About
193
Publications
119,040
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,689
Citations
Introduction
My research focuses on carbon cycling in terrestrial ecosystems, with a strong focus on (1) the feedback between ecosystems and climate change and (2) enhanced weathering and other nature-based solutions for CO2 removal. Through targeted experiments I examine fundamental processes while general patterns and drivers of variation are verified with databases and data syntheses.
Additional affiliations
October 2011 - present
Publications
Publications (193)
Remote-sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP) — the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their relia...
Terrestrial enhanced silicate weathering is a CO2 removal technology involving the application of ground silicate materials to agricultural soils. Next to CO2 sequestration, it can improve soil fertility and crop growth, but silicate materials can also contain toxic trace elements. In a mesocosm experiment, we investigated the effect of basalt, con...
Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO2 and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been s...
Enhanced silicate rock weathering (ERW) is an emerging strategy for carbon dioxide removal (CDR) from the atmosphere to mitigate anthropogenic climate change. ERW aims at promoting soil inorganic carbon sequestration by accelerating geochemical weathering processes. Theoretically, ERW may also impact soil organic carbon (SOC), the largest carbon po...
Since its publication, the authors of Fang et al. (2023) have identified an error in their article. The Y ordinate scales given in Fig. 5(b,e,g,j,l,o) were incorrectly set during figure compilation. The correct Fig. 5 and its associated legend are given below. We apologize to our readers for this error.
The development of carbon dioxide removal methods, coupled with decreased CO2 emissions, is fundamental to achieving the targets outlined in the Paris Agreement limiting global warming to 1.5 °C. Here we are investigating the importance of the organic carbon feedstock to support silicate mineral weathering in small-scale flow through bioreactors an...
Plant biomass production (BP), nitrogen uptake (Nup) and their ratio, and nitrogen use efficiency (NUE) must be quantified to understand how nitrogen (N) cycling constrains terrestrial carbon (C) uptake. But the controls of key plant processes determining Nup and NUE, including BP, C and N allocation, tissue C:N ratios and N resorption efficiency (...
Global warming is altering the intra-annual variability of precipitation patterns in the mid-latitudes, including a shift towards longer dry and wet spells compared to historic averages. Such fluctuations will likely alter soil water and nutrient dynamics of managed ecosystems which could negatively influence their functioning (e.g., productivity a...
Enhanced weathering (EW) of silicate rocks is a negative emission technology that captures CO2 from the atmosphere. Olivine (Mg2SiO4) is a fast weathering silicate mineral that can be used for EW and is abundant in dunite rock. In addition to CO2 sequestration, EW also has co-benefits in an agricultural context. Adding silicate minerals to soils ca...
Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long‐term warming has been poorly studied.
Here, we characterized the impacts of decadal geothermal warming at two levels (on average +...
Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effec...
(1) Land surface models require inputs of temperature and moisture variables to generate predictions of gross primary production (GPP). Differences between leaf and air temperature vary temporally and spatially and may be especially pronounced under conditions of low soil moisture availability. The Sentinel-3 satellite mission offers estimates of t...
Global net land carbon uptake or net biome production (NBP) has increased during recent decades¹. Whether its temporal variability and autocorrelation have changed during this period, however, remains elusive, even though an increase in both could indicate an increased potential for a destabilized carbon sink2,3. Here, we investigate the trends and...
Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2, temperature, nutrient and water...
Supporting information for publication “When things get MESI: the Manipulation Experiments Synthesis Initiative – a coordinated effort to synthesize terrestrial global change experiments” by Van Sundert, Leuzinger et al. (2023).
Plant biomass production (BP), nitrogen uptake (Nup) and their ratio, nitrogen use efficiency (NUE), must be quantified to understand how nitrogen (N) cycling constrains terrestrial carbon (C) uptake. But the controls of key plant processes determining Nup and NUE, including BP, C and N allocation, tissue C:N ratios and N resorption efficiency (NRE...
effects of experimental eCO2, warming, nutrient addition and/or water addition/removal on carbon and nutrient cycle related variables
We welcome contributions to the database on github.com/MESI-organization/mesi-db, or by email.
When data are used, please cite both the database doi as well as the accompanying manuscript:
Van Sundert, K., Leuzing...
Carbon dioxide removal (CDR) that increases the area of forest cover or bio-energy crops inherently competes for land with crop and livestock systems, compromising food security, or will encroach natural lands, compromising biodiversity. Mass deployment of these terrestrial CDR technologies to reverse climate change therefore cannot be achieved wit...
Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the climate system remains highly uncertain, especially in subsoils . Using natural geothermal soil warming gradients of up to +6.4 ∘C in subarctic grasslands , we show that soil organic carbon (SOC) stocks decline strongly and linearly with warm...
Sun-induced chlorophyll fluorescence (SIF) is one of the most promising remote-sensing signals to assess spatio-temporal variation in photosynthesis. Yet, it has been shown that the positive linear relationship of SIF and photosynthesis, often reported from satellite and proximal remote sensing, is mainly driven by the amount of absorbed photosynth...
Enhanced weathering (EW) of silicate rocks can remove CO2 from the atmosphere, while potentially delivering co-benefits for agriculture (e.g., reduced nitrogen losses, increased yields). However, quantification of inorganic carbon sequestration through EW and potential risks in terms of heavy metal contamination have rarely been assessed. Here, we...
Phosphorus (P) is an essential macronutrient for plant growth and one of the least available nutrients in soil. P limitation is often a major constraint for plant growth globally. Although P addition experiments have been carried out to study the long-term effects on yield, data on P addition effects on seasonal variation in leaf-level photosynthes...
Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to...
Priming is the change of microbial soil organic matter (SOM) decomposition induced by a labile carbon (C) source. It is recognised as an important mechanism influencing soil C dynamics and C storage in terrestrial ecosystems. Microbial nitrogen (N) mining in SOM and preferential substrate utilisation, i.e., a shift in microbial carbon use from SOM...
Long-term soil warming and nitrogen (N) availability have been shown to affect microbial biomass and community composition. Altered assimilation patterns of recent plant-derived C and changes in soil C stocks following warming as well as increased N availability are critical in mediating the direction and magnitude of these community shifts. A ¹³C...
Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the cli- mate system remains highly uncertain, especially in subsoils (Ilyina and Friedlingstein, 2016; Shi et al., 2018). Using natural geothermal soil warming gradients of up to +6.4 °C in subarctic grasslands (Sigurdsson et al., 2016), we show...
Terrestrial biosphere models typically use the biochemical model of Farquhar, von Caemmerer, and Berry (1980) to simulate photosynthesis, which requires accurate values of photosynthetic capacity of different biomes. However, data on tropical forests are sparse and highly variable due to the high species diversity, and it is still highly uncertain...
Environmental circumstances shaping soil microbial communities have been studied extensively, but due to disparate study designs it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 sampled across regional plant productivity gradien...
A number of negative emission technologies (NETs) have been proposed to actively remove CO 2 from the atmosphere, with enhanced silicate weathering (ESW) as a relatively new NET with considerable climate change mitigation potential. Models calibrated to ESW rates in lab experiments estimate the global potential for inorganic carbon sequestration by...
Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we inves...
Nutrients and water are resources vital to all life on Earth. Unsurprisingly, therefore, current global atmospheric and climatic changes modifying the nutrient and water cycles have further cascading effects on the functioning of terrestrial ecosystems and services they provide to society, including biomass production and carbon storage. Despite th...
Terrestrial biosphere models typically use the biochemical model of Farquhar, von Caemmerer and Berry (1980) to simulate photosynthesis, which requires accurate values of photosynthetic capacity of different biomes. However, data on tropical forests are sparse and highly variable due to the high species diversity, and it is still highly uncertain h...
Plant community biomass production is co‐dependent on climatic and edaphic factors that are often covarying and non‐independent. Disentangling how these factors act in isolation is challenging, especially along large climatic gradients that can mask soil effects. As anthropogenic pressure increasingly alters local climate and soil resource supply u...
Meta‐analyses enable synthesis of results from globally distributed experiments to draw general conclusions about the impacts of global change factors on ecosystem function. Traditional meta‐analyses, however, are challenged by the complexity and diversity of experimental results. We illustrate how several key issues can be addressed by a multivari...
Despite being an essential macronutrient for plant growth, phosphorus (P) is one of the least available nutrients in soils and P limitation is often a major constraint for plant growth globally. Although P addition experiments have been carried out to study the long-term effects on the yield, data on P addition effects to seasonal variation in leaf...
Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO2) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in nat...
Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year¹, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2)...
Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full‐factorial NPK‐ad...
It is well established that nutrient addition influences ecosystem features such as productivity, carbon storage, soil acidification and biodiversity. Less studied are long-term effects of sustained fertiliser application on forest soil characteristics and nutrient supplies, and especially direct and indirect mechanisms underlying changes. We inves...
Societal Impact Statement
Mitigating climate change and increasing agricultural sustainability are twin challenges society faces in the upcoming decades. One measure that can contribute to reducing atmospheric CO2 is "enhanced weathering" through application of ground silicates. Here we propose that mycorrhizal fungi may critically contribute to th...
Plant community biomass production is co-dependent on climatic and edaphic factors that are often covarying and non-independent. Disentangling how these factors act in isolation is challenging, especially along large climatic gradients that can mask soil effects. As anthropogenic pressure increasingly alters local climate and soil resource supply u...
Global climate change is currently already impacting the world as we know it and will do so even more in the future. An increase in the frequency of extreme weather events and intensification of the global hydrological cycle are among the expected consequences. Changes in precipitation patterns and altered evapotranspiration will lead to prolonged...
The article was published bearing a typographical error to the second author name listed. The author group regret the error and the name should be referenced and credited as Jakob Zscheischler and not the former.
Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and projections for the future. Here, we present a new method for creating realistic climate forcing for man...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Leaf‐level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over‐ or underestimation of modeled photosynthesis, it is critical to know at which photosynt...
Plant carbon (C) partitioning ‐ the relative use of photosynthates for biomass production, respiration, and other plant functions ‐ is a key but poorly understood ecosystem process. In an experiment with Zea mays, with or without arbuscular mycorrhizal fungi (AMF), we investigated the effect of phosphorus (P) fertilization and AMF on plant C partit...
Background and aims
Biological fixation of atmospheric nitrogen (N2) is the main pathway for introducing N into unmanaged ecosystems. While recent estimates suggest that free-living N fixation (FLNF) accounts for the majority of N fixed in mature tropical forests, the controls governing this process are not completely understood. The aim of this st...
Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cran...
Background and aim -
When soil is rewetted after drought, typically a transient pulse of mineralization and other microbial processes occur. This “Birch effect” translates into a temporarily elevated soil carbon dioxide efflux (SCE) and may alter nutrient availability. While rewetting effects on SCE have been frequently studied, effects on soil nu...