mRNA from

nucleus to cytoplasm. RBPs are also found to facili-

tate and control the localization, translation, stability

and degradation of mRNA (Figure 1). To regulate

the different steps of RNA metabolism, RBPs bind

to RNA and form RNP complexes. Depending

upon whether RBPs are bound to pre-mRNA or

mRNA, RNPs are classified as heteronuclear RNPs

(hnRNPs) or messenger RNPs (mRNPs), respect-

ively. RNPs are inherently highly dynamic com-

plexes due to their ability to associate and dissociate

with various RBPs to mediate different steps of

RNA metabolism. Some RBPs associated with

RNP complexes are known to remain bound to

their target RNA during all the steps of the RNA

processing, from splicing to translation. For instance,

SF2/ASF, a member of the SR class of RBPs in

mammals, is found to facilitate splicing, export and

translation initiation of its target RNA [78, 79] with

recent iCLIP studies on two of the SR family mem-

bers indicating that family members map to large

nonoverlapping target genes with distinct invivo con-

sensus binding motifs [80]. The latter study also re-

ported the evidence for cross-regulation between SR

family members by alternative splicing. Similarly,

Npl3, a yeast SR protein, has also been shown to

interact with pre-mRNA and regulate the events

from splicing to translational elongation [81]. Yet

another example is that of the neuronal Embryonic

Lethal Abnormal Vision (ELAV) protein, which

regulates the fate of its target RNA by mediating

the events from poly-adenylation to translation

[82]. On the other hand, several RBPs are also re-

sponsible for participating in specific steps of RNA

metabolism such as the Nova protein, which is asso-

ciated with splicing in neuronal cells [22, 75]. Tap

protein, like its yeast homolog Mex67, was reported

to be a bona fide mRNA nuclear export factor [83].

All these examples highlight (i) the role of RBPs in

regulating the expression of genes in multiple steps at

posttranscriptional level and (ii) the complex com-

binatorial interplay of different RBPs to integrate

various posttranscriptional events to fine-tune the

availability of transcripts both spatially and tempor-

ally. In addition to the key roles of RBPs in control-

ling expression by binding to RNA targets, there is

mounting genome-wide evidence for their ability to

alter the RNA sequence [84, 85]. Cellular RNAs

have been documented to have more than a 100

structurally distinct posttranscriptional modifications

at thousands of sites (http://rna-mdb.cas.albany.edu/

RNAmods/). Although many of these modifications

have been known for decades, the enzymes that

posttranscriptionally modify RNA and the roles

of covalent changes of RNA have been less investi-

gated. A prevailing view of RNA modification is

that it has an adaptive role that can fine-tune

the structures and functions of mature RNAs to

influence gene expression, but recent studies have

also hinted that RNA modification may have other

regulatory functions. For instance, some post-

transcriptional RNA modifications can be dynamic

and might have roles analogous to those of post-

translational protein modifications [84, 86, 87].

Unlike the DNA-binding transcription factors,

whose sequence specificity can be predominantly

inferred from the DNA sequence they are bound

to [88], functional motifs of RBPs are difficult to

predict from sequences alone. This has been attrib-

uted to the fact that although the RNA recognition

elements of RBPs are highly conserved, unlike their

DNA counterparts, it is most often the structure and

not the sequence that is conserved [89–92]. It is due

to this observation that the prediction of binding sites

of RBPs or computationally associating a signifi-

cantly enriched site in a group of transcripts to a

specific RBP continues to be a challenging problem

[54, 93, 94]. In a study by Riordan et al. [54], the

authors used an integrated computational and ex-

perimental approach to refine and discover the

RNA recognition elements for 29 RBPs that have

been previously studied by the authors using
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RIP-chip screens. Inspired by the FIRE algorithm

developed by Elemento et al. [95] which is capable

of enumerating the N-mers that are specifically en-

riched in the target set of genes/transcripts compared

with a genomic background by calculating their fre-

quency distributions, the authors described the rela-

tive filtering by nucleotide enrichment (REFINE)

approach. REFINE first searches the specific

RNAs, identified as targets of a RBP, for segments

that contain sequence patterns over-represented in

the target set relative to the whole transcriptome,

then uses existing tools to identify motifs in these

segments. Briefly, the approach involves the identi-

fication of all possible hexamers that are enriched in

the set of mRNAs bound by a RBP, as the first step.

Segments comprising these enriched hexamers, along

with three flanking residues on each side and inter-

vening sequences of up to 12 bases that connect two

adjacent hexamers are then selected. The resulting

filtered target segments are used as input sequences

for the Multiple Em for Motif Elicitation (MEME)

[96] motif-finding algorithm. The motifs identified

by MEME are then evaluated for specific enrichment

in target RNAs and statistical significance is evaluated

based on random simulations. The authors also per-

form SELEX experiments for 12 of the RBPs result-

ing in the identification of a total of eight novel

candidate motifs and confirming six earlier reported

binding sites. In a complementary approach,

Goodarzi et al. [93] proposed the TEISER (Tool

for Eliciting Informative Structural Elements in

RNA) framework for identifying the structural

motifs that are informative of the stability of the

transcripts measured on a genome-wide scale. In

this framework, structural motifs are defined in

terms of context-free grammars that represent hair-

pin structures, as well as primary sequence informa-

tion. TEISER then employs mutual information to

measure the regulatory consequences of the presence

or absence of each of approximately 100 million
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Figure 1: Schematic diagram showing the extensive role of RBPs in various posttranscriptional processes at differ-
ent locations in eukaryotic cells. The circled number indicates the process in which RBPs are involved. RBPs are
major players in splicing pre-mRNAs into mature mRNAs in the nucleus, which are then exported into the cyto-
plasm by various other RBPs. Depending upon whether RBPs are bound to pre-mRNA or mRNA to form a RNP
complex, RNPs are classified as hnRNPs or mRNPs, respectively. In addition, RBPs are responsible for the localiza-
tion of mRNAs to distinct subcellular compartments such as the mitochondria. In the cytoplasm, RBPs are also
involved in governing the stability of transcripts by binding the substrate RNAs, and in controlling the translation
of mRNAs into corresponding protein products.Often, multiple RBPs can bind to a single RNA at one or more lo-
cations giving rise to a plethora of combinatorial possibilities at every step of posttranscriptional control. For this
reason, RBPs have been found to be playing a major role in the cause of several disorders due to changes in regula-
tion they bring about at posttranscriptional level.
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different seed context-free grammars available in the

system. Applying this framework to the RNA stabil-

ity data from a breast cancer cell line, the authors

report eight high-confidence putative structural

motifs likely controlling the stability of a vast

number of transcripts. Employing mass spectrometry

and cross-linking methods, they show that the stron-

gest of their structural motif predictions is bound by

HNRPA2B1 (heterogenous nuclear ribonucleopro-

tein A2/B1) and is responsible for controlling the

stability of approximately 4000 transcripts in this

cell line. In an attempt to identify the motifs respon-

sible for controlling the decay rates of the transcripts

in early Drosophila development, Thomsen et al [94]

grouped the transcripts with common degradation

patterns and analyzed the 30-untranslated region

(30–UTR) sequences using SYLAMER software

[97] to identify over-represented motifs of word

lengths six or eight. This analysis allowed the iden-

tification of 27 significant motifs associated with

severe decay patterns, all of which the authors

found to be complementary to miRNAs identified

in Drosophila or other metazoans suggesting that most

of the identified motifs might contribute to the deg-

radation of unstable mRNAs. Gene Ontology (GO)

analysis of the motif encoding genes further sup-

ported their role in the degradation of these tran-

scripts [94].

Most of the studied RBPs in the literature recog-

nize short and degenerate RNA motifs that are typ-

ically located at several sites in the genome. Thus,

it is not sufficient to determine whether a protein

interacts with a particular RNA, but it is important

to define the full landscape of interactions of the

protein with the RNA on a genome-wide scale.

UV Cross-linking and RIP-chip approaches dis-

cussed in the previous section have played an instru-

mental role in improving our global understanding

of the binding potential of RBPs. Although the

computational methods for the identification of

binding sites using the data generated from these

technologies are still in their infancy, I discuss

the general framework involved in the mapping of

binding sites using CLIP-based techniques, all of

which eventually generate large amounts of data

due to the increasing use of sequencing technologies.

Downstream analysis of the sequencing reads ob-

tained from CLIP techniques can be grouped into

two major steps: (i) mapping the reads onto the

genome and (ii) identification of the binding sites.

Read mapping involves the use of algorithms like

Bowtie [98] and TopHat [99] to map high-

throughput sequencing reads onto the genome.

The later approach which can handle spliced versions

of a transcript would be more appropriate when the

RNA targets of a RBP being analyzed are in their

mature form and hence would map to spaced loca-

tions on the genome. To take into account the

sequencing errors and cross-link-induced point mu-

tations (from PAR-CLIP [21] or HITS-CLIP [100]

data), it is common to allow one or more mismatches

in the alignment. This is often achieved by employ-

ing short-read nucleotide alignment programs such

as GSNAP [101] or Segemehl [102], which allow

gapped alignments. In the second step for discover-

ing the binding sites, the main assumption is that the

occupancy of the RBP at the authentic sites would

clearly be outnumbered (after read normalization)

compared with the locations where it is unlikely to

have a true functional role. Whereas this may not

always be the case, most of the original studies em-

ployed this approach borrowed from our under-

standing of the CHIP-seq datasets for transcription

factors and chromatin modifiers. This approach not

only filters a vast number of low occupancy sites but

also provides a high-confidence list of target sites

where the RBP is likely to bind with higher affinity.

In fact, when such read clusters with high-RBP oc-

cupancy are identified from replicate experiments

ensuring that binding at a given site is reproducible

and/or the calculation of the significant enrichment

over the background signal occurs in the surround-

ing areas of the same gene then the binding site can

be confidently called a bona fide site [23, 24, 74, 103].

Once high-affinity sites are identified based on the

mapping of clusters of CLIP reads, cross-link

nucleotide can be identified through U-to-C transi-

tions in PAR-CLIP data, through deletion sites in

the HITS-CLIP reads and in iCLIP the cross-link

nucleotide is located one nucleotide upstream of

truncation sites. By aligning the high-affinity site re-

gions around the cross-link nucleotide across the

genome and employing motif detection algorithms

like MEME [96] it should be possible to identify the

binding site of an RBP.

In prokaryotes, it has been long known that the

genes involved in similar processes tend to cluster on

chromosomes and are transcribed together using the

same promoter, thus forming operons such as the

well studied, Gal, Lac operons. On the other hand,

in eukaryotes, chromosomal operons are rare.

However, with the availability of wealth of
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information on RBP–RNA interactions on a

genome-wide scale in model organisms, recently,

the concept of posttranscriptional operons has been

proposed in eukaryotes [104]. According to this con-

cept, diverse RNAs related to a common biological

process are regulated by similar RBPs. For instance,

in yeast, a study of the RBP–RNA interactions by

modified RIP-chip method hasrevealed that each

member of Puf family RBPs bind with functionally

and cytotopically related RNAs [70]. Puf1 and Puf2

have been shown to bind to mRNAs of membrane-

associated proteins. Similarly, Puf3 binds to cytoplas-

mic mRNAs of mitochondrial proteins. Likewise,

the Nova protein was found to regulate splicing of

pre-mRNA encoding components of inhibitory syn-

apses and a stem–loop binding protein (SLBP)

was involved solely in splicing and translation

of replication-dependent histone RNAs [105].

Further examples in support of posttranscriptional

operons have been reviewed extensively elsewhere

[13, 106]. These examples demonstrate the role of

RBPs in view of posttranscriptional operons for

coordinating the expression of functionally related

genes in eukaryotes. Given the advantages involved

in spatially and temporally controlling the

posttranscriptional events by selectively binding to

compartment or location or process-specific tran-

scripts, it is possible to speculate that in eukaryotes,

RBPs act as mediators in facilitating operon-like or-

ganization, which by the virtue of polycistronic tran-

scripts and coupled transcription/translation is

inherent in prokaryotes.

GENOME-SCALE
POSTTRANSCRIPTIONAL
REGULATORYNETWORK
DIRECTEDBY RBPS
The development of several high-throughput

approaches such as CLIP and RIP-chip has increased

the amount of data for targets of RBPs in diverse

organisms. This data on the interaction between

RBPs and their targets can be utilized to construct

RBP–RNA interaction network, which is also typ-

ically referred to as posttranscriptional regulatory

network. A posttranscriptional network is repre-

sented in the form of a directional network with

each edge corresponding to a regulatory link be-

tween the nodes as shown in Figure 2A. In this dir-

ected network, one set of nodes are RBPs forming

the regulatory proteins, whereas the other set of

nodes are RNAs encoded by either protein-coding

or nonprotein-coding genes referred to as the target

nodes. These two nodes (regulator node and target

node) are joined by an arrow starting at the regulator

node and directing towards the target node. The

target RNA can be encoded by any functional

gene in the genome including genes encoded for

RBPs. This network can also contain loops as a

link starting from RBP and targeting itself, typically

referred to as auto-regulation of an RBP (Figure 2B).

This loop structure suggests that RBP can bind to its

own RNA and control its metabolism at transcript

level. There are several examples suggesting the

auto-regulation of RBPs at posttranscriptional level.

For instance, in humans, RBPs such as AUF1,

HuR, KSRP, NF90, TIA-1 and TIAR were re-

ported to associate with their own mRNA and

with that of other RBPs [107]. In fact, in yeast

more than one-third of the currently studied RBPs

have been found to auto-regulate their expression at

posttranscriptional level with cross-regulation

between RBPs being a common theme [108].

The availability of the network of post-

transcriptional interactions for a considerable fraction

of RBPs in model systems such as S. cerevisiae [20],

makes it possible to address several questions con-

cerning the structure and organization of post-

transcriptional networks directed by RBPs. Table 3

summarizes some of the properties which govern the

structure of this network. It is evident from this table

that the majority of the mRNA transcriptomes

encoded by �70% of the genes in yeast, has signifi-

cant associations with at least one of the RBPs

screened for RNA interactions. In fact, on average,

each distinct yeast mRNA was found to interact with

three of the RBPs, suggesting the potential for a

combinatorial and multidimensional network of

regulation. Indeed, I found that the average connect-

ivity of a node in this network was approximately

seven, indicating that most nodes in this network

have more number of targets and/or more number

of RBPs controlling them. Other measures of cen-

trality like betweenness and closeness, which provide

a measure of the importance of a node in a network,

shown in this table, also reflect this trend (see [109]

and references therein for definitions). For instance,

the average length of the shortest path between two

nodes in this network, which gives an indication of

the distance between nodes suggests that most nodes

are separated by no more than three edges—a meas-

ure reflecting the dense networking in this network
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Table 3: Properties defining the structure of the posttranscriptional network of RBPs and their target RNAs
in the yeast, S. cerevisiae

Property Definition Valuea

No. of edges Each edge corresponds to a single RBP^RNA interaction. Hence, total edges represent all the
interactions in the posttranscriptional network

19396

No. of vertices/nodes Total number of nodes, which comprise of both the RBPs, as well as the RNAs, encoding for both
protein coding and noncoding genes. This network comprises of 41 RBPs that are screened for
their RNA targets.

5398

Degree or connectivity Degree or connectivity refers to the number of interactions a protein or RNA has in this net-
workçthe higher the connectivity (i.e. hub nodes) the more the number of targets and/or
more the number of RBPs controlling it.

7.18

Clustering coefficient Clustering coefficient of a node reflects the extent to which the neighbors of a given node are
interconnected among themselves to what is expected theoretically, and indicates the cohesive-
ness or local modularity of the network. Average value taken over all nodes reflects the modu-
larity of the network.

0.37

Betweenness Betweenness centrality of a node measures the number of shortest paths between all pairs of
nodes in the network that pass through a node of interestçthe higher the number of paths
that pass through a node, the more important it is.

43.11

Average path length Average length of the shortest paths between all pairs of nodes in the network. 2.65
Closeness Closeness centrality is defined as the inverse of the average length of all the shortest paths from a

node of interest to all other nodes in the networkçnote that closeness centrality defined this
way implies that higher the closeness value, the higher the importance (centrality) of a node.

0.38

Diameter The diameter of a network is the length of the longest path among all the shortest paths defined
between two nodes. It gives an estimation of the farthest distance between nodes in the
network.

6

Graph density The density of a network is the ratio of the number of edges to the number of total possible edges. 1.33�10�3

Power law fit
(exponent-alpha)

Fitting a power^law distribution function to the degree distribution of the network to study
whether the network is likely to exhibit a scale-free network structure.

1.77

Source:The dataset employed for characterizing the network structurewas obtained fromHogan et al. [20].
Note: All the network properties are calculated using igraph, a publicly available R package for analyzing graphs [http://cneurocvs.rmki.kfki.hu/
igraph/ & http://www.r-project.org]. aThe average values for the entire network are reported for properties that are defined for specific node or
edge.

BA

Regulatory  Link

Regulator node

Nodes

Target node

Figure 2: Concept figure showing the RBP-mediated posttranscriptional regulatory network. (A) Dark
(Regulator) and light (Target) gray circles denote nodes in the network. These nodes are linked to each other via
a directional arrow starting from regulator (which is an RBP in the network) and pointing toward target
(which may be an RNA or miRNA) in the directional network. These linked nodes simply indicate that RBP
(Dark gray circle) binds to RNA/miRNA of target gene (Light gray circle) and regulates its metabolism. (B) Shows
an illustration of a network representing a dense set of RBP^RNA interactions with different RBPs having diverse
targets. The targets of one RBP in the network may be RNA of other genes or miRNA (dark and light circle
linked by arrow), the RNA of the RBP itself (loop from dark circle) and the RNA of other RBPs (two dark circles
linked by an arrow).
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[110]. Similarly, the diameter of a network that refers

to the longest of all the shortest paths between pairs

of nodes is about six, indicating that two nodes in

this network are separated by no more than

six edges. The clustering coefficient which is a

proxy for the modularity of the network shows

that neighbors of most nodes tend to be highly inter-

connected among themselves, forming a dense and

cohesive network of regulatory linkages at this level

of regulation. Finally, although incomplete in size,

the scaling exponent of this network is about 1.8,

which suggests that the network obeys a scale-free

topology with a power–law degree distribution

[110]. In simple terms, scale-free topology of a

network refers to a degree distribution of nodes,

where most nodes in the network have low degrees,

whereas few nodes are very highly connected and are

referred to as hubs in the network.

Due to their central role in controlling gene

expression at the posttranscriptional level, alteration

in expression or mutations in either RBPs or their

RNA targets have been reported to be the cause of

several human diseases such as muscular atrophies,

neurological disorders and cancer [25–27, 111]. In

particular, disorders such as myotonic dystrophy

(DM) and oculopharyngeal muscular dystrophy

(OPMD) have been attributed with RNA’s

gain-of-function. For instance, CUG repeat expan-

sion in the case of DM protein kinase (DMPK) [26]

and GCG repeat expansion in exon 1 of the RBP,

PABPN1 in the case of OPMD [25] are illustrated

examples of RNA’s gain-of-function. On the other

hand, diseases like opsoclonus-myoclonus ataxia

(POMA) and spinal muscular atrophy (SMA) have

been reported to be due to the RBPs’ loss of func-

tion [25], suggesting that mutations in either RBP

or any of its interacting RNA target sequences can

lead to extensive variations in their expression pat-

terns and result in a number of diseases. In line with

these studies discussing the impact of changes in

the expression levels of RBPs or their targets

being associated with diseases and fitness defects, a

study of the posttranscriptional regulatory network

in yeast showed that RBPs, as a functional class, are

rapidly turned over (i.e. less stable) at the transcript

level (quickly degraded) and are tightly controlled

at the protein level with very little cell-to-cell vari-

ation in their expression, with highly connected

RBPs being more abundant and more tightly regu-

lated than less connected ones [112]. Tight regula-

tion of RBPs indicates that variations in the

expression levels of these key posttranscriptional

regulators can have significant impacts on the func-

tioning of the cell, thereby leading to a disease

phenotype, with the effect of the perturbation

being more profound for global posttranscriptional

controllers.

CROSS-TALK ANDNETWORK
MOTIFS IN
POSTTRANSCRIPTIONAL
REGULATORYNETWORK
miRNAs are small, noncoding RNAs that are pre-

dominantly known to repress gene expression

through interaction with 30-UTRs of mRNAs and

are predicted to target >50% of all human

protein-coding genes, enabling them to have nu-

merous regulatory roles in many physiological and

developmental processes [113, 114]. Therefore,

miRNAs on a genomic scale are known to form a

dense network of posttranscriptional interactions con-

trolling a wide range of processes, with recent studies

pointing to the downregulation of this class of mol-

ecules as a common feature in a number of cancers

[115]. It is also becoming increasingly clear that

mRNAs do not exist in a truly naked state but instead,

are likely bound by multiple molecules, existing as

mRNPs. Many of these molecules, including

microRNAs and RBPs can regulate gene expression

most notably through their interactions with the

UTRs of mRNA. Such regulatory mechanisms rely

on miRNA and RBP binding activity to common

target RNAs and are probably under tight spatio-

temporal control [116]. Emerging evidence suggests

that cis-regulatory code targeted by microRNAs

might be the same as that read by RBPs, providing

a mechanism to ensure that the appropriate regulatory

elements are utilized for the correct expression of a

multifunctional mRNA transcript. In particular, sev-

eral examples wherein microRNAs that would bind

the mRNA in a manner that would compete with

essential secondary structures such as stems or loops,

making a microRNA–mRNA complex and RBP–

mRNA complex mutually exclusive, have been

found [116–119]. One early example of the interplay

between RBP and miRNAs is that of HuR, whose

translocation from the nucleus to the cytoplasm fol-

lowing exposure to stress was shown to relieve cat-

ionic amino acid transporter 1 (CAT1) mRNA from

miR-122-mediated repression in the cytoplasm of

liver cells [120]. Recent studies have revealed that
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the influence of HuR on many bound transcripts de-

pends on HuRs interplay with miRNAs, which asso-

ciate with the same mRNAs [118], resulting in the

interactions of HuR and miRNAs being both com-

petitive and cooperative that govern expression of

shared target mRNAs [119]. Competition between

HuR and miRNAs typically results in enhanced

gene expression if the HuR–mRNA interaction pre-

vails and in repression if the miRNA remains asso-

ciated. It was also found that cooperation between

HuR and miRNAs lead to lower expression of the

shared mRNA [119]. Kedde et al. [117] showed that

PUM1 binding results in a conformation change that

allows miRNA-binding sites in p27 mRNA to be

accessible for regulation. In a global analysis of the

targets of the human PUF family proteins PUM1

and PUM2 in human cancer cells, PUM-binding

motifs were enriched in the vicinity of the predicted

miRNA-binding sites. Likewise, high-confidence

miRNA-binding sites were generally enriched in

the 30-UTRs of the experimentally determined

PUM targets, predicting strong cross-talk between

human PUF proteins and miRNA targeting [121].

Indeed, as discussed above, PUM1 induces a structural

change within the 30-UTR of the tumor suppressor

p27 transcript, thus permitting access to miR-221/

222 with consequences for cell cycle progression

[117]. There is also increasing evidence in support

of the cross-talk between miRNAs, as well as be-

tween RBPs and miRNAs. For instance, a tripartite

motif protein, TRIM71 with ubiquitin ligase activity

is a target of let-7 miRNA. TRIM71 drives AGO

degradation through ubiquitylation, thereby interfer-

ing with miRNA function [122]. Also pluripotency

factor lin-28 binds the pre-let-7 RNA and inhibits its

processing by the Dicer ribonuclease in embryonic

stem cells and embryocarcinoma cells. In embryonic

neural stem cells, lin-28 is downregulated by mir-125

and let-7, allowing processing of pre-let-7 to proceed,

thereby forming a feedback loop controlling pre-let-7

maturation [123]. All these studies imply that

microRNAs and RBPs may be targeting, at least in

part, overlapping regions of the RNA transcript.

More specifically, this hypothesis presents a mechan-

ism, whereby miRNAs may modulate the

posttranscriptional regulatory code in a manner that

masks or reveals the regulatory targets of RBPs.

As such, interplay between miRNAs and RBPs

on target 30-UTRs can rapidly modulate target ex-

pression under specific conditions. Also binding of

RBPs near miRNA target sites can potentially

regulate miRNA function, either directly by affecting

miRNA-binding or indirectly through a switch

in RNA secondary structure [116]. Indeed, several

mechanisms have been proposed for potential

miRNA interactions with mRNA that would influ-

ence RBP binding sites [124]. These studies not only

support the interplay between miRNAs and RBPs as

a means of spatially and temporally controlling the

expression of the target genes in a combinatorial fash-

ion, but also suggest a cross-talk between these classes

of regulatory molecules. Asmore data on genome-

wide protein–RNA maps become available, it

should be possible to elucidate the different network

motifs and the frequency with which they are found

in posttranscriptional regulatory networks. However,

it is possible to speculate at this point that miRNAs

and RBPs might interact with each other to control

their mutual expression while they cooperate or com-

pete for the binding sites on the target genes’ tran-

script forming at least three node network motifs in

posttranscriptional regulatory networks.

CONCLUSION
Although the postgenomic era has introduced the

genomic complement of thousands of genomes, it

has also left us with several unanswered questions

regarding the functional relevance of the genes har-

bored by an organism and of the principles that

govern the regulation of such genes. It is noteworthy

to mention that even in a model organism like

S. cerevisiae, regulation of gene expression at the

posttranscriptional level is rather poorly understood.

Nevertheless with recent improvements and avail-

ability of high-throughput approaches to the study

of RBPs, such as RNA-sequencing and immunopre-

cipitation protocols, we can expect to see a wealth of

data detailing the dynamic, spatial and tissue-specific

nature of the interactions governed by these exciting

class of regulatory molecules. Such advances would

undoubtedly allow us to gain a deeper understanding

of regulation at a level that has been under-

appreciated over the past decades. Given the unpre-

cedented detail at which these high-throughput

technologies can reveal the link between the regu-

latory elements on the target RNAs and the RBPs

specific to environmental conditions, it is possible to

use these approaches to interrogate the prevalence of

these phenomena in different states and thereby

study their relevance to physiology and disease in

diverse model systems.
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Key Points

� Posttranscriptional control of RNA by RBPs plays an important
role in diverse cellular processes such as splicing, transcript sta-
bility, RNA editing, RNA localization and translation rate.

� About 5^10% of the protein coding genes in eukaryotes are
predicted to encode for RBPs, to control diverse cellular targets
in a temporal and spatial context by forming dynamic RNP
complexes.

� RBPs can be grouped into conventional and unconventional
classes with the unconventional RBPs typically exhibitingmoon-
lighting/secondary functions in addition to their ability to bind
RNA.

� Cis-regulatory binding sites of an RBP are difficult to predict and
to build consensus, because of sequence heterogeneity among
bound sites thatmight otherwise be identical in their structure.

� RBPs auto-regulate their expression, cross-regulate other RBPs
and control their target RNAs to form a dense posttranscri-
ptional regulatory network on a genomic scale. RBPs also inter-
act with miRNA and mutually control each other’s expression
to form dynamic network motifs that are perturbed in disease
conditions.
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