
Santosh Pandit- Docent
- Senior Researcher at Chalmers University of Technology
Santosh Pandit
- Docent
- Senior Researcher at Chalmers University of Technology
Expertise on Biomedical utilization of Nanomaterials
and Looking for a new role
About
103
Publications
22,331
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,281
Citations
Introduction
Bacterial Biofilms, Biomedical Coatings, Dental Caries, Natural Products, Antimicrobials, 2D materials
Current institution
Additional affiliations
July 2019 - present
July 2015 - June 2019
February 2014 - March 2015
Education
March 2011 - February 2014
Publications
Publications (103)
We present a method where a bioactive functional layer on an electrically conductive thin film with high sheet resistance can be effectively used for complementary electrochemical impedance spectroscopy biosensing. The functional layer's properties, such as double-layer capacitance and charge-transfer resistance, influence the complex impedance of...
Mechano-bactericidal (MB) surfaces have been proposed as an emerging strategy for preventing biofilm formation. Unlike antibiotics and metal ions that chemically interfere with cellular processes, MB nanostructures cause physical damage to the bacteria. The antibacterial performance of artificial MB surfaces relies on rational control of surface fe...
Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from enviro...
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle‐bas...
For magnetic field orientation of nonstructures to become a viable method to create high performance multifunctional nanocomposites, it is of paramount importance to develop a method that is easy to implement and that can induce long‐range uniform nanostructural alignment. To overcome this challenge, inspired by low field nuclear magnetic resonance...
In bacteria, attenuation of protein-tyrosine phosphorylation occurs during oxidative stress. The main described mechanism behind this effect is the H 2 O 2 -triggered conversion of bacterial phospho-tyrosines to protein-bound 3,4-dihydroxyphenylalanine. This disrupts the bacterial tyrosine phosphorylation-based signaling network, which alters the b...
Indole‐3‐acetic acid (IAA) assumes a pivotal role as a phytohormone of utmost importance, intricately orchestrating the nuanced processes associated with the growth and developmental trajectories of botanical organisms. In this study, we have designed and fabricated a label‐free electrochemical impedance immunosensor for the precise detection of IA...
Objectives
This article highlights the biological synthesis of silver nanoparticles (AgNPs) with their characteristic analysis, and it focuses on the application of synthesized NPs against multidrug resistance (MDR) bacteria. A cytotoxicity study was performed to assess the biocompatibility.
Methods
Silver nanoparticle (AgNPs) formation was confir...
Weak bonding among bacteria phospholipids and less repulsive force when graphene materials approach, result in graphene materials interacting differently with the bacteria compared to mammalian cells.
A facile novel approach of introducing dopamine and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide via dopamine-triggered in situ synthesis into gelatin hydrogels in the presence of ZnSO4 is presented in this study. Remarkably, the resulting hydrogels showed 99.99 and 100% antibacterial efficiency against Gram-positive and...
Protecting surfaces from biofilm formation presents a significant challenge in the biomedical field. The utilization of antimicrobial component-conjugated nanoparticles is becoming an attractive strategy against infectious biofilms. Boron nitride (BN) nanomaterials have a unique biomedical application value due to their excellent biocompatibility....
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofil...
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, with the aggregation of misfolded amyloid‐β (Aβ) peptides in the brain being one of its histopathological hallmarks. Recently, graphene oxide (GO) nanoflakes have attracted significant attention in biomedical areas due to their capacity of suppressing Aβ aggregation in vitro....
Introduction
The antibacterial activity of graphene oxide (GO) has been widely explored and tested against various pathogenic bacterial strains. Although antimicrobial activity of GO against planktonic bacterial cells was demonstrated, its bacteriostatic and bactericidal effect alone is not sufficient to damage sedentary and well protected bacteria...
To counter the rising threat of bacterial infections in the post-antibiotic age, intensive efforts are invested in engineering new materials with antibacterial properties. The key bottleneck in this initiative is the speed of evaluation of the antibacterial potential of new materials. To overcome this, we developed an automated pipeline for the pre...
In this work, we fabricated a flexible, multifunctional polyimide (PI)/Au-polyaniline (PAN)/Pd nanocomposite electrode with excellent electrochemical properties. Structural geometry, morphological views, and functional group analyses indicated that the physicochemical and electrochemical performance of the electrode is based on the strong and syner...
This review highlights the different modes of synthesizing silver nanoparticles (AgNPs) from their elemental state to particle format and their mechanism of action against multidrug-resistant and biofilm-forming bacterial pathogens. Various studies have demonstrated that the AgNPs cause oxidative stress, protein dysfunction, membrane disruption, an...
Doxorubicin (DOX) is extensively used in chemotherapy, but it has serious side effects and is inefficient against some cancers, e.g., hepatocarcinoma. To ameliorate the delivery of DOX and reduce its side effects, we designed a pH-responsive delivery system based on graphene oxide (GO) that is capable of a targeted drug release in the acidic tumor...
Introduction
Antibacterial activity of graphene oxide (GO) has been extensively studied, wherein penetration of the bacterial cell membrane and oxidative stress are considered to play a major role in the bactericidal activity of GO. However, the specific mechanism responsible for the antibacterial activity of GO remains largely unknown. Hence, the...
Microbial adhesion and formation of biofilms cause a serious problem in several areas including but not limited to food spoilage, industrial corrosion and nosocomial infections. These microbial biofilms pose a serious threat to human health since microbial communities in the biofilm matrix are protected with exopolymeric substances and difficult to...
Field effect transistor (FET)‐based nanoelectronic biosensor devices provide a viable route for specific and sensitive detection of cancer biomarkers, which can be used for early stage cancer detection, monitoring the progress of the disease, and evaluating the effectiveness of therapies. On the road to implementation of FET‐based devices in cancer...
Despite significant advances in early detection and personalized treatment, cancer is still among the leading causes of death globally. One of the possible anticancer approaches that is presently receiving a lot of attention is the development of nanocarriers capable of specific and efficient delivery of anticancer drugs. Graphene-based materials a...
The aim of this study was the enrichment of high-performance microbial communities in biofilters for removal of ammonium and nitrite from aquaculture water. Ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were enriched from different environmental water samples. The microbial communities with higher ammonium and nitrite remov...
Vertically oriented graphene (VG) has attracted attention for years, but the growth mechanism is still not fully revealed. The electric field may play a role, but the direct evidence and exactly what role it plays remains unclear. Here, we conduct a systematic study and find that in plasma-enhanced chemical vapor deposition, the VG growth preferabl...
Microbial colonization to biomedical surfaces and biofilm formation is one of the key challenges in the medical field. Recalcitrant biofilms on such surfaces cause serious infections which are difficult to treat using antimicrobial agents, due to their complex structure. Early detection of microbial colonization and monitoring of biofilm growth cou...
Understanding the underlying molecular mechanism of how graphene materials (GMs) interact with biological surfaces is the key to develop safe and effective biomedical applications of GMs. Here, a systematic and comprehensive mechanistic perspective of interactions between pristine GMs and biological membranes is provided. To this end, first the kno...
Engineering of microbial cells to produce high value chemicals is rapidly advancing. Yeast, bacteria and microalgae are being used to produce high value chemicals by utilizing widely available carbon sources. However, current extraction processes of many high value products from these cells are time- and labor-consuming and require toxic chemicals....
Background: The aim of this study was the enrichment of high-performance microbial communities in biofilters for removal of ammonium and nitrite from aquaculture water.
Methods: Ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were enriched from different environmental water samples. The microbial communities with higher ammon...
With multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacterial biofilms effectively, but their chemical synthesis often...
Protecting surfaces from bacterial colonization and biofilm development is an important challenge for the medical sector, particularly when it comes to biomedical devices and implants that spend longer periods in contact with the human body. A particularly difficult challenge is ensuring long-term protection, which is usually attempted by ensuring...
Biomedical application of graphene derivatives have been intensively studied in last decade. With the exceptional structural, thermal, electrical, and mechanical properties, these materials have attracted immense attention of biomedical scientists to utilize graphene derivatives in biomedical devices to improve their performance or to achieve desir...
Bacteria are known to form biofilms on various surfaces. Biofilms are multicellular aggregates, held together by an extracellular matrix, which is composed of biological polymers. Three principal components of the biofilm matrix are exopolysaccharides (EPS), proteins, and nucleic acids. The biofilm matrix is essential for biofilms to remain organiz...
The use of bacteria as nanofactories for the green synthesis of nanoparticles is considered a sustainable approach, owing to the stability, biocompatibility, high yields and facile synthesis of nanoparticles. The green synthesis provides the coating or capping of biomolecules on nanoparticles surface, which confer their biological activity. In this...
Bio-augmentation could be a promising strategy to improve processes for treatment and resource recovery from wastewater. In this study, the Gram-positive bacterium Bacillus subtilis was co-cultured with the microbial communities present in wastewater samples with high concentrations of nitrate or ammonium. Glucose supplementation (1%) was used to b...
Bacilli can form dormant, highly resistant, and metabolically inactive spores to cope with extreme environmental challenges. In this study, we examined the evolutionary age of Bacillus subtilis sporulation genes using the approach known as genomic phylostratigraphy. We found that B. subtilis sporulation genes cluster in several groups that emerged...
Graphene coatings composed of vertical spikes are shown to mitigate bacterial attachment. Such coatings present hydrophobic edges of graphene, which penetrate the lipid bilayers causing physical disruption of bacterial cells. However, manufacturing of such surfaces on a scale required for antibacterial applications is currently not feasible. This s...
Boron nitride (BN) is a stable 2D material with physiochemical properties similar to graphene-based nanomaterials. We have recently demonstrated that vertically aligned coatings of graphene-based nanomaterials provide strong antibacterial effects on various surfaces. Here we investigated whether BN, a nanomaterial with extensive similarities to gra...
Abstract Prostate cancer (PC) is the sixth most common cancer type in the world, which causes approximately 10% of total cancer fatalities. The detection of protein biomarkers in body fluids is the key topic for the diagnosis and prognosis of PC. Highly sensitive screening of PC is the most effective approach for reducing mortality. Thus, there are...
Introduction: Urinary tract infection (UTI) is the most common health care associated infection caused by various pathogenic bacteria. Biofilms are communities of bacteria that are held together by exopolymeric substances that protect against the antimicrobial therapy and other environmental assaults. The aim of this study was to estimate the preva...
This research presents an overview of the properties of highly structured, low density polyethylene-graphene nanoplatelets (LDPE-GnP). The influence of nanofiller content, size and processing conditions on the material properties have been investigated. Therefore, rheological and thermal nanocomposite properties were investigated. So-called dry-coa...
Infectious diseases pose one of the greatest health challenges in the medical world. Though numerous antimicrobial drugs are commercially available, they often lack effectiveness against recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose administration and a need to develop new antibiotics, which in tu...
There are contradictory reports in the literature regarding the anti-bacterial activity of graphene, graphene oxide (GO) and reduced graphene oxide (rGO). This controversy is mostly due to variations in key parameters of the reported experiments, like: type of substrate, form of graphene, number of layers, type of solvent and most importantly, type...
Bacterial biofilm represents a major problem in medicine. They colonize and damage medical devices and implants and, in many cases, foster development of multidrug-resistant microorganisms. Biofilm development starts by bacterial attachment to the surface and the production of extracellular polymeric substances (EPS). The EPS forms a structural sca...
Boron nitride has structural characteristics similar to carbon 2D materials (graphene and its derivatives) and its layered structure has been exploited to form different nanostructures such as nanohorns, nanotubes, nanoparticles and nanosheets. Unlike graphene and other carbon based 2D materials, boron nitride has a higher chemical stability. Owing...
The application of nanotechnology for the treatment of cancer is mostly based on early tumor detection and diagnosis by nanodevices capable of selective targeting and delivery of chemotherapeutic drugs to the specific tumor site. Due to the remarkable properties of gold nanoparticles, they have long been considered as a potential tool for diagnosis...
Background
Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explore...
Nanoparticles stability in LB broth and TSB measured during a 2-week interval.
Abbreviations: Abs, absorbance; C-AuNPs, core–gold nanoparticles; F-AgNPs, fiber-silver nanoparticles; F-AuNPs, fiber–gold nanoparticles; LB, Luria-Bertani; TSB, tryptic soya broth.
A novel graphene-based glucose sensor-design is formulated and explored in silico. An ad hoc host molecule is tailored to bind to glucose by multiple hydrogen bonds. A pyridinic core is chosen for this receptor in order to allow for “socket-plug” dative bonding to boron sites of boron doped graphene. The modeling employs DFT (Density Functional The...
The key first step in developing bacterial infections related to implants and medical devices is the attachment of planktonic bacterial cells, and subsequent formation of biofilms. Herein, it is reported that graphene, a 2D carbon-based material, can be effectively used to prevent bacterial attachment. The key parameter for this effect is the orien...
Extracellular polymeric substances (EPS) produced by bacteria form a matrix supporting the complex three-dimensional architecture of biofilms. This EPS matrix is primarily composed of polysaccharides, proteins and extracellular DNA. In addition to supporting the community structure, the EPS matrix protects bacterial biofilms from the environment. S...
Workflow for model-guided analysis of proteomics data. (A) Log10 LFQ protein intensities from the biological replicates were averaged and mapped using GIMME (Becker and Palsson, 2008) to Bs-iYO844, the B. subtilis genome-scale metabolic model (Oh et al., 2007) to constrain the fluxes in the associated reactions. (B) The range and distribution of fe...
List of all identified proteins, proteins belonging to cluster 1, 2, 3, 4 from Figure 3, and regulated proteins.
Effect of vitamin C treatment on biofilm formation by E. coli and P. aeruginosa. The biofilms were stained with crystal violet and optical density was measured. All data represent mean ± standard deviation. Values followed by the same superscripts are not significantly different from each other (P > 0.05).
Relationship between concentration of sodium ascorbate and biomass and constituents of EPS matrix. Linear fitting of biomass, polysaccharide, DNA and protein of biofilm vs. increasing concentration of vitamin C.
Correlation between biological replicates of the proteomics analysis. Correlation plots depicting correlation of proteins between biological replicates in the control and in 10, 20, and 30 mM vitamin C treatment conditions. The figure shows Log10 intensities of individual replicates plotted against each other.
Effect of polysaccharide fluorescence stain on biofilms. Biomass (A) and viability (B) of B. subtilis biofilm grown in the presence of two different polysaccharide stains alone or in combination: Concanavalin A Tetramethylrhodamine conjugate (ConA; 50 μg/ml) and Alexa flour® 633-labeled wheat germ agglutinin conjugate (WGA; 10 μg/ml).
Effect of vitamin C on bacterial growth. Growth of (A)
Bacillus subtilis, (B)
Escherichia Coli, and (C)
Pseudomonas aeruginosa, in the presence of different concentrations of vitamin C, as indicated in the color-coded legend. The experiment was performed with biological triplicates, and the error bar shows the standard deviation.
The present study investigated the effect of periodic 1-min fluoride treatments on Streptococcus mutans biofilms and then determined the relationship between anti-biofilm activity, treatment frequency, and fluoride concentration using a linear-fitting procedure. S. mutans biofilms were periodically treated (1-min/treatment) with fluoride during bio...
A graphene-based nanosensor was fabricated to selectively detect nitrotriazolone (NTO) molecules with a molecularly imprinted film via simple electrical measurements. Molecularly imprinted polymer comprising chitosan was used as sensitive layer. Gold electrodes for electrical measurements were lithographically fabricated on Si/SiO2 substrate, follo...
Bacterial biofilms are three-dimensional structures containing bacterial cells enveloped in a protective polymeric matrix, which renders them highly resistant to antibiotics and the human immune system. Therefore, the capacity to make biofilms is considered as a major virulence factor for pathogenic bacteria. Cold Atmospheric Plasma (CAP) is known...
Carbon nanotubes (CNTs) were chemically modified to achieve strong binding strength with the attached functional components as well as good dispersability and nanoparticle size-uniformity. An efficient multi-oxidation process was developed to create porous out layer with many nanoscale defects on the surface of CNTs for metallic nanoparticle close...
Cold atmospheric plasma (CAP) is increasingly used in medical applications for eradication of bacterial and tumor cells. CAP treatment devices, known as plasma jet pens, produce reactive oxygen and nitrogen species at atmospheric pressure and room temperature. The produced reactive species are concentrated in a small and precisely defined area, all...
Here we present the integration of Boron (NaB) with Graphene Oxide (GO) to develop a new class of membranes which are bio-compatible and cost-effective for cell and tissue culture studies. Ethanol (EtOH) assisted the uniform dispersion of GO flakes on top a glass substrate. We investigated the effect of GO+NaB membrane on growth and proliferation o...
An important clinical challenge is the development of implant surfaces which have good integration with the surrounding tissues and simultaneously inhibit bacterial colonization thus preventing infection. Recently, graphene oxide (GO) a derivative of graphene, has gained considerable attention in the biomedical field owing to its biocompatibility,...
Objectives:
The aim of this study was to evaluate the difference between anti-cariogenic biofilm activities of glass ionomers (G-Is) during the initial and second fluoride release phases and to define relationships between the anti-biofilm activities and fluoride release.
Methods:
Fluoride release of three commercially available G-Is in a buffer...
Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentra...
Fluoride is a well-studied and widely used agent for the prevention of dental caries. Although dental caries is strongly related to cariogenic biofilms, the effect of brief fluoride treatment on the virulence properties of biofilms has not been well studied. This study evaluated the effect of a 1-min fluoride treatment on the virulence properties a...
AimsThe aim of this study was to identify components of the Withania somnifera that could show anti-virulence activity against Streptococcus mutans biofilms.Methods and ResultsThe anti-acidogenic activity of fractions separated from W. somnifera was compared, and then the most active anti-acidogenic fraction was chemically characterized using gas c...
The aim of this study was to investigate the anti-biofilm activity of brief cetylpyridinium chloride (CPC) treatments during early and mature Streptococcus mutans biofilm formation.
S. mutans biofilms were formed on saliva-coated hydroxyapatite discs. The biofilms were treated with CPC twice daily (1 min/treatment) from 0 to 50 h or from 48 to 98 h...
Objectives:
The aim of this study was to evaluate acidogenicity and composition of Streptococcus mutans biofilms on glass ionomer cements (GICs) and then to determine the relationship between the anti-S. mutans biofilm activity and fluoride release rate of the GICs.
Methods:
S. mutans biofilms were formed on discs prepared using five commercial...
Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography-mass spectrometry data with the antibacterial activity of chloroform and n-hex...
Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological a...
Despite widespread use of various concentrations of fluoride for the prevention of dental caries, the relationship between fluoride concentration and activity against cariogenic biofilms has not been much studied. Herein we investigated the relationship between fluoride concentration and activity against virulence factors and viability of Streptoco...
Dryopteris crassirhizoma is traditionally used as an herbal remedy for various diseases, and has been identified in a previous study as a potential anti-caries agent. In this study, the effect of a methanol extract of D. crassirhizoma on the viability, growth and virulence properties of Streptococcus mutans, a cariogenic dental pathogen, was invest...
The aim of this study was to evaluate the effect of the methanol extract of Withania somnifera (MEW) on the growth and virulence properties of Streptococcus mutans and Streptococcus sobrinus at sub-minimum inhibitory concentration (MIC) levels and to identify the main components of MEW. First, antibacterial activity of MEW against oral bacteria was...
Objective: Turmeric has long been used as a coloring and flavoring agent for foods. Curcuminoids are the main component of turmeric and have a range of pharmacological activities. In this study, a fraction that could show anti-biofilm activity was separated from turmeric, based on a comparison of curcuminoid content and anti-acidogenic activity aga...
Polygonum cuspidatum is a plant with spreading rhizomes and numerous reddish-brown stems that has been used in Korean folk medicine to improve oral hygiene. Nevertheless, there are no reports related to its possible effect on the virulence of dental biofilms. In this study, the ability of a fraction (F1) separated from P. cuspidatum, alone or in co...
The aim of this study was to evaluate the acid production, acid tolerance and composition of Streptococcus mutans biofilms formed on fluoride releasing and non fluoride releasing resin composites.
S. mutans biofilms were formed on saliva-coated discs prepared from fluoride releasing (Unifil Flow and F2000) or non fluoride releasing materials (Filte...
This study aimed to evaluate the influence of NaF (2, 10, 50 and 125 ppm F(-)) on the virulence factors and composition of Streptococcus mutans biofilms.
S. mutans UA159 biofilms were formed on saliva-coated hydroxyapatite discs. To assess the influence of NaF on the virulence factors of S. mutans biofilm cells, glycolytic pH drop, proton-permeabil...
Turmeric has long been used as a colouring and flavouring agent for foods. Curcuminoids are the main component of turmeric and have a range of pharmacological activities. In this study, a fraction that could show anti-biofilm activity was separated from turmeric, based on a comparison of curcuminoid content and anti-acidogenic activity against Stre...
Trans-trans farnesol (tt-farnesol) is a bioactive sesquiterpene alcohol commonly found in propolis (a beehive product) and citrus fruits, which disrupts the ability of Streptococcus mutans (S. mutans) to form virulent biofilms. In this study, we investigated whether tt-farnesol affects cell-membrane function, acid production and/or acid tolerance b...
Rheum undulatum root has been used traditionally in Korea for the treatment of dental diseases. The purpose of this study was to separate a fraction from R. undulatum showing anti-acid production activity against Streptococcus mutans biofilms and identify the main components in that fraction. Methanol extract of R. undulatum root and its fractions...