Santi Prestipino

Santi Prestipino
  • PhD
  • Professor (Associate) at University of Messina

About

135
Publications
16,342
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,549
Citations
Current institution
University of Messina
Current position
  • Professor (Associate)
Additional affiliations
June 2001 - present
University of Messina
Position
  • Professor (Associate)

Publications

Publications (135)
Article
Full-text available
Discrete statistical systems offer a significant advantage over systems defined in the continuum, since they allow for an easier enumeration of microstates. We introduce a lattice-gas model on the vertices of a polyhedron called a pentakis icosidodecahedron and draw its exact phase diagram by the Wang–Landau method. Using different values for the c...
Preprint
Unveiling the principles behind self-organization in quantum systems is of paramount importance, both intrinsically and practically, in view of foreseeable technological applications. Recently, increasing attention is being paid to atomic systems in curved geometries, which are a promising platform for the discovery of new emergent phenomena. A not...
Article
Discovering novel emergent behavior in quantum many-body systems is a main objective of contemporary research. In this Letter, we explore the effects on phases and phase transitions of the proximity to a Ruelle-Fisher instability, marking the transition to a collapsed state. To accomplish this, we study by quantum Monte Carlo simulations a two-dime...
Article
Full-text available
We present the first systematic application of the integral equation implementation of the replica method to the study of arrested states in fluids with microscopic competing interactions (short-range attractive and long-range repulsive, SALR), as exemplified by the prototype Lennard-Jones–Yukawa model. Using a wide set of potential parameters, we...
Article
Confinement can have a considerable effect on the behavior of particle systems and is therefore an effective way to discover new phenomena. A notable example is a system of identical bosons at low temperature under an external field mimicking an isotropic bubble trap, which constrains the particles to a portion of space close to a spherical surface...
Article
In a binary mixture, stripes refer to a one-dimensional periodicity of the composition, namely, a regular alternation of layers filled with particles of mostly one species. We have recently introduced [Munaò et al., Phys. Chem. Chem. Phys. 25, 16227 (2023)] a model that possibly provides the simplest binary mixture endowed with stripe order. The mo...
Article
Full-text available
Due to the presence of competing interactions, the square-well-linear fluid can exhibit either liquid-vapor equilibrium (macrophase separation) or clustering (microphase separation). Here we address the issue of determining the boundary between these two regimes, i.e., the Lifshitz point, expressed in terms of a relationship between the parameters...
Article
Full-text available
Self-assembly of colloidal particles into striped phases is at once a process of relevant technological interest-just think about the possibility to realise photonic crystals with a dielectric structure modulated along a specific direction-and a challenging task, since striped patterns emerge in a variety of conditions, suggesting that the connecti...
Preprint
Confinement can have a considerable effect on the behavior of particle systems, and is therefore an effective way to discover new phenomena. A notable example is a system of identical bosons at low temperature under an external potential mimicking an isotropic bubble trap, which constrains the particles to a portion of space close to a spherical su...
Article
Full-text available
We investigate by Monte Carlo simulations a mixture of particles with competing interactions (hard-sphere two-Yukawa, HSTY) and hard spheres (HS), with same diameters σ and a square-well (SW) cross attraction. In a recent study [G. Munaò et al., J. Phys. Chem. B, 2022, 126, 2027-2039], we have analysed situations-in terms of relative concentration...
Preprint
We reconsider model II of [J. Chem. Phys. 1968, 49, 1778--1783], a two-dimensional lattice-gas system featuring a crystalline phase and two distinct fluid phases (liquid and vapor). In this system, a particle prevents other particles from occupying sites up to third neighbors on the square lattice, while attracting (with decreasing strength) partic...
Preprint
The main objective of a statistical mechanical calculation is drawing the phase diagram of a many-body system. In this respect, discrete systems offer the clear advantage over continuum systems of an easier enumeration of microstates, though at the cost of added abstraction. With this in mind, we examine a system of particles living on the vertices...
Article
Full-text available
We reconsider model II of Orban et al. (J. Chem. Phys. 1968, 49, 1778–1783), a two-dimensional lattice-gas system featuring a crystalline phase and two distinct fluid phases (liquid and vapor). In this system, a particle prevents other particles from occupying sites up to third neighbors on the square lattice, while attracting (with decreasing stre...
Article
Full-text available
Self-assembling complex fluids are often modeled as particles with effective competing isotropic interactions, combining a short-range attraction (SA) followed by a longer-range repulsion (LR). For moderately low temperatures and densities, SALR particles form clusters in equilibrium, at least provided that the potential parameters are appropriate....
Article
Full-text available
The main objective of a statistical mechanical calculation is drawing the phase diagram of a many-body system. In this respect, discrete systems offer the clear advantage over continuum systems of an easier enumeration of microstates, though at the cost of added abstraction. With this in mind, we examine a system of particles living on the vertices...
Article
Full-text available
We use Monte Carlo simulation and the Reference Interaction Site Model (RISM) theory of molecular fluids to investigate a simple model of colloidal mixture consisting of dimers, made up of two tangent hard monomers of different size, and hard spheres. In addition to steric repulsion, the two species interact via a square-well attraction only betwee...
Preprint
We use Monte Carlo simulation and the Reference Interaction Site Model (RISM) theory of molecular fluids to investigate a simple model of colloidal mixture consisting of dimers, made up of two tangent hard monomers of different size, and hard spheres. In addition to steric repulsion, the two species interact via a square-well attraction only betwee...
Preprint
We study the self-assembly on a spherical surface of a model for a binary mixture of amphiphilic dimers in the presence of guest particles via Monte Carlo (MC) computer simulation. All particles have a hard core, but one monomer of the dimer also interacts with the guest particle by means of a short-range attractive potential. We observe the format...
Article
Full-text available
Thermodynamic phases are the most prominent manifestation of emergent behavior [...]
Article
Full-text available
We study self-assembly on a spherical surface of a model for a binary mixture of amphiphilic dimers in the presence of guest particles via Monte Carlo (MC) computer simulation. All particles had a hard core, but one monomer of the dimer also interacted with the guest particle by means of a short-range attractive potential. We observed the formation...
Preprint
I study the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh ("Platonic mesh") and interacting through an extended Bose-Hubbard Hamiltonian. Only the hard-core version of the model is considered here, for two instances of Platonic mesh. Using the mean-field decoupling approximation, I show that th...
Preprint
Ever since the first observation of Bose-Einstein condensation in the nineties, ultracold quantum gases have been the subject of intense research, providing a unique tool to understand the behavior of matter governed by the laws of quantum mechanics. Ultracold bosonic atoms loaded in an optical lattice are usually described by the Bose-Hubbard mode...
Preprint
As first shown by H. S. Green in 1952, the entropy of a classical fluid of identical particles can be written as a sum of many-particle contributions, each of them being a distinctive functional of all spatial distribution functions up to a given order. By revisiting the combinatorial derivation of the entropy formula, we argue that a similar corre...
Article
Ever since the first observation of Bose-Einstein condensation in the 1990s, ultracold quantum gases have been the subject of intense research, providing a unique tool to understand the behavior of matter governed by the laws of quantum mechanics. Ultracold bosonic atoms loaded in an optical lattice are usually described by the Bose-Hubbard model o...
Article
Full-text available
Here, the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh (“Platonic mesh”) and interacting through an extended Bose-Hubbard Hamiltonian has been studied. Only the hard-core version of the model for two instances of Platonic mesh is considered here. Using the mean-field decoupling approximation,...
Article
Full-text available
As first shown by H. S. Green in 1952, the entropy of a classical fluid of identical particles can be written as a sum of many-particle contributions, each of them being a distinctive functional of all spatial distribution functions up to a given order. By revisiting the combinatorial derivation of the entropy formula, we argue that a similar corre...
Article
Full-text available
We show by extensive molecular dynamics simulations that rather accurate predictions of structure factors and x-ray diffraction intensities of molten alkali halides can be achieved in terms of the Born-Huggins-Mayer-Fumi-Tosi rigid ion potential description of these systems. Specifically, the partial structure factors of six ionic melts, namely NaC...
Preprint
Full-text available
Building structures with hierarchical order through the self-assembly of smaller blocks is not only a prerogative of nature, but also a strategy to design artificial materials with tailored functions. We explore in simulation the spontaneous assembly of colloidal particles into extended structures, using spheres and size-asymmetric dimers as solute...
Article
Full-text available
We work out the ground-state diagram of weakly-repulsive penetrable bosons, using mean-field theory with a Gaussian ansatz on the single-particle wave function. Upon compression, the fluid transforms into a cluster supersolid, whose structure is characterized for various choices of the embedding space. In Euclidean space, the stable crystals are th...
Preprint
We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate. We employ thermodynamic arguments to investigate, within a variational ansatz for the single-particle state, the crossover between dist...
Article
We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate. We employ thermodynamic arguments to investigate, within a variational ansatz for the single-particle state, the crossover between dist...
Preprint
We study a system of penetrable bosons on a line, focusing on the high-density/weak-interaction regime, where the ground state is, to a good approximation, a condensate. Under compression, the system clusterizes at zero temperature, i.e., particles gather together in separate, equally populated bunches. We compare predictions from the Gross-Pitaevs...
Article
Full-text available
We study a system of penetrable bosons on a line, focusing on the high-density/weak-interaction regime, where the ground state is, to a good approximation, a condensate. Under compression, the system clusterizes at zero temperature, i.e., particles gather together in separate, equally populated bunches. We compare predictions from the Gross-Pitaevs...
Preprint
Full-text available
The properties of a macroscopic assembly of weakly-repulsive bosons at zero temperature are well described by Gross-Pitaevskii mean-field theory. According to this formalism the system exhibits a quantum transition from superfluid to cluster supersolid as a function of pressure. We develop a thermodynamically rigorous treatment of the different pha...
Article
The properties of a macroscopic assembly of weakly repulsive bosons at zero temperature are well described by Gross-Pitaevskii mean-field theory. According to this formalism the system exhibits a quantum transition from superfluid to cluster supersolid as a function of pressure. We develop a thermodynamically rigorous treatment of the different pha...
Article
Full-text available
We show by extensive molecular dynamics simulations that accurate predictions of liquid-vapor coexistence in molten alkali halides can be achieved in terms of a rigid ion potential description in which temperature-dependent ionic diameters are employed. The new ionic sizes result from the fitting of the experimental isothermal compressibilities, a...
Preprint
Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here,...
Preprint
We study, by using liquid-state theories and Monte Carlo simulation, the behavior of systems of classical particles interacting through a finite pair repulsion supplemented with a longer range attraction. Any such potential can be driven Ruelle-unstable by increasing the attraction at the expense of repulsion, until the thermodynamic limit is lost....
Article
Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here,...
Article
We study, by using liquid-state theories and Monte Carlo simulation, the behavior of systems of classical particles interacting through a finite pair repulsion supplemented with a longer range attraction. Any such potential can be driven Ruelle-unstable by increasing the attraction at the expense of repulsion, until the thermodynamic limit is lost....
Article
Full-text available
The emergence of supramolecular aggregates from simple microscopic interaction rules is a fascinating feature of complex fluids which, besides its fundamental interest, has potential applications in many areas, from biological self-assembly to smart material design. We here investigate by Monte Carlo simulation the equilibrium structure of a two-di...
Article
We investigate by Monte Carlo simulation the structure and self-assembly of a mixture formed by asymmetric dimers and larger spherical particles. In our model, dimers and spheres interact through a monomer-specific short-range attraction, in addition to hard-core repulsion. The interaction parameters are chosen so as to mimic features of real collo...
Article
We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular "guest" molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an additional attraction between spheres and the smaller monomers in a dimer. Using Monte Carlo simulatio...
Preprint
We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular "guest" molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an additional attraction between spheres and the smaller monomers in a dimer. Using Monte Carlo simulatio...
Article
We study by Monte Carlo simulation the coating process of colloidal dimers onto spherical nanoparticles. To this end we investigate a simplified mixture of hard spheres (the guest particles) and hard dimers formed by two tangent spheres of different sizes (the encapsulating agents) in an implicit-solvent representation; in our scheme, the range of...
Article
Multidensity integral equation theory for a sticky hard sphere-hard sphere heteronuclear dimer fluid: Thermodynamic and structural properties A comparison of density functional and integral equation theories vs Monte Carlo simulations for hard sphere associating fluids near a hard wall Integral equation approaches to mixtures of atomic and molecula...
Article
Markov State Modeling has recently emerged as a key technique for analyzing rare events in thermal equilibrium molecular simulations and finding metastable states. Here we export this technique to the study of friction, where strongly non-equilibrium events are induced by an external force. The approach is benchmarked on the well-studied Frenkel-Ko...
Preprint
Markov State Modeling has recently emerged as a key technique for analyzing rare events in thermal equilibrium molecular simulations and finding metastable states. Here we export this technique to the study of friction, where strongly non-equilibrium events are induced by an external force. The approach is benchmarked on the well-studied Frenkel-Ko...
Article
Full-text available
The phase behavior of stabilized dispersions of macromolecules is most easily described in terms of the effective interaction between the centers of mass of solute particles. For molecules like polymer chains, dendrimers, etc., the effective pair potential is {\em finite} at the origin, allowing "particles" to freely interpenetrate each other. Usin...
Article
Full-text available
Within the coexistence region between liquid and vapor the equilibrium pressure of a simulated fluid exhibits characteristic jumps and plateaus when plotted as a function of density at constant temperature. These features exclusively pertain to a finite-size sample in a periodic box, as they are washed out in the bulk limit. Below the critical dens...
Article
Full-text available
Phase transitions in one-dimensional classical fluids are usually ruled out by using van Hove's theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model of index 4 (GEM-4 potential), which in three dimensions gives a...
Article
Full-text available
Phase transitions in one-dimensional classical fluids are usually ruled out by using van Hove's theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model of index 4 (GEM-4 potential), which in three dimensions gives a...
Article
Full-text available
Specialized Monte Carlo methods are nowadays routinely employed, in combination with thermodynamic integration (TI), to locate phase boundaries of classical many-particle systems. This is especially useful for the fluid-solid transition, where a critical point does not exist and both phases may notoriously go deeply metastable. Using the Lennard-Jo...
Article
Full-text available
The return of supercooled water to a stable equilibrium condition is an irreversible process which, in large enough samples, takes place adiabatically. We investigated this phenomenon in water by fast imaging techniques. As water freezes, large energy and density fluctuations promote the spatial coexistence of solid and liquid phases at different t...
Article
Full-text available
Two-dimensional crystals of classical particles are very peculiar in that melting may occur in two steps, in a continuous fashion, via an intermediate hexatic fluid phase exhibiting quasi-long-range orientational order. On the other hand, three-dimensional spheres repelling each other through a fast-decaying bounded potential of generalized-exponen...
Article
Full-text available
Phase transitions are uncommon among homogenous one-dimensional fluids of classical particles owing to a general non-existence result due to van Hove. A way to circumvent van Hove's theorem is to consider an interparticle potential that is finite everywhere. Of this type is the generalized exponential model of index 4 (GEM4 potential), a model inte...
Article
Full-text available
Pair potentials that are bounded at the origin provide an accurate description of the effective interaction for many systems of dissolved soft macromolecules (e.g., flexible dendrimers). Using numerical free-energy calculations, we reconstruct the equilibrium phase diagram of a system of particles interacting through a potential that brings togethe...
Article
Full-text available
In standard nucleation theory, the nucleation process is characterized by computing ΔΩ(V), the reversible work required to form a cluster of volume V of the stable phase inside the metastable mother phase. However, other quantities besides the volume could play a role in the free energy of cluster formation, and this will in turn affect the nucleat...
Article
Full-text available
Isotropic pair potentials that are bounded at the origin have been proposed from time to time as models of the effective interaction between macromolecules of interest in the chemical physics of soft matter. We present a thorough study of the phase behavior of point particles interacting through a potential which combines a bounded short-range repu...
Article
Full-text available
We performed an extensive numerical investigation of a system of repulsive Gaussian particles confined in a thin cylindrical pore. In this setting, the fluid phase can be cooled down to very low temperatures, thus bypassing the freezing transition. Focusing on the thermal behavior of the average number density, we find a range of pressures within w...
Data
Full-text available
When a liquid is supercooled, it will return, within a finite time elapsed, to stable thermodynamic equilibrium. The path towards equilibrium begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at later stage will solidification proceed with the expected exchange of thermal energy with the external bath,...
Article
The return of a supercooled liquid to equilibrium usually begins with a fast heating up of the sample which ends when the system reaches the equilibrium freezing temperature. At this stage, the system is still a microsegregated mixture of solid and liquid. Only later is solidification completed through the exchange of energy with the surroundings....
Article
Full-text available
The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiab...
Preprint
I employ the van der Waals theory of Baus and coworkers to analyze the fast, adiabatic decay of a supercooled liquid in a closed vessel with which the solidification process usually starts. By imposing a further constraint on either the system volume or pressure, I use the maximum-entropy method to quantify the fraction of liquid that is transforme...
Article
Full-text available
I employ the van der Waals theory of Baus and co-workers to analyze the fast, adiabatic decay of a supercooled liquid in a closed vessel with which the solidification process usually starts. By imposing a further constraint on either the system volume or pressure, I use the maximum-entropy method to quantify the fraction of liquid that is transform...
Preprint
We focus on the Gibbs free energy $\Delta G$ for nucleating a droplet of the stable phase (e.g. solid) inside the metastable parent phase (e.g. liquid), close to the first-order transition temperature. This quantity is central to the theory of homogeneous nucleation, since it superintends the nucleation rate. We recently introduced a field theory d...
Article
Full-text available
We focus on the Gibbs free energy ΔG for nucleating a droplet of the stable phase (e.g., solid) inside the metastable parent phase (e.g., liquid), close to the first-order transition temperature. This quantity is central to the theory of homogeneous nucleation, since it superintends the nucleation rate. We recently introduced a field theory describ...
Article
Full-text available
We investigated the volumetric anomaly of a two-dimensional system of particles embedded in the surface of an inert sphere. The interaction between particles was modeled with a purely repulsive Gaussian potential. The phase diagram of the model exhibits one single fluid phase since the absence of an attractive term in the potential rules out a liqu...
Article
Full-text available
We study a two-dimensional fluid of particles interacting through a spherically symmetric and marginally soft two-body repulsion. This model can exist in three different crystal phases, one of them with square symmetry and the other two triangular. We show that, while the triangular solids first melt into a hexatic fluid, the square solid is direct...
Preprint
Full-text available
We study a two-dimensional fluid of particles interacting through a spherically-symmetric and marginally soft two-body repulsion. This model can exist in three different crystal phases, one of them with square symmetry and the other two triangular. We show that, while the triangular solids first melt into a hexatic fluid, the square solid is direct...
Article
Full-text available
We reconsider the applicability of classical nucleation theory (CNT) to the calculation of the free energy of solid cluster formation in a liquid and its use to the evaluation of interface free energies from nucleation barriers. Using two different freezing transitions (hard spheres and NaCl) as test cases, we first observe that the interface-free-...
Article
Full-text available
We numerically investigate a system of particles interacting through a repulsive pair potential of inverse-power form, modified in such a way that the strength of the repulsion is softened in a range of distances. The solid phases of the system for various levels of softness are identified by computing the zero-temperature phase diagram; then, for...
Article
Full-text available
An ongoing problem in the study of a classical many-body system is the characterization of its equilibrium behaviour by theory or numerical simulation. For purely repulsive particles, locating the melting line in the pressure-temperature plane can be especially hard if the interparticle potential has a softened core or contains some adjustable para...
Article
Full-text available
We investigated the equilibrium properties of a one-dimensional system of classical particles which interact in pairs through a bounded repulsive potential with a Gaussian shape. Notwithstanding the absence of a proper fluid-solid phase transition, we found that the system exhibits a complex behaviour, with "anomalies" in the density and in the the...
Preprint
We present a Monte Carlo simulation study of the phase behavior of two-dimensional classical particles repelling each other through an isotropic Gaussian potential. As in the analogous three-dimensional case, a reentrant-melting transition occurs upon compression for not too high temperatures, along with a spectrum of water-like anomalies in the fl...
Article
Full-text available
We present a Monte Carlo simulation study of the phase behavior of two-dimensional classical particles repelling each other through an isotropic Gaussian potential. As in the analogous three-dimensional case, a reentrant-melting transition occurs upon compression for not too high temperatures, along with a spectrum of waterlike anomalies in the flu...
Article
Full-text available
We present evidence that the concurrent existence of two populations of particles with different effective diameters is not a prerequisite for the occurrence of anomalous phase behaviors in systems of particles interacting through spherically-symmetric unbounded potentials. Our results show that an extremely weak softening of the interparticle repu...
Article
Full-text available
We investigate the phase behaviour of a system of particles interacting through the exp-6 pair potential, an interaction model that is appropriate to describe effective interatomic forces under high compression. The soft-repulsive component of the potential is being varied so as to study the effect on re-entrant melting and density anomaly. Upon in...
Article
We use molecular dynamics to compute the pair distribution function of liquid TIP4P water as a function of the intermolecular distance and of the five angles that are needed to specify the relative position and orientation of two water molecules. We also calculate the translational and orientational contributions to the two-body term in the multipa...
Article
Full-text available
We study the phase behavior of systems of particles interacting through pair potentials with a hard core plus a soft repulsive component. We consider several different forms of soft repulsion, including a square shoulder, a linear ramp and a quasi-exponential tail. The common feature of these potentials is the presence of two repulsive length scale...
Preprint
We study the phase behavior of a classical system of particles interacting through a strictly convex soft-repulsive potential which, at variance with the pairwise softened repulsions considered so far in the literature, lacks a region of downward or zero curvature. Nonetheless, such interaction is characterized by two length scales, owing to the pr...
Article
Full-text available
We study the phase behavior of a classical system of particles interacting through a strictly convex soft-repulsive potential which, at variance with the pairwise softened repulsions considered so far in the literature, lacks a region of downward or zero curvature. Nonetheless, such interaction is characterized by two length scales, owing to the pr...
Article
Full-text available
Effective pair interactions with a soft-repulsive component are a well-known feature of polymer solutions and colloidal suspensions, but they also provide a key to interpret the high-pressure behaviour of simple elements. We have computed the zero-temperature phase diagram of four different model potentials with various degrees of core softness. Am...
Article
Full-text available
We show that a system of particles interacting through the exp-6 pair potential, commonly used to describe effective interatomic forces under high compression, exhibits anomalous melting features such as reentrant melting and a rich solid polymorphism, including a stable BC8 crystal. We relate this behavior to the crossover, with increasing pressur...
Preprint
We show that a system of particles interacting through the exp-6 pair potential, commonly used to describe effective interatomic forces under high compression, exhibits anomalous melting features such as reentrant melting and a rich solid polymorphism, including a stable BC8 crystal. We relate this behavior to the crossover, with increasing pressur...
Article
Full-text available
The metadynamics method, recently proposed by Laio and Parrinello as a general tool to map multidimensional free-energy landscapes [A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002)], has been exploited with the aim of illustrating the properties of generalized thermodynamic potentials across a discontinuous phase transition...
Article
Full-text available
The authors study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as eleven candidate crystal structures, they determine the melting temperature for various pres...
Preprint
We study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as eleven candidate crystal structures, we determine the melting temperature for various pressure values...
Article
Full-text available
Inverse melting is the phenomenon, observed in both helium isotopes, by which a crystal melts when cooled at constant pressure. I investigate discrete-space analogs of inverse melting by means of two instances of a triangular-lattice-gas system endowed with a soft-core repulsion and a short-ranged attraction. To reconstruct the phase diagram, I use...
Article
Full-text available
We test the validity of some widely used phenomenological criteria for the localization of the fluid-solid transition thresholds against the phase diagrams of particles interacting through the exp-6, inverse-power-law, and Gaussian potentials. We find that one-phase rules give, on the whole, reliable estimates of freezing/melting points. The agreem...
Preprint
We test the validity of some widely used phenomenological criteria for the localization of the fluid-solid transition thresholds against the phase diagrams of particles interacting through the exp-6, inverse-power-law, and Gaussian potentials. We find that one-phase rules give, on the whole, reliable estimates of freezing/melting points. The agreem...
Article
Full-text available
We redraw, using state-of-the-art methods for free-energy calculations, the phase diagrams of two reference models for the liquid state: the Gaussian and inverse-power-law repulsive potentials. Notwithstanding the different behaviors of the two potentials for vanishing interparticle distances, their thermodynamic properties are similar in a range o...
Preprint
We redraw, using state-of-the-art methods for free-energy calculations, the phase diagrams of two reference models for the liquid state: the Gaussian and inverse-power-law repulsive potentials. Notwithstanding the different behavior of the two potentials for vanishing interparticle distances, their thermodynamic properties are similar in a range of...
Article
Full-text available
We investigated numerically the high-temperature-high-pressure phase diagram of xenon as modeled through the exp-6 interaction potential, which is thought to provide a reliable description of the thermal behavior of rare gases under extreme conditions. We performed a series of extensive NVT Monte Carlo simulations which, in conjunction with exact c...
Preprint
We trace with unprecedented numerical accuracy the phase diagram of the Gaussian-core model, a classical system of point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a reliable qualitative description of the thermal behavior of interpenetrable globular polymers, is known to exhibit a polymorphi...
Article
Full-text available
We trace with high numerical accuracy the phase diagram of the Gaussian-core model, a classical system of point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a reliable qualitative description of the thermal behavior of interpenetrable globular polymers, is known to exhibit a polymorphic fcc-bcc...

Network

Cited By