
Sarah E GerardUniversity of Iowa | UI · Department of Biomedical Engineering
Sarah E Gerard
Doctor of Philosophy
About
57
Publications
3,988
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
497
Citations
Citations since 2017
Publications
Publications (57)
Chronic obstructive pulmonary disease (COPD) is an umbrella term used to define a collection of inflammatory lung diseases that cause airflow obstruction and severe damage to the lung parenchyma. This study investigated the robustness of image-registration-based local biomechanical properties of the lung in individuals with COPD as a function of Gl...
Vessel segmentation in the lung is an ongoing challenge. While many methods have been able to successfully identify vessels in normal, healthy, lungs, these methods struggle in the presence of abnormalities. Following radiotherapy, these methods tend to identify regions of radiographic change due to post-radiation therapytoxicities as vasculature f...
Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT for identifying peripheral airways disease in the form of air trapping. Additionally, co-registered inspiratory-expiratory volumes are used to derive several clinically relevant measures of local lung function. Acquiring CT at different volumes, however, increas...
Background
The pulmonary vasculature is essential for gas exchange and impacts both pulmonary and cardiac function. However, it is difficult to assess and its characteristics in the general population are unknown. We measured pulmonary blood volume (PBV) noninvasively using contrast enhanced, dual-energy computed tomography to evaluate its relation...
Background
Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource-constrained healthcare settings. Here, we describe a method for fully automated segmentation and quantification of pathological COVID...
Purpose
To describe the effects of timing of intubation in COVID-19 patients that fail helmet continuous positive airway pressure (h-CPAP) on progression and severity of disease.
Methods
COVID-19 patients that failed h-CPAP, required intubation, and underwent chest computed tomography (CT) at two levels of positive end-expiratory pressure (PEEP, 8...
Emphysema is a progressive disease characterized by irreversible tissue destruction and airspace enlargement, which manifest as low attenuation area (LAA) on CT images. Previous studies have shown that inflammation, protease imbalance, extracellular matrix remodeling and mechanical forces collectively influence the progression of emphysema. Elastic...
Background
There is a paucity of data concerning the optimal ventilator management in patients with COVID-19 pneumonia; particularly, the optimal levels of positive-end expiratory pressure (PEEP) are unknown. We aimed to investigate the effects of two levels of PEEP on alveolar recruitment in critically ill patients with severe COVID-19 pneumonia....
Background
Critically ill COVID-19 patients have pathophysiological lung features characterized by perfusion abnormalities. However, to date no study has evaluated whether the changes in the distribution of pulmonary gas and blood volume are associated with the severity of gas-exchange impairment and the type of respiratory support (non-invasive ve...
Local tissue expansion of the lungs is typically derived by registering computed tomography (CT) scans acquired at multiple lung volumes. However, acquiring multiple scans incurs increased radiation dose, time, and cost, and may not be possible in many cases, thus restricting the applicability of registration-based biomechanics. We propose a genera...
Rationale : Intratidal changes in regional lung aeration, as assessed with dynamic four-dimensional computed tomography (CT; 4DCT), may indicate the processes of recruitment and derecruitment, thus portending atelectrauma during mechanical ventilation. In this study, we characterized the time constants associated with deaeration during the expirato...
This study reports systematic longitudinal pathophysiology of lung parenchymal and vascular effects of asymptomatic COVID-19 pneumonia in a young, healthy never-smoking male. Inspiratory and Expiratory non-contrast along with contrast Dual-energy computed tomography (DECT) scans of the chest were performed at baseline on the day of acute COVID-19 d...
Unsupervised learning-based medical image registration approaches have witnessed rapid development in recent years. We propose to revisit a commonly ignored while simple and well-established principle: recursive refinement of deformation vector fields across scales. We introduce a recursive refinement network (RRN) for unsupervised medical image re...
Background: Respiratory physiotherapy (RPT) is considered essential in patients’ management during intensive care unit (ICU) stay. The role of RPT in critically ill COVID-19 patients is poorly described. We aimed to investigate the effects of RPT on oxygenation and lung aeration in critically ill COVID-19 patients admitted to the ICU. Methods: Obse...
Enhanced intrapulmonary gas transport enables oscillatory ventilation modalities to support gas exchange using extremely low tidal volumes at high frequencies. However, it is unknown whether gas transport rates can be improved by combining multiple frequencies of oscillation simultaneously. The goal of this study was to investigate distributed gas...
Objectives:
It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury.
Design:
Prospective, longitudinal imaging study.
Setting:
Research imaging facility at The Un...
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifica...
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifica...
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifica...
Mechanical ventilation strategies that reduce the heterogeneity of regional lung stress and strain may reduce the risk of ventilator-induced lung injury (VILI). In this study, we used registration of four-dimensional computed tomographic (4DCT) images to assess regional lung aeration and deformation in 10 pigs under baseline conditions and followin...
We present an open-source framework for pulmonary fissure completeness assessment. Fissure incompleteness has been shown to associate with emphysema treatment outcomes, motivating the development of tools that facilitate completeness estimation. Generally, the task of fissure completeness assessment requires accurate detection of fissures and defin...
This book constitutes the proceedings of the Second International Workshop on Thoracic Image Analysis, TIA 2020, held in Lima, Peru, in October 2020. Due to COVID-19 pandemic the conference was held virtually. COVID-19 infection has brought a lot of attention to lung imaging and the role of CT imaging in the diagnostic workflow of COVID-19 suspects...
Out-of-phase ventilation occurs when local regions of the lung reach their maximum or minimum volumes at breathing phases other than the global end inhalation or exhalation phases. This paper presents the N-phase local expansion ratio (LERN) as a surrogate for lung ventilation. A common approach to estimate lung ventilation is to use image registra...
Segmentation of lungs with acute respiratory distress syndrome (ARDS) is a challenging task due to diffuse opacification in dependent regions which results in little to no contrast at the lung boundary. For segmentation of severely injured lungs, local intensity and texture information, as well as global contextual information, are important factor...
Purpose:
CT ventilation imaging (CTVI) is being used to achieve functional avoidance lung cancer radiation therapy in three clinical trials (NCT02528942, NCT02308709, NCT02843568). To address the need for common CTVI validation tools, we have built the Ventilation And Medical Pulmonary Image Registration Evaluation (VAMPIRE) Dataset, and present t...
Background:
Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling. Characterization of airway changes on computed tomography has been challenging due to the complexity of the recurring branching patterns, and this can be better measured using fractal dimensions.
Methods:
We analyzed segmented airway trees of 8135 par...
Deep learning using convolutional neural networks (ConvNets) achieves high accuracy across many computer vision tasks, with the ability to learn multi-scale features and generalize across a variety of input data. In this work, we propose a deep learning framework that utilizes a coarse-to-fine cascade of 3D ConvNet models for segmentation of lung s...
Functional avoidance radiation therapy (RT) uses lung function images to identify and minimize irradiation of high-function lung tissue. Lung function can be estimated by local expansion ratio (LER) of the lung, which we define in this paper as the ratio of the maximum to the minimum local lung volume in a breathing cycle. LER is computed using def...
Pulmonary fissure detection in computed tomography (CT) is a critical component for automatic lobar segmentation. The majority of fissure detection methods use feature descriptors that are hand-crafted, low-level, and have local spatial extent. The design of such feature detectors is typically targeted towards normal fissure anatomy, yielding low s...
Purpose:
Regional ventilation and its response to radiation dose can be estimated using four-dimensional computed tomography (4DCT) and image registration. This study investigated the impact of radiation therapy (RT) on ventilation and the dependence of radiation-induced ventilation change on pre-RT ventilation derived from 4DCT.
Methods and mate...
Four-dimensional computed tomography (4DCT) is regularly used to visualize tumor motion in radiation therapy for lung cancer. These 4DCT images can further be analyzed to estimate local ventilation by finding a dense correspondence map between the end inhalation and the end exhalation CT image volumes. The Jacobian determinant of the correspondence...
Carbohydrate response element binding protein (ChREBP) regulates cellular glucose and lipid homeostasis. Although ChREBP is highly expressed in many key metabolic tissues, the role of ChREBP in most of those tissues and consequent effects on whole-body glucose and lipid metabolism are not well understood. Therefore, we generated a transgenic mouse...
To assess regional changes in human lung ventilation and mechanics using four-dimensional computed tomography (4DCT) and deformable image registration. This work extends our prior analysis of the entire lung to a lobe-based analysis.
4DCT images acquired from 20 patients prior to radiation therapy (RT) were used for this analysis. Jacobian ventilat...