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Abstract Protection of rare ecosystems requires

information on their abundance and spatial distribu-

tion, yet mapping rare ecosystems, particularly those

which are fragmented, is a challenge. Use of high

spatial resolution satellite imagery is increasing, in

part because it may be well-suited for mapping fine-

scale components of landscapes. We classified high

spatial resolution QuickBird imagery of coastal

British Columbia, Canada into late seral forest

associations. With an emphasis on rare forest asso-

ciations, we compared the classification accuracies

resulting from contrasting accuracy assessment tech-

niques. We also evaluated the impact of post-

classification image smoothing on the quantity and

configuration of rare forest associations mapped. Less

common associations were generally classified with

lower accuracies than more abundant associations,

however, accuracies varied depending on the assess-

ment technique used. In particular, ignoring the

presence of fine-scale heterogeneity falsely lowered

the estimates of map accuracy by approximately

20%. Smoothing, while generally increasing the

accuracies of rare forest associations, had a large

effect on their predicted spatial extent and configu-

ration. Simply due to smoothing, areal estimates of

rare associations differed by as much as 36%, the

number of patches decreased by 73% on average, and

mean patch size increased by up to 650%. Our

findings indicate that routinely used post-classifica-

tion and map assessment techniques can greatly

impact the portrayal of rare and fragmented ecosys-

tems. Further research is needed on the specific

challenges of mapping and assessing the accuracy of

rare ecosystems in fragmented and heterogeneous

landscapes.
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Introduction

Ecosystem representation (preservation of a full range

of the ecosystems present in the world, a region, or a

single watershed) is a well-established conservation

goal (Olson and Dinerstein 1998). Preserving exam-

ples of all ecosystems is an important way to conserve

the unique assemblages of plant and animal species

within the different ecosystems (Noss 1996). The

spatial patterns of ecosystems across a landscape are
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also appreciated. Fragmentation of an ecosystem into

smaller, isolated patches may lead to the decline of a

population if movement among patches is not possi-

ble, as well as to negative edge-effects (e.g., increased

predation) (Fahrig 2003).The concepts of ecosystem

representation and spatial connectivity, particularly

relevant for rare (uncommon, and potentially at risk or

endangered) ecosystems, are central to Ecosystem-

Based Management (EBM), increasingly used in

natural resource management in many areas of the

world (Grumbine 1994; Slocombe 1998). Explicit

consideration of these ideas is also important in the

context of designing nature reserve networks (Mar-

gules and Pressey 2000).

Information describing the abundance, structure,

composition and spatial configuration of ecosystems

is conventionally based on field work, or the inter-

pretation of aerial photographs and satellite imagery

(Goetz et al. 2003; Wulder et al. 2004). Recent

advances in technology have led to increasing interest

in high spatial resolution (\4 m) satellite imagery and

digital processing techniques for ecosystem mapping

and monitoring. Developments in object-based image

classification techniques in particular (as distinct from

pixel-based techniques) have accompanied and pro-

moted the use of high spatial resolution imagery (Hay

et al. 2005). While high spatial resolution imagery

may offer great promise for mapping fine-scale

ecosystems and structure (Dechka et al. 2002; Johan-

sen and Phinn 2006; Mehner et al. 2004) several

aspects of the use of this technology have not been

explored within the context of rare class mapping.

Classification errors on maps derived from remo-

tely sensed imagery are generally greater for classes

that occupy a small proportion of a study area than for

those that occupy a larger proportion (Smith et al.

2002, 2003). Studies examining the role of spatial

resolution and land cover configuration on mapping

accuracy have found that coarser spatial resolutions

tend to produce less accurate maps of small, frag-

mented classes (Hlavka and Livingston 1997; Silva

et al. 2005). Rare, fragmented classes are often

underrepresented when the spatial resolution is

decreased or the Minimum Mapping Unit (MMU)

increased (Kendall and Miller 2008; Mayaux and

Lambin 1995). However, most previous work dis-

cussing the impact of changing MMUs on rare classes

has been based on medium- or coarse-grained imagery

(Kendall and Miller 2008; Saura 2004; Turner et al.

1989). Others have utilized simulated landscapes

where the effect of spatial resolution is unclear

(Langford et al. 2006; Saura 2002; Turner et al.

1989).

As the automated classification of high spatial

resolution digital imagery for mapping fine-scale

ecosystems continues to increase, it is important to

consider that the technology may be misused or used

without an understanding of some of the associated

limitations or caveats (Fassnacht et al. 2006). Our

objective was to evaluate how a common mapping

technique, as well as several different accuracy

assessment techniques, may impact the portrayal of

rare ecosystems on maps derived from high spatial

resolution satellite imagery. Using an object-based

classifier, we classified imagery collected over a

heterogeneous landscape and compared the classifi-

cation accuracies of rare, fragmented classes resulting

from several different accuracy assessment tech-

niques. We performed (a) a standard, pixel-based

accuracy assessment, (b) a modified assessment that

acknowledges fine-scale heterogeneity, and (c) a

polygon-level accuracy assessment. We also exam-

ined the impact of implementing of a Minimum

Mapping Unit (MMU) on several Landscape Pattern

Indices (LPIs) of fragmentation for rare ecosystems.

Methods

Study area

Our research focused on the coastal temperate rain-

forests of the outer coast of western Vancouver Island,

British Columbia (BC), within and adjacent to Pacific

Rim National Park (Fig. 1). Climate is characterized

by cool summers and mild winters (mean annual

temperature *8�C) and very large amounts of

precipitation (1,000–5,000 mm annually) (Green and

Klinka 1994; MacKinnon 2003). Forests are domi-

nated by coniferous species including western

hemlock (Tsuga heterophylla), western redcedar

(Thuja plicata), amabalis fir (Abies amabilis), and

sitka spruce (Picea sitchensis).

Classification scheme

High spatial resolution QuickBird satellite imagery

was classified into ecosystems defined by British
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Columbia’s Biogeoclimatic Ecosystem Classification

(BEC) hierarchical framework. At the broadest scale,

the province is classified into zones of similar

climate. At the finest scale of classification are plant

associations. These associations (ranging in size from

less than 1 ha to several 100 ha) are characterized by

the climax plant communities expected to develop

under specific soil moisture and nutrient regimes

(Green and Klinka 1994; Meidinger and Pojar 1991).

The BEC framework is used to create a Terrestrial

Ecosystem Map (TEM) of a region in British

Columbia, based traditionally upon the interpretation

of aerial photographs and the use of supplemental

field data. Polygons on a TEM may be labeled with

more than one forest association (up to three), when

multiple forest associations are present yet too

limited in extent to be distinguished separately. In

such cases, the proportion of each is noted, although

the exact location of each is not.

The forest associations analyzed in this study are

shown in Table 1. Several forest associations in the

area have been blue-listed (designated as of special

concern) by the Conservation Data Centre (CDC)

(Table 1), BC’s NatureServe counterpart responsible

for collecting and disseminating information on

animals, plants and communities at risk. Because the

associations refer to potential climax vegetation,

mapping was restricted to old forests (stands greater

than 250 years in age). Additionally, associations

were eliminated which were dominant only in one or

two polygons on the reference map in order to ensure

adequate sample sizes. However, two very rare blue-

listed associations (Picea sitchensis/Eurhynchium

oreganum (SK) and Picea sitchensis/Polystichum

Fig. 1 This study concerns

a number of late seral forest

associations within a

162 km2 area of the coastal

temperate rainforests of

western Vancouver Island,

British Columbia, Canada
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munitum (SW)) were merged into one Shoreline class

(Picea sitchensis) because both are spruce dominated

associations adjacent to the coast. Our classification

scheme contains one other blue-listed association, the

swamp forest Thuja plicata–Picea sitchensis/Lysichi-

ton americanum (RC). We also included Pinus

contorta–Chamaecyparis nootkatensis/Racomitrium

lanuginosum (LR) in our rare ecosystem analysis.

Though not formally recognized as rare on provincial

lists, this forest association found on high, relatively

dry sites, and occupies a very small proportion of the

total study area (\1.5%). This association thus

provides another useful example of the challenges of

mapping fragmented, locally rare ecosystems.

Spatial data

QuickBird imagery consisting of four multi-spectral

bands at 2.8 m spatial resolution was captured on June

21, 2005. The imagery was geometrically corrected

prior to purchase by DigitalGlobe with a stated

positional accuracy of 16 m. Raw digital values were

converted to top of atmosphere radiance units using

pre-launch calibration coefficients in ENVI (v 4.3, ITT

Industries Inc. 2006), and the image data were subset

from the full extent of 248 km2 to the extent of the

reference data (162 km2).

In addition to spectral information, image texture

layers were created to quantify the spatial structure of

each forest association. Image texture may relate to

changes in species, crown closure and stem density

(Franklin et al. 2001) and may be particularly useful

information when the features of interest, such as

many of the tree species in coastal BC (Leckie et al.

2005), have similar spectral reflectances. Semivario-

grams were utilized to derive the size of the

neighbourhood over which spatial variation was

measured. Several polygons were drawn for each

forest association within the centre of larger regions

indicated by the reference data as belonging to the

various classes. The number, size and shape of sample

polygons varied for each association depending on its

abundance and magnitude of fragmentation. Using

these data, multidirectional semivariograms were

calculated for each spectral band for each forest

association, and the range subsequently identified via

visual examination. Pixels appeared to be independent

at a distance of approximately three pixels for all

classes and most wavelengths, as in our previous work

(Johansen et al. 2007). The Grey Level Co-occurrence

Matrix (GLCM) (Haralick 1973) correlation measure

was thus calculated for each spectral band using a

3 9 3 window. Further details regarding our choice of

texture measure can be found in our previous work

(Thompson et al. in press).

Ancillary terrain data were also used in this study

because the forest associations are partially depen-

dent on elevation, slope position and soil moisture

(Table 1). We derived two terrain layers (elevation

and potential soil moisture) from airborne Light

Table 1 Late-seral forest

associations discriminated

in this study

These associations are

drawn from British

Columbia’s Biogeoclimatic

Ecosystem Classification

(BEC). Extent of each

association in the study area

determined from a local

Terrestrial Ecosystem Map

(TEM) (EcoCat 2005).

Conservation status is

defined by the BC

Conservation Data Centre.

Locally rare classes are

shaded

 FOREST ASSOCIATION DESCRIPTION CONSERVATION
STATUS 

% OF 
STUDY

SITE

ECOSYSTEM 
CODE

Thuja plicata - Tsuga heterophylla / Gaultheria 
shallon (western redcedar - western hemlock / salal) 

Zonal forest association 
(intermediate moisture 
and nutrient regime) 

 28.4 HS 

Pinus contorta - Chamaecyparis nootkatensis / 
Racomitrium lanuginosum
(lodgepole pine - yellow cedar / hoary rock-moss) 

Dry association found on 
hillcrests 

1.4 LR

Pinus contorta - Chamaecyparis nootkatensis / 
Sphagnum (lodgepole pine Yellow cedar / 
sphagnum)  

Treed bog/organic 
wetland; wet soils 

 12.8 LS 

Thuja plicata - Picea sitchensis / Lysichiton 
americanum (western redcedar - Sitka spruce / skunk 
cabbage)

Poorly drained swamp 
forest; wet and nutrient 
rich soils 

blue listed 2.1 RC

Tsuga heterophylla - Chamaecyparis nootkatensis / 
Gaultheria shallon (western hemlock - yellow-cedar 
/ salal) 

Intermediate-to-dry 
association; found on 
upper slopes to hillcrests 

 6.7 RS 

Thuja plicata - Picea sitchensis / Oplopanax 
horridus (western redcedar - Sitka spruce / devil's 
club)

Moist-to-wet productive, 
floodplain associations 

 4.7 SD 

Picea sitchensis / Eurhynchium oreganum 
(Sitka spruce - Oregon beaked-moss)  
merged into the Shoreline class

Oceanspray association 
found on old beachplains 

blue listed 0.56 SK

Picea sitchensis / Polystichum munitum
(Sitka spruce / sword fern)
merged into the Shoreline class

Oceanspray association 
found on marine 
terraces/scarps 

blue listed 0.58 SW 

Thuja plicata - Chamaecyparis nootkatensis / Coptis 
asplenifolia (western redcedar - yellow-cedar / 
spleenwort-leaved goldthread) 

Organic bog forest  20.9 YG 
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Detection and Ranging (LiDAR) data. The LiDAR

data was collected in July 2005 (Terra Remote

Sensing, Sidney, BC, Canada) using a Mark II

discrete return sensor, with ground and non-ground

returns separated using Terrascan v 4.006 (Terrasolid,

Helsinki, Finland). Ground returns were converted to

a Digital Elevation Model (DEM) using a natural

neighbour algorithm (Sibson 1981) and the resulting

1 m DEM was resampled to the spatial resolution of

the QuickBird image (2.8 m). Using 19 ground

control points, the QuickBird imagery was then

georectified to the LiDAR imagery (estimated hori-

zontal error of 0.5 m), with a resulting Root Mean

Squared Error of approximately 1 pixel.

ArcGIS (v9.2; ESRI Inc.) was used to calculate a

Topographic Wetness Index (TWI) from the DEM:

TWI ¼ lnða=tan bÞ ð1Þ

where a is the specific catchment area (the upslope

area per unit contour length) and b is the slope. High

values of this index correspond to concave areas

where water would be expected to accumulate,

whereas low values are related to dry, convex areas.

The TWI was chosen for use based on our previous

forest classification study in the region (Thompson

et al. in press). Given that soil moisture affects

vegetation patterns across a landscape (Swanson

et al. 1988; Whittaker 1956), potential soil moisture

is a common predictor in vegetation modeling and

classification (Taverna et al. 2004; Wright and Gal-

lant 2007).

Image classification

The imagery was classified using an object-based clas-

sifier (Definiens Professional 5.0, Munich, Germany).

Object-based classifiers classify groups of adjacent

pixels (image objects) based on the mean and/or

standard deviation, unlike traditional classifiers that

classify each individual pixel. This method is pre-

ferred for classifying high spatial resolution imagery,

where multiple, adjacent pixels comprise a feature of

interest, because pixel variance is divided into image

objects approximating real objects (Hay et al. 2005).

Thus the possibility of developing unique spectral

signatures for a given feature or class is increased

(Wulder et al. 2004).

Two hierarchical levels of image-objects were

created. At the broadest scale (mean object size of

7.6 ha), the imagery was first classified into a binary

map demarcating areas of late seral forests. At the

finer scale, late seral forests were then classified into

eight different forest associations, using a mean

object size of 0.9 ha. A supervised classification

approach was used, utilizing a nearest neighbour

algorithm. Representative image objects of each

forest association were selected to ‘‘train’’ the

classifier, and the algorithm then assigned each image

object to the forest association of the nearest sample

object in feature space. Our selection of training

samples was informed by a digital, vector-based

TEM (1:20,000) developed in 2003 and 2004 (Eco-

Cat: Ecological Reports Catalogue). A contextual

rule was used to restrict the presence of the Picea

sitchensis (Shoreline) class to within 350 m of the

coastline, and minimum elevation thresholds were

used to aid discrimination of Pinus contorta–Cha-

maecyparis nootkatensis/Racomitrium lanuginosum

(LR) and Tsuga heterophylla–Chamaecyparis noot-

katensis/Gaultheria shallon (RS).

Accuracy assessment

Forest associations on the classified image were

compared to those on the vector-based TEM. The

field sampling which occurs during the creation of a

TEM informs and results in revisions to mapping

while it is created to ensure a quality product.

Further, there are generalized protocols for indepen-

dent accuracy assessments of TEM (via additional

field sampling) designed to ensure a minimum overall

accuracy of 65% (Meidinger 2003). To date, not all

TEM projects have been assessed in this manner and,

results for specific TEM maps are not publicly

available. Thus, quantitative knowledge of the accu-

racy of the TEM for the study site is unknown.

However, it is considered by regional experts to be of

higher quality than most (A. MacKinnon 2007, pers.

comm.) while additional accuracy research, funded

by the Province of BC, is underway in this regard.

Given that the TEM was to be used for both

guiding and assessing the classification, the image

was stratified a priori into training and testing regions

(70% and 30% of the total area, respectively) to

ensure truth data were independent from information

used to guide the classification (Fig. 2). Both the

training and testing regions contained examples of all

forest associations examined.

Landscape Ecol (2008) 23:1023–1037 1027

123



We first performed a pixel-based accuracy assess-

ment whereby classified pixels were sampled from the

map using a stratified random sampling design.

Several issues may arise when comparing pixels from

raster data to preexisting vector-based reference data,

including positional errors, and differences between

the scale of polygon delineation in the truth layer and

the spatial resolution of the satellite imagery (Wulder

et al. 2006). Misregistration between the classified

map and reference data will negatively affect map

accuracy, particularly as landscape heterogeneity

increases (Smith et al. 2003). We therefore used a

10 m buffer around each polygon to constrain sam-

pling to polygon interiors, a method sometimes used to

contend with this issue, despite the fact that it tends to

inflate accuracy estimates (Hammond and Verbyla

1996). The issue of scale differences between the

classified map and the reference data was important

because a Minimum Mapping Unit (MMU) is used

during air photo interpretation for Terrestrial Ecosys-

tem Mapping (Ecosystems Working Group Terrestrial

Ecosystems Task Force 1998). The MMU of the TEM

dataset utilized in this study was 2.0 ha, which is a

coarser scale of generalization than that of the object-

based classification (average polygon size of 0.9 ha) to

which it was compared.

The problem of comparing a fine-scale QuickBird

classification to more generalized reference polygons

was investigated by comparing the classified image to

the dominant, as well as to the sub-dominant labels of

the TEM reference polygons. These assessments are

referred to UA_1, UA_2 and UA_3 (user’s accuracies

for the first, second and third dominant forest associ-

ations in a reference polygon, respectively). Several

other studies have indicated that accuracy assessment

techniques should account for the thematic ambiguity

that may be present in reference maps (Stehman et al.

2003; Wulder et al. 2007).

In addition to the pixel-based accuracy assessment,

we also performed a polygon-based assessment, given

that we used a per-object classifier rather than a per-

pixel classifier. This polygon-based assessment

amounted to selecting only one point per classified

object. In this way, we avoided ‘‘double-counting’’ a

Fig. 2 The study area

contains three locally rare

forest associations, shown

here on the Terrestrial

Ecosystem Map (TEM)

reference data derived from

1:20,000 aerial photographs

(EcoCat 2005): Pinus
contorta–Chamaecyparis
nootkatensis/Racomitrium
lanuginosum (LR), Thuja
plicata–Picea sitchensis/

Lysichiton americanum
(RC) and Picea sitchensis
(Shoreline). The area was

divided into training and

testing regions to guide and

assess the classification
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single image object, as well as accounted for any

remaining positional uncertainty between the classi-

fied map and reference data (Stehman et al. 2003;

Wulder et al. 2006). One potential problem, however,

is that one large correct polygon is thus given the same

weight as one very small incorrect polygon. On an

areal basis, one could argue that this unfairly repre-

sents the accuracy/inaccuracy of the map as a whole.

Therefore we performed a polygon-based accuracy

assessment solely for the rare forest associations

(which all occupy a similar range of average patch

sizes and proportion of the landscape).

In each case, accuracy was assessed via common

descriptive measures, as well as Kappa (Khat) (dis-

crete multivariate) statistics, all based on the error, or

confusion matrix. Descriptive measures (e.g. overall,

user’s and producer’s accuracies) based simply on the

proportion of correctly classified pixels, are the most

common way to represent classification accuracy and

are easy to understand. However, descriptive mea-

sures do not take into account chance agreement

(Jensen 2005), and the fact that some classes may

have a greater chance of being correctly mapped,

such as in our study, where the proportion of classes

(and sample sizes) is significantly unequal. When an

accuracy assessment is based on unequal sample

sizes, overall accuracy in particular may be misrep-

resentative, as it will be higher when there are more

samples for a class that is well classified, than when

there are fewer samples of that class (and more

samples of a class more poorly mapped) (White et al.

2007). Furthermore, confidence in the estimated

accuracy of each class may vary as a result of

differences in sample sizes (White et al. 2007).

The Kappa coefficient, which can be calculated to

measure the overall agreement between the classifi-

cation and the reference data, as well as per-class

(conditional) accuracies, incorporates chance agree-

ment. It thus provides additional information

regarding classification accuracy (Congalton 1991).

The Kappa ranges from -1 to ?1, with values less

than 0 indicating poor agreement between the clas-

sification and reference data, and increasing accuracy

with greater Kappa values, where values greater than

0.8 indicate ‘‘almost perfect’’ agreement (Landis and

Koch 1977). We evaluated classification accuracy in

terms of overall accuracy and overall Kappa, as well

as user’s accuracies and conditional Kappa statistics.

We focused on per-class accuracies from the user’s

perspective, as this perspective represents the reli-

ability of the map, and thus are often the measures of

accuracy in which ecologists and managers are most

interested.

Smoothing analysis

Minimum Mapping Units (MMUs) commonly relate

to the smallest area that can be drawn and labeled at

the scale of the planned map, or to the smallest area

that can be conveniently managed (Goodchild 1994).

Minimum Mapping Units may be applied after the

automated classification of a digital image (Saura

2002) in a process referred to as spatial aggregation

or image smoothing. Post-classification smoothing is

also often performed to reduce ‘‘salt-and-pepper’’

noise common in traditional pixel-based classifica-

tions (Gergel 2007; Saura 2002). A common

technique is the application of a moving window of

a fixed size (e.g. 3 9 3 pixels) whereby the value of

the centre pixel becomes the mean or median class of

the other pixels in its neighbourhood (Jensen 2005).

In this study, smoothing was applied on image

objects (polygons) of various sizes and shapes, rather

than at the pixel level. Using the reshaping algorithms

available in Definiens classification software, a

classified image object smaller than the MMU of

the TEM dataset (2 ha in size, of any shape) was

merged into the neighbouring image object with

which it shared the largest border.

Following this post-classification smoothing, the

difference in several routinely used class-level LPIs

(with reference to the unsmoothed classification) was

assessed for the rare forest associations using the

following equation:

% difference ¼ ½ðLPIunsmoothed

� LPIsmoothedÞ=ðLPIunsmoothedÞ�
� 100% ð2Þ

Results

Overall map accuracy in the pixel-based accuracy

assessment was 41% (Khat = 0.32) with reference to

the dominant forest association. Less common asso-

ciations were often classified with lower accuracies

than those more prevalent throughout the study area

(Table 2a). An exception was the Picea sitchensis
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(Shoreline) class, which although quite limited in

extent, was classified with very high accuracy.

Further, accuracies were quite high for the Shoreline

class (User’s Accuracy_1 = 84%, Khat = 0.829), yet

for the two other rare forest associations (Pinus

contorta–Chamaecyparis nootkatensis/Racomitrium

lanuginosum (LR) and Thuja plicata–Picea sitchen-

sis/Lysichiton americanum (RC)), accuracies were

comparatively very low (UA_1 = 21% and 2%,

Khat = 0.162 and -0.0004, respectively) (Table 2a).

A full confusion matrix is contained in (Thompson

et al. in press).

Accounting for the second and third dominant site

series in the accuracy assessment increased the

overall Kappa measure of agreement from 0.32 to

0.55, thus shifting the overall classification from a

level of ‘‘fair’’ to ‘‘moderate’’ agreement (Landis and

Koch 1977). When considering only the dominant

forest association, per-class accuracies (Table 2a)

ranged from user’s accuracies of 2 to 84% (and

corresponding conditional Kappa values of -0.004 to

0.829). Accuracies improved by up to 49% when

considering the non-dominant forest associations

(Table 2a). For UA_1, the highest accuracies were

achieved for Thuja plicata–Chamaecyparis nootkat-

ensis/Coptis asplenifolia (YG), Pinus contorta–

Chamaecyparis nootkatensis/Sphagnum (LS) and

Picea sitchensis (Shoreline). The forest associations

seeing the largest increase in accuracy when moving

from UA_1 to the Cumulative UA (Conditional

Kappa_1 to Cumulative Conditional Kappa) were

Thuja plicata–Tsuga heterophylla/Gaultheria shallon

(HS), Tsuga heterophylla–Chamaecyparis nootkaten-

sis/Gaultheria shallon (RS), and Thuja plicata–Picea

sitchensis/Lysichiton americanum (RC). Relative

to pixel-level accuracy estimates, polygon-level

Table 2 Pixel-based classification accuracies using a British

Columbia Terrestrial Ecosystem Map (TEM) as reference data:

(a) Unsmoothed classification and (b) Map which underwent

post-classification smoothing to implement the 2 ha minimum

mapping unit of the reference data

Ecosystem

code

Sample

size (pixels)

Conditional

Kappa_1

UA_1 UA_2 UA_3 Cumulative

UA

Cumulative conditional

Kappa

(a)

HS 204 0.160 46 42 7 95 0.924

LR 180 0.162 21 0 1 22 0.174

LS 310 0.805 84 1 2 86 0.832

RC 247 -0.004 2 1 11 14 0.124

RS 327 -0.001 4 32 13 49 0.466

SD 132 0.270 30 1 0 30 0.278

Shoreline 145 0.829 84 0 0 84 0.829

YG 295 0.492 62 30 0 92 0.886

Overall 0.32 41% 61% 0.55

(b)

HS 262 0.094 44 48 2 94 0.901

LR 322 0.182 24 0 0 24 0.182

LS 315 0.865 89 0 3 91 0.895

RC 236 0.019 2 4 16 22 0.204

RS 327 0.003 1 36 10 47 0.469

SD 167 0.348 37 0 0 37 0.348

Shoreline 163 0.868 88 0 0 88 0.868

YG 290 0.523 65 30 0 94 0.925

Overall 0.33 42% 62% 0.56

Accuracy is assessed via metrics of User’s Accuracy (UA) and Conditional Kappa. Agreement between the classified map and the

dominant class in each reference polygon is indicated by User’s Accuracy 1 (UA_1), and by Conditional Kappa_1. Agreement with

respect to the second dominant and least dominant class in each reference polygon is indicated by User’s Accuracy 2 and 3 (UA_2,

UA_3), respectively. Cumulative UAs and cumulative conditional Kappas are also shown. Locally rare classes are italicized
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estimates (Table 3) for two of the forest associations

(RC and Shoreline) were no different, but were

higher for LR (42% for the polygon-based assessment

vs. 21% for the pixel-based assessment).

Smoothing the classification to implement a MMU

increased the accuracy of the map very slightly

to 42% (Khat = 0.33), up from 41% (Khat = 0.32)

(UA_1) (Table 2). Smoothing increased some per-

class accuracies and decreased others. The three

forest associations most accurately classified in the

smoothed map (UA_1 and Conditional Kappa_1)

were also those most accurately classified in the non-

smoothed map. Rare association accuracies either

increased or saw no change as a result of smoothing

(Table 2) with respect to the dominant reference label.

However, the relative accuracies of these three rare

forest associations (UA_1 and Conditional Kappa_1)

remained the same. Shoreline was the most accurately

classified and RC the least accurately classified)

regardless of whether or not smoothing was used.

Implementation of a MMU greatly changed the

quantity and configuration of the rare forest associa-

tions. The removal of small patches via smoothing

reduced the number of patches of Pinus contorta–

Chamaecyparis nootkatensis/Racomitrium lanugino-

sum (LR), Thuja plicata–Picea sitchensis/Lysichiton

americanum (RC), and Picea sitchensis (Shoreline) by

92, 66, and 60%, respectively (Table 4; Fig. 3).

Removal of small patches also resulted in large

increases in the mean patch size for each association

(Table 4), and a corresponding decrease in the abun-

dance of LR, RC and Shoreline of 36, 32, and 20%,

respectively (Table 4). These forest associations were

initially overestimated, thus the reduction in area

improved their user’s accuracies. The decrease in

abundance and number of patches, combined with the

increase in size of patches, indicates the smoothed

Table 3 Polygon-based classification accuracies using a

British Columbia Terrestrial Ecosystem Map (TEM) as refer-

ence data

Ecosystem Sample size

(polygons)

User’s

accuracies (UA1)

LR 12 42

RC 46 2

Shoreline 6 83

User’s accuracies are shown for the locally three rare forest

associations (described in Table 1)
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Fig. 3 Three rare forest

associations were analyzed

in this study (Table 1;

Fig. 2). Panel A. The rare

ecosystems were mappı́

using high spatial resolution

QuickBird imagery and

ancillary terrain data.

Panel B. The classified

image depicting the rare

ecosystems was smoothed

to implement a Minimum

Mapping Unit of 2 ha,

corresponding to that used

in the TEM reference data

1032 Landscape Ecol (2008) 23:1023–1037

123



map presents the rare associations as being less

fragmented than in the unsmoothed map.

Discussion

We classified late seral forest associations in a

complex landscape using high spatial resolution

multispectral QuickBird satellite imagery and

LiDAR-derived topographic data. Accuracies were

high (Khat = 0.83) for two associations, but consid-

erably lower for many others, including those

uncommon in the study area. The abundance of rare

forest associations was often overestimated. High

rates of commission for rare classes may be partially

attributed to class imbalances. Many classification

algorithms (both parametric and non-parametric) may

be impacted by class imbalances (Breiman et al.

1984; McIver and Friedl 2002; Wright and Gallant

2007; Yu et al. 2006). Further, overestimating the

extent of rare classes can occur when common classes

are misclassified, even at a very low rate. Thus, the

accuracy of common classes must be quite high to not

impact rare class abundance (Stehman 2005). While

tradeoffs among class accuracies are expected, the

impact on rare classes will be of greater magnitude

(Stehman 2005). In addition, because classification

accuracy for common classes tends to decrease with

increasing landscape heterogeneity (Smith et al.

2003; Smith et al. 2002), mapping rare ecosystems

may be even more difficult in complex landscapes

with a high number of classes.

We introduced expert knowledge to help reduce

misclassification partially caused by class imbal-

ances. The inclusion of thresholds and contextual

rules for two of the rare forest associations improved

their accuracies by reducing misclassification with

the more abundant associations. It is possible that

classification accuracies (particularly of rare classes)

could be increased further, for example, via the use of

alternate classification methods such as Artificial

Neural Networks (ANN), as well as decision trees

and bagging (bootstrap aggregating) or boosting (Lu

and Weng 2007). The goal of this paper, however,

was not to explore techniques to improve the

mapping of rare classes per se, but rather to examine

effects of post-classification processing and accuracy

assessment techniques on the portrayal of rare

classes.

Similar to other recent studies of the effects of a

Minimum Mapping Unit (MMU) on classification

accuracies (Verbyla and Hammond 1995; Wulder

et al. 2007), we found that a traditional accuracy

assessment tended to inflate error estimates. Others

have suggested this conservative bias may increase as

landscape heterogeneity increases (Verbyla and Ham-

mond 1995). Our results demonstrated that ignoring

fine-scale heterogeneity within the dominant ecosys-

tem can result in misleading accuracy estimates.

Many per-class accuracies differed substantially when

subdominant forest associations within the reference

map units were acknowledged. Several forest associ-

ations routinely occur as subdominant classes within a

patch as a result of localized variability in site

properties. As an example, associations found towards

the extremes of the soil moisture gradient (RS, RC,

and YG), rarely occur as contiguous patches as large

as the MMU. Accuracies for these forest associations

at the subdominant level were important to consider,

as the levels of error indicated by assessing only the

dominant class were misrepresentative.

It is important to note that the accuracy statistics

here are based on agreement between the classified

QuickBird image and the TEM, and the true accuracy

of the latter is quantitatively unknown. Error in the

reference data may have caused some pixels to be

identified as incorrectly classified when in fact they

were correct. For this reason it may be more

appropriate to view the accuracy statistics as referring

to the agreement between the two maps and not

necessarily true thematic accuracy.

The results of a pixel versus polygon based

accuracy assessment differed slightly, with no evident

trends. This finding likely resulted because the

location and size of the boundaries of our classified

objects were sometimes very different from those in

the reference data. A trend may have been found with

larger sample sizes. Others have suggested there are

both advantages and disadvantages to both pixel- and

polygon- based accuracy assessments (Stehman and

Czaplewski 1998). One difference between the two

methods is in the way the results are interpreted. A

polygon based assessment is less spatially explicit

than a pixel-based approach, with accuracies referring

to (the center of) larger areas rather than individual

pixels (Goodchild 1994). In our case, those areas were

the classified image objects. For applications relying

on patch-level information, such as landscape pattern
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analysis, polygon-based accuracy assessments may be

more appropriate.

Image smoothing is a commonly-used technique in

mapping and image processing. Post-classification

smoothing may be performed to implement a MMU,

as was the case here, or to reduce ‘‘salt-and-pepper’’

noise common in traditional pixel-based classifica-

tions (Gergel 2007; Saura 2002). Elsewhere,

smoothing has been found to impact the accuracy

of landscape pattern metrics association with frag-

mentation (Langford et al. 2006). We have shown

this impact may be especially great for rare ecosys-

tems. The accuracy of all three locally rare forest

associations increased after smoothing, yet this came

at the expense of substantial changes in the displayed

extent and configuration. Post-classification imple-

mentation of a minimum mapping unit changed areal

estimates by an average of 29%, decreased the

number of patches by an average of 73%, and

increased mean patch size estimates by an average of

285%. These differences in the described quantity

and spatial pattern of rare forest associations resulting

from post-classification smoothing correspond to the

findings of others (Kendall and Miller 2008; Saura

2002; Turner et al. 1989) despite the methodological

differences (e.g., in spatial resolution and classifica-

tion approach) among studies.

Implications

As the use of remotely sensed imagery for ecosystem

mapping and monitoring continues to increase, it is

essential to explicitly consider the techniques used to

produce and assess the maps used for conservation

and ecosystem management, particularly for rare

ecosystems. It is clear that map users must be

provided with a range of classification accuracy

statistics (Foody 2002), as well as the methods used

to assess the map accuracy. Indeed, it may be useful

to provide accuracy estimates using more than one

definition of map agreement in order to allow users to

choose the definition most relevant to their applica-

tion (Stehman et al. 2003). As an example, if the map

were used to estimate broad-scale forest productivity

(where only the dominant forest types are considered

relevant), a traditional accuracy assessment that

evaluates the agreement between dominant classes

within a reference polygon and the classification will

likely be sufficient. However, in conservation plan-

ning, where rare and fragmented classes are of

concern, a traditional approach to accuracy assess-

ment may be less appropriate. We found that when

considering only the dominant forest association

within a reference polygon, accuracies of rare classes

were often falsely low. An assessment that accounts

for fine-scale heterogeneity may better represent the

strengths and limitations of a map of rare ecosystems

which are of limited abundance, and which may also

occur in small, subdominant patches. Given these

issues, it is imperative that map producers ensure the

details of the accuracy assessment utilized (including

sample unit, sample size and definition of agreement)

are transparent to the map user (Wulder et al. 2006).

Key to the conservation of biodiversity is the

protection of a diversity of ecosystems. Decisions

regarding the types, amounts and locations of

ecosystems to protect often rely on the quantity and

spatial configuration of ecosystems as indicated on

maps, attributes which we have demonstrated will

differ when a MMU is implemented. Such errors

could greatly impact the management of rare ecosys-

tems, particularly if small, fragmented patches are

removed from a map after implementing a MMU. For

example, small wetlands may be missed in this way,

and thus not afforded the protection they require.

Further, conservation and management decisions

often rely on the results of spatially-explicit planning

models such as Marxan (Ball and Possingham 2000;

Possingham et al. 2000), utilizing classified ecosys-

tem maps as input. Errors in the arrangement and size

of patches of ecosystems may bias the output of such

models, resulting in non-optimal conservation deci-

sions. Therefore, post-classification smoothing may

be less appropriate in heterogeneous and fragmented

landscapes, and mapping techniques should be

avoided which alter the description of the quantity

and configuration of ecosystems.

Although the classification scheme utilized in our

study has been developed for British Columbia, the

portrayal of rare and fragmented classes on any map

would be expected to be impacted by post-classifica-

tion smoothing and different accuracy assessment

techniques. It may be interesting to consider whether

the direction or magnitude of impacts may differ in

other regions or when scaling up to a broader spatial

extent. Where the number of rare ecosystems is high,

accounting for only the dominant class of reference

1034 Landscape Ecol (2008) 23:1023–1037

123



polygons would likely lead to more misrepresentative

accuracy statistics than in landscapes dominated by

large, homogeneous ecosystems. In addition, one

might expect changes in the spatial configuration of

patches due to post-classification smoothing to be of

greatest magnitude in landscapes with a high number

of classes. Changes would also depend on the original

spatial configuration itself. By systematically varying

the level of landscape fragmentation, Saura (2002)

demonstrated that the decrease in presence of rare

classes on a map resulting from introduction of a

MMU was positively related to their level of frag-

mentation. Such studies based on replicated,

simulated landscapes together with case-studies such

as ours provide useful information regarding the

implications of post-classification smoothing as well

as of issues of accuracy assessment with respect to

rare classes. However, more research is needed to

fully understand the implications of these mapping

procedures and assessments for different mapping

applications, and for different landscapes.
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