Sara Marie Blichner

Sara Marie Blichner
Stockholm University | SU · Department of Environmental Science and Analytical Chemistry (ACES)

PhD

About

8
Publications
571
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
67
Citations
Introduction
Climate modelling, aerosol modelling, aerosol-cloud interactions, biogenic secondary organic aerosol climate interactions
Education
September 2016 - April 2021
University of Oslo
Field of study
  • Meteorology/climate

Publications

Publications (8)
Article
Full-text available
Historically, aerosols of anthropogenic origin have offset some of the warming from increased atmospheric greenhouse gas concentrations. The strength of this negative aerosol forcing, however, is highly uncertain – especially the part originating from cloud–aerosol interactions. An important part of this uncertainty originates from our lack of know...
Article
Full-text available
Aerosol–cloud interactions contribute to a large portion of the spread in estimates of climate forcing, climate sensitivity and future projections. An important part of this uncertainty is how much new particle formation (NPF) contributes to cloud condensation nuclei (CCN) and, furthermore, how this changes with changes in anthropogenic emissions....
Preprint
Full-text available
Historically, aerosols of anthropogenic origin have offset some of the warming from increased atmospheric green- house gas concentrations. The strength of this negative aerosol forcing is, however, highly uncertain – especially the part originating from cloud-aerosol interactions. An important part of this uncertainty originates from our lack of kn...
Preprint
Full-text available
Aerosol-cloud interactions contribute with a large portion of the spread in estimates of climate forcing, climate sensitivity and future projections. An important part of this uncertainty is how much new particle formation (NPF) contributes to cloud condensation nuclei (CCN), and furthermore, how this changes with changes in anthropogenic emissions...
Article
Full-text available
Biogenic volatile organic compounds (BVOCs) emitted from vegetation are oxidised in the atmosphere and can form aerosol particles either by contributing to new particle formation or by condensing onto existing aerosol particles. As the understanding of the importance of BVOCs for aerosol formation has increased over the years, these processes have...
Preprint
Full-text available
Abstract. Biogenic volatile organic compounds (BVOCs) emitted from vegetation are oxidized in the atmosphere and can form aerosol particles either by contributing to new particle formation or by condensing onto existing aerosol particles. As the understanding of the importance of BVOCs for aerosol formation has increased over the past 10 years thes...
Article
Full-text available
Both higher temperatures and increased CO2 concentrations are (separately) expected to increase the emissions of biogenic volatile organic compounds (BVOCs). This has been proposed to initiate negative climate feedback mechanisms through increased formation of secondary organic aerosol (SOA). More SOA can make the clouds more reflective, which can...
Article
Full-text available
Both higher temperatures and increased CO2 concentrations are (separately) expected to increase the emissions of biogenic volatile organic compounds (BVOCs). This has been proposed to initiate negative climate feedback mechanisms through increased formation of secondary organic aerosol (SOA). More SOA can make the clouds more reflective, which can...

Network

Cited By