
Sara N Richter- PhD
- Professor (Full) at University of Padua
Sara N Richter
- PhD
- Professor (Full) at University of Padua
About
158
Publications
32,463
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,618
Citations
Introduction
Current institution
Publications
Publications (158)
Well-differentiated/dedifferentiated liposarcomas (WD/DDLPSs) account for ∼60% of all liposarcomas. They have a poor prognosis due to limited therapeutic options. WD/DDLPSs are characterized by aberrant expression of mouse double minute 2 (MDM2), which forms G-quadruplexes (G4s) in its promoter. Here, we investigated the possibility of targeting WD...
i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence. Howe...
G-quadruplexes (G4s) are non-canonical nucleic acid structures present in guanine-rich sequences, notably within cancer-associated genomic areas like telomeres and oncogene promoters. Naphthalene diimide derivatives have emerged as promising G4-binding molecules due to their versatility and high affinity towards these structures. This review focuse...
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a global health threat due to increasing drug resistance and high mortality rates. To combat tuberculosis effectively, novel therapeutic targets are urgently needed. G-quadruplexes (G4s) represent promising candidates for this purpose. In this study, we successfully appl...
G-quadruplexes (G4s) are non-canonical nucleic acid structures that form in guanine (G)-rich genomic regions. X-linked dystonia parkinsonism (XDP) is an inherited neurodegenerative disease in which a SINE–VNTR–Alu (SVA) retrotransposon, characterised by amplification of a G-rich repeat, is inserted into the coding sequence of TAF1, a key partner of...
DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such struc...
i-Motifs are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence. However, r...
G-rich nucleic acid sequences can assume, under physiologic conditions, non-B secondary structures called G-quadruplexes (G4). The human genome contains thousands of putative quadruplex forming sequences (PQS), of which telomeres are the most extensively studied. PQS are frequently found in the promoters of oncogenes and transcription factors rathe...
The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent resistance. However, it remains unclear whether different SARS-CoV-2 variants induc...
Human immunodeficiency virus 1 (HIV-1) therapeutic regimens consist of three or more drugs targeting different steps of the viral life cycle to limit the emergence of viral resistance. In line with the multitargeting strategy, here we conjugated a naphthalene diimide (NDI) moiety with a tetraazacycloalkane to obtain novel naphthalene diimide (NDI)–...
i-Motifs (iMs) are four-stranded DNA structures that form at cytosine (C)-rich sequences in acidic conditions in vitro. Their formation in cells is still under debate. We performed CUT&Tag sequencing using the anti-iM antibody iMab and showed that iMs form within the human genome in live cells. We mapped iMs in two human cell lines and recovered C-...
Guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4s are found in the human genome and in the genomes of human pathogens, where they are involved in the regulation of gene expression and genome replication. G4s have been proposed as novel phar...
Background:
Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability, and telomere dysfunction is an important cause of acquired genomic alterations. Telomeric repeat-containing RNA (TERRA) transcripts are long non-coding RNAs involved in telomere stability through the interaction with shelterin complex. Dysregul...
The high mutation rate of SARS-CoV-2 leads to emergence of several variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors – cell proteins required for viral replication - would help avoid resistance. However, whether different SARS-CoV-2 variants induce conserved cell responses and ex...
With the emergence of new viruses in the human population and the fast mutation rates of existing viruses, new antiviral targets and compounds are needed. Most existing antiviral drugs are active against proteins of a handful of viruses. Most of these proteins in the end affect viral nucleic acid processing, but direct nucleic acid targeting is les...
G-quadruplexes (G4s) are non-canonical nucleic acid structures that key biological processes, from transcription to genome replication both in humans and viruses. The herpes simplex virus-1 (HSV-1) genome is prone to form G4s, which along with proteins regulate its viral cycle. General G4 ligands have been shown to hamper the viral cycle, pointing...
The DNA secondary structures that deviate from the classic Watson and Crick base pairing are increasingly being reported to form transiently in the cell and regulate specific cellular mechanisms. Human viruses are cell parasites that have evolved mechanisms shared with the host cell to support their own replication and spreading. Contrary to human...
Background:
Vitamin D exerts multiple beneficial effects in humans, including neuronal, immune, and bone homeostasis and the regulation of cardiovascular functions. Recent studies correlate vitamin D with cancer cell growth and survival, but meta-analyses on this topic are often not consistent.
Methods:
A systematic search of the PubMed database...
Blockers of the renin-angiotensin system (RAS) have been reported to increase the angiotensin converting enzyme (ACE)2, the cellular receptor of SARS-CoV-2, and thus the risk and course of COVID-19. Therefore, we investigated if angiotensin (Ang) II and RAS blockers affected ACE2 expression and SARS-CoV-2 infectivity in human epithelial bronchial C...
HIV-1 integrated long terminal repeat (LTR) promoter activity is modulated by folding of its G-rich region into non-canonical nucleic acids structures, such as G-quadruplexes (G4s), and their interaction with cellular proteins. Here, by a combined pull-down/mass spectrometry/Western-blot approach, we identified the fused in liposarcoma (FUS) protei...
In mammalian cells, telomerase transcribes telomeres in large G-rich non-coding RNA, known as telomeric repeat-containing RNA (TERRA), which folds into noncanonical nucleic acid secondary structures called G-quadruplexes (G4s). Since TERRA G4 has been shown to be involved in telomere length and translation regulation, it could provide valuable insi...
In human cells, nucleic acids adopt several non-canonical structures that regulate key cellular processes. Among them, G-quadruplexes (G4s) are stable structures that form in guanine-rich regions in vitro and in cells. G4 folded/unfolded state shapes numerous cellular processes, including genome replication, transcription, and translation. Moreover...
G-quadruplexes (G4s) are implicated in pathological processes such as cancer and infective diseases. Their targeting with G4-ligands has shown therapeutic capacity. Most of the current G4-ligands are planar molecules, do not discriminate among G4s, and have poor druglike properties. The available methods to identify compounds selective for one sing...
G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of the presence and role of G4s in viral genomes...
Cell identity is maintained by activation of cell-specific gene programs, regulated by epigenetic marks, transcription factors and chromatin organization. DNA G-quadruplex (G4)-folded regions in cells were reported to be associated with either increased or decreased transcriptional activity. By G4-ChIP-seq/RNA-seq analysis on liposarcoma cells we c...
G-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein t...
Noncoding RNAs are functional transcripts that are not translated into proteins. They represent the largest portion of the human transcriptome and have been shown to regulate gene expression networks in both physiological and pathological cell conditions. Research in this field has made remarkable progress in the comprehension of how aberrations in...
The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that spe...
Well-differentiated liposarcoma (WDLPS) is a malignant neoplasia hard to diagnose and treat. Its main molecular signature is amplification of the MDM2-containing genomic region. The MDM2 oncogene is the master regulator of p53: its overexpression enhances p53 degradation and inhibits apoptosis, leading to the tumoral phenotype. Here, we show that t...
Cell identity is maintained by activation of cell-specific gene programs, regulated by epigenetic marks, transcription factors and chromatin organization. DNA G-quadruplex (G4)-folded regions in cells were reported to be associated with either increased or decreased transcriptional activity. By G4 ChIP-seq/RNA-seq analysis on liposarcoma cells we c...
Here we report on the design, preparation and investigation of four analogues of the anti-HIV G-quadruplex-forming Hotoda’s aptamer, based on an unprecedented linear topology. In these derivatives, four TGGGAGT tracts have been joined together by exploiting 3'-3' and 5'-5' inversion of polarity sites formed by canonical phosphodiester bonds or a gl...
G-quadruplexes (G4s), four-stranded nucleic acid structures that adopt several distinctive conformations, are abundant at gene promoters and have been proposed as transcription regulatory elements. G4s form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4 as the protein th...
Viruses are the most abundant organisms on our planet, affecting all living beings: some of them are responsible for massive epidemics that concern health, national economies and the overall welfare of societies. Although advances in antiviral research have led to successful therapies against several human viruses, still some of them cannot be erad...
Targeting of G-quadruplexes, non-canonical conformations that form in G-rich regions of nucleic acids, has been proposed as a novel therapeutic strategy toward several diseases, including cancer and infections. The unavailability of highly selective molecules targeting a G-quadruplex of choice has hampered relevant applications. Herein, we describe...
Designing small molecules capable to break down G4 structures in mRNA (RG4s) offers an interesting approach to cancer therapy. Here, we have studied cationic porphyrins (CPs) bearing an alkyl chain up to 12 carbons, as they bind to RG4s while generating reactive oxygen species upon photoirradiation. FACS and confocal microscopy showed that the desi...
I-motifs are non-canonical nucleic acids structures characterized by intercalated H-bonds between hemi-protonated cytosines. Evidence on the involvement of i-motif structures in the regulation of cellular processes in human cells has been consistently growing in the recent years. However, i-motifs within non-human genomes have never been investigat...
G-quadruplexes that form in the HIV-1 RNA genome hinder the progression of reverse transcriptase in vitro, but not in infected cells. We investigated the possibility that the HIV-1 nucleocapsid protein NCp7, which remains associated with the viral RNA during reverse transcription, modulated HIV-1 RNA G-quadruplex stability. By electrophoresis, circ...
Melanoma is the most aggressive and deadly type of skin cancer. Despite the advent of targeted therapies directed against specific oncogene mutations, melanoma remains a tumor that is very difficult to treat, and ultimately remains incurable. In the past two decades, stabilization of the non-canonical nucleic acid G-quadruplex structures within onc...
G-quadruplexes (G4s) are noncanonical nucleic acids structures involved in key regulatory and pathological roles in eukaryotes, prokaryotes, and viruses: the development of specific antibodies and fluorescent probes represent an invaluable tool to understand their biological relevance. We here present three protocols for the visualization of G4s in...
Naphthalene diimide (NDI) dyads exhibiting a different substitution pattern and linker length have been synthesised and evaluated as G‐quadruplex (G4) ligands, by investigating their cytotoxicity in selected cell lines. The dyads with the long C7 linker exhibit extremely low IC50 values, below 10 nm, on different cancer cell lines. Contrary, the dy...
Human Alphaherpesviruses comprise three members, herpes simplex virus (HSV) 1 and 2 and varicella zoster virus (VZV). These viruses are characterized by a lytic cycle in epithelial cells and latency in the nervous system, with lifelong infections that may periodically reactivate and lead to serious complications, especially in immunocompromised pat...
Retroviruses infect almost all vertebrates, from humans to domestic and farm animals, from primates to wild animals, where they cause severe diseases, including immunodeficiencies, neurological disorders and cancer. Non-human retroviruses have also been recently associated to human diseases. To date no effective treatments are available, therefore...
G-quadruplexes are four-stranded nucleic acids structures that can form in guanine-rich sequences. Following the observation that G-quadruplexes are particularly abundant in genomic regions related to cancer, such as telomeres and oncogenes promoters, several G-quadruplex-binding molecules have been developed for therapeutic purposes. Among them, n...
G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in organisms. G-quadruplexes are present in eukaryotes, prokaryotes, and viruses. In the latter, mounting evidence indicates their key biological activity. Since data on viruses are scattered, we here present a comprehensive analysis...
Guanine‐rich regions of nucleic acids can fold into G‐quadruplex, a secondary structure formed by four strands of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). In the G‐quadruplex, guanines bind via Hoogsteen hydrogen bonds to yield the G‐quartet. Two or more G‐quartets stack on top of each other to form the G‐quadruplex, which can adopt d...
[1,2,3]Triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines were synthesized with the aim to investigate their photocytotoxic activity. Upon irradiation, oxazolo-naphtapyridines induced light-dependent cell death at nanomolar/low micromolar concentrations (EC50 0.01–6.59 μM). The most photocytotoxic derivative showed very h...
A copper complex embedded in the structure of a water-soluble naphthalene diimide has been designed to bind and cleave G-quadruplex DNA. We describe the properties of this ligand, including its catalytic activity in the generation of ROS. FRET melting, CD, NMR, gel sequencing, and mass spectrometry experiments highlight a unique and unexpected sele...
Nucleic acids can form noncanonical four-stranded structures called G-quadruplexes. G-quadruplex-forming sequences are found in several genomes including human and viruses. Previous studies showed that the G-rich sequence located in the U3 promoter region of the HIV-1 long terminal repeat (LTR) folds into a set of dynamically interchangeable G-quad...
Stabilization of the G-quadruplexes (G4s) within the androgen receptor (AR) gene promoter to block transcription may represent an innovative approach to interfere with aberrant AR signaling in castration resistant prostate cancer (CRPC). A library of differently functionalized naphthalene diimides (NDIs) was screened for their ability to stabilize...
G-quadruplex (G4) nucleic acid structures have been reported to be involved in several human pathologies, including cancer, neurodegenerative disorders and infectious diseases; however, G4 targeting compounds still need implementation in terms of drug-like properties and selectivity in order to reach the clinical use. So far, G4 ligands have been m...
G-quadruplexes are non-canonical nucleic acid structures that control transcription, replication, and recombination in organisms. G-quadruplexes are present in eukaryotes, prokaryotes, and viruses. In the latter, mounting evidence indicates their key biological activity. Since data on viruses are scattered, we here present a comprehensive analysis...
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that form within guanine-rich strands of regulatory genomic regions. G4s have been extensively described in the human genome, especially in telomeres and oncogene promoters; in recent years the presence of G4s in viruses has attracted increasing interest. Indeed, G4s have bee...
Background:
G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a high sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientat...
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), one of the top 10 causes of death worldwide in 2015. The recent emergence of strains resistant to all current drugs urges the development of compounds with new mechanisms of action. G-quadruplexes are nucleic acids secondary structures that may form in G-rich regions to epigene...
DNA nucleic acids can arrange into different and intriguing secondary structures other than the canonical Watson-Crick double-helix, such as triplexes, G-quadruplexes and hairpins, to name a few. C-rich strands are able to adopt the so called i-motif structures, which have been found in key regulatory regions of the human genome, like telomeres and...
G-quadruplexes are nucleic acids structures stabilized by physiological concentration of potassium ions. Because low stability G-quadruplexes are hardly detectable by mass spectrometry, we optimized solvent conditions: isopropanol in a triethylamine/hexafluoroisopropanol mixture highly increased G-quadruplex sensitivity with no modification of the...
Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation...
G-quadruplexes (G4s) are nucleic acids secondary structures, epigenetic regulators in cells and viruses. In herpes simplex virus 1 (HSV-1)-infected cells, G4s are massively present during viral replication. We here aimed at investigating the possibility to target the HSV-1 G4s by a core extended naphtalene diimide (c-exNDI) G4 ligand. Biophysical a...
G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins mo...
Transparency document.
G-quadruplexes are four-stranded conformations of nucleic acids that act as cellular epigenetic regulators. A dynamic G-quadruplex forming region in the HIV-1 LTR promoter represses HIV-1 transcription when in the folded conformation. This activity is enhanced by nucleolin, which induces and stabilizes the HIV-1 LTR G-quadruplexes. In this work by...
Aggregation, red-NIR emission and light-up upon nucleic acid G-quadruplex binding have been investigated for a prototype core-extended naphthalene diimide, which is capable of fast cellular entry and nucleolar localization. Both high-level colocalization with an anti-G-quadruplex antibody and nucleolin displacement reveal that the compound targets...
Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, whic...
Background:
Recent findings demonstrated that, in mammalian cells, telomere DNA (Tel) is transcribed into telomeric repeat-containing RNA (TERRA), which is involved in fundamental biological processes, thus representing a promising anticancer target. For this reason, the discovery of dual (as well as selective) Tel/TERRA G-quadruplex (G4) binders...
Background:
G-quadruplexes (G4s) are four-stranded nucleic acid structures that form in G-rich sequences. Nucleolin (NCL) is a cellular protein reported for its functions upon G4 recognition, such as induction of neurodegenerative diseases, tumor and virus mechanisms activation. We here aimed at defining NCL/G4 binding determinants.
Methods:
Ele...
We have previously shown that clusters of guanine quadruplex (G4) structures can form in the human herpes simplex-1 (HSV-1) genome. Here we used immunofluorescence and immune-electron microscopy with a G4-specific monoclonal antibody to visualize G4 structures in HSV-1 infected cells. We found that G4 formation and localization within the cells was...
G-quadruplexes (G4s) are non-canonical nucleic acid conformations that may form in G-rich sequences. G4s have been shown to control eukaryotic cell transcription and, in general, to act as epigenetic signals for gene expression. We have recently shown that the long terminal repeat (LTR)promoter of the human immunodeficiency virus-1 (HIV-1) can actu...
Naphthalene diimides with one or two centrosymmetric arylethynyl moieties capable of synergic donor and acceptor hydrogen bonding exhibit promising binding properties and selectivity towards parallel G-quadruplex (G4) nucleic acids (c-myc, bcl-2 and parallel hTel22). The hydrogen-bonding network involving the phosphate backbone and outside rim of t...
A new series of pyrrolo[3′,2′:6,7]cyclohepta[1,2-d]pyrimidin-2-amines, was conveniently prepared using a versatile and high yielding multistep sequence. A good number of derivatives was obtained and the cellular photocytotoxicity was evaluated in vitro against three different human tumor cell lines with EC50 (0.08–4.96 μM) values reaching the nanom...
Medullary thyroid cancer (MTC) relies on the aberrant activation of RET proto-oncogene. Though targeted approaches (i.e., tyrosine kinase inhibitors) are available, the absence of complete responses and the onset of resistance mechanisms indicate the need for novel therapeutic interventions. Due to their role in regulation of gene expression, G-qua...
The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription
and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures,
represents an attractive target to inhibit HIV transcription and replication. In this work, we re...
Background
Salmonella enterica is the zoonotic agent most frequently responsible for foodborne infections in humans worldwide. In this work the presence of S. enterica was investigated in 734 unique enteropathogenic isolates collected from human patients between 2011 and 2012.
Results
All Salmonella spp. isolates were subjected to serotyping and a...
Oligonucleotides used in antiviral assays and surface plasmon resonance (SPR) analysis.
Anti-HIV-1 activity and cytotoxicity of control oligonucleotides CRO26, LTR-III and SCRA.
Surface plasmon resonance (SPR) binding analysis of nucleolin (NCL) and gp120 with control oligonucleotides LTR-III, CRO26 and SCRA. (A, B) SPR sensorgrams of the binding of the G-quadruplex (G4)-forming oligonucleotide LTR-III (concentrations of 15.6, 31.2, 62.5, 125, 250, 500 and 1000 nM) to nucleolin (A) or HIV-1IIIB gp120 (B). (C, D) SPR sensor...
AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediat...
We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 Long Terminal Repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding towards the viral G-quadruplex structures. We synthesized naphthalene diimide de...
Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull...
Guanine-rich nucleic acids can fold into G-quadruplexes, secondary structures implicated in important regulatory functions at the genomic level in humans, prokaryotes and viruses. The remarkably high guanine content of the Herpes simplex virus-1 (HSV-1) genome prompted us to investigate both the presence of G-quadruplex forming sequences in the vir...
G-quadruplexes (G-4s) are G-rich non-canonical four-stranded conformations of nucleic acids that act as structural switches of cellular processes. Very little is known on the role of G-4s in viruses yet. The human immunodeficiency virus-1 (HIV-1) and the human herpes simplex virus-1 (HSV-1) are important human pathogens: HIV-1 is the etiological ag...
A photoreactive molecular dye targeting the G-quadruplex nucleic acid (G4) of the human telomeric sequence Tel22, and several mutated analogues, was activated by green light (λ=532 nm). Highly selective covalent modification of G4 versus single-stranded and double-stranded DNA was achieved with efficiency up to 64 %. The phenoxyl radical was genera...