
NEURAL NETWORKS BASED DATA MINING APPLICATIONS FOR 
MEDICAL INVENTORY PROBLEMS 

 
Kanti Bansal 

Brandeis University 
MB 2368; Waltham, MA 02254-9110  

Email: kanti@mit.edu 
 

Sanjeev Vadhavkar 
Vice President (Technology) 

Gupta Consultancy Incorporated 
14 Pulsifer Street, Newtonville, MA 02160 

Tel: 617-964-3466 Fax: 617-527-5324 Email: vada@mit.edu 

 
Amar Gupta 

Co-Director, Productivity from Information Technology (PROFIT) 
Sloan School of Management 

E53-311 MIT, Cambridge MA 02139 
Tel: 617-253-8306 Fax: 617-527-5324 Email: agupta@mit.edu 

 
ABSTRACT 
One of the main requirements for agile organizations is the development of information systems for 
effective linkages with their suppliers, customers, and other channel partners involved in 
transportation, distribution, warehousing and maintenance. Agility increasingly depends on the 
quality of decision-making, and companies are continuously trying to improve the quality of 
decisions by learning from past transactions and decisions. An efficient inventory management 
system based on contemporary information systems is a first step in this direction. This paper 
discusses the use of neural networks to optimize the inventory in a large medical distribution 
organization. The paper defines the inventory patterns and elaborates on the method for constructing 
and choosing an appropriate neural network to solve the problem. As an extension to the neural 
network models, statistical procedures and assumptions used to augment the neural network model 
are explained in detail. With the large number of neural network classes, it is difficult to identify a 
particular class and model which offers the best inventory model.  The paper describes the use of 
traditional statistical techniques to help determine the best neural network type for a particular 
application. The paper concludes with a detailed evaluation of the "neural network solution". Using 
the method proposed in this paper, the total inventory level of the concerned medical distribution 
organization could be decreased from over a billion dollars to about half-a-billion dollars (reduction 
by 50 percent). 
 
INTRODUCTION 
 
Organizations are gaining agility by learning to merge products with services and information and to 
design, build and market products concurrently. For retailers, today’s business challenge is to 
understand the new reality, to leverage that knowledge to become agile, to learn to operate profitably 
in a competitive environment of continually and unpredictably changing customer opportunities [14]. 
As we turn the corner into the 21st century, companies are differentiating themselves with new and 
different products and services. This effort is ultimately successful if they can provide significant and 
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unique value to the customer. Typically customers will appreciate the value of the effort if three 
expectations are met: price, quality and adaptation to customer need.  Understanding the dynamic 
world of the customer by leveraging information and technology, with the right “customer centered” 
attitude throughout the company and with cooperation of value chain partners, is a definite first step 
in the direction of agility [14]. Thus, the key focus for agile retail organizations is the use of 
technology to give individual customers the sense of buying a unique or personalized product, while 
retaining most of the cost advantages of mass production [10]. Agility assumes consummate 
customer service, but it moves beyond placing the customer first, to making him or her central figure 
in a company-wide dialogue. Agile organizations do not work for or to customers: they work with 
customers. Organizational agility--the ability to move quickly and decisively and thereby exploit 
market opportunities--may provide a greater competitive advantage than huge financial resources, 
talent, or even superior products. An agile organization recognizes that successful strategies are more 
likely to emerge through a confluence of market conditions than from the efforts of centralized 
planners and analysts [11].  
 
1 Defining the Problem 
 
With hundreds of chain stores and with revenues of several billion dollars per annum, “Medicorp” is 
a large retail distribution company that dispenses pharmaceutical drugs to customers in a number of 
states in the United States.  Just as any other retailer in its position, Medicorp is forced to have a 
large standing inventory of products ready to deliver on customer demand. The problem is how much 
quantity of each drug should be kept in the inventory at each store and warehouse.  Medicorp incurs 
significant financial costs if it carries excess quantities of drugs relative to the customer demand.  
Unsatisfied customers frequently turn to competing stores, and Medicorp loses potential profits in 
such cases.  Because of negative experiences, unsatisfied customers may switch company loyalties, 
relying on other pharmaceutical chains to serve them.  On the other hand, Medicorp incurs a 
financial cost if it carries excessive inventories.  Pharmaceutical drugs have a short expiration date 
and must be renewed periodically.  Inventories take a lot of money to maintain. Historically, 
Medicorp has maintained an inventory of approximately a billion dollars on a continuing basis, using 
traditional regression models to determine inventory levels for each item.  
 
The best way to manage an inventory is to be able to develop better techniques for predicting 
customer demands and stock inventories accordingly.  In this way, the size of the drug inventory can 
be optimized to keep up with demand.   
 
2 Preliminary Statistical Analysis 
 
To find the best solution to the inventory problem, we looked at the transactional data warehouse at 
Medicorp.  The Medicorp database is hundreds of gigabytes in size containing all sales information 
from 1986 to the present.  From this vast database, we extracted a portion of the recent fields (Jan. 
1995 - Sept 1996) which we felt would provide adequate raw data for a preliminary statistical 
analysis: 
 

1)  Date field – Indicates the date of the drug transaction  
2)  Customer number – Uniquely identifies a customer (useful in tracking repeat customers) 
3)  NDC number – Uniquely identifies a drug (equivalent to a drug name) 
4)  Quantity number – Identifies the amount of the drug purchased 
5)  Days of Supply --  Identifies how long that particular drug purchased will last 



6)  Sex field – Identifies the sex of the customer 
7)  Cost Unit Price – Establishes the per unit cost to Medicorp of the particular drug  
8)  Sold Unit Price – Identifies per unit cost to the customer of the particular drug  
 

The preliminary statistical analysis was utilized to help search for seasonal trends, correlation 
between field variables and significance of variables, etc. Our preliminary statistical data provided 
evidence for the following conclusions: 

 
� Women are more careful about consuming medication than men. 

 
� Most drugs' sales showed no or little correlation to seasonal changes. 
 
� Drug sales are heaviest on Thursdays and Fridays. 
 
� Drug sales (in terms of quantity of drug sold) show differing degrees of variability: 

Maintenance type drugs  (for chronic ailments) show low degrees of sales variability.  
Acute type drugs (for temporary ailments) show high degrees of sales variability. 
 

Based on this statistical preliminary analysis, we created and tested a number of types of neural 
networks.  Our initial focus was on acute type drugs (which show a higher variability). 
 
3 Building Neural Network—General Information 
 
For building neural networks, there is no general theory that provides specifications for type of 
neural network, number of layers, number of nodes (at various layers), or learning algorithm.  
Without such a theory, researchers have only general rules based on observations by previous 
network designers. As a consequence, today’s network builder must try hundreds, even thousands, of 
neural networks before s/he hits upon the appropriate neural network to solve her/his problem. 
 
To build these neural networks, we used a freeware product called SNNS version 4.0. Using an 
advanced feature called batchman, this off-the-shelf product enables quick and automated generation 
of neural networks.   
 
Prior to investing large amounts of time refining certain neural network architectures, we 
investigated each of the major network classes: Feed-forward or Multi-Layer Perceptron (MLP), 
Time Delay Neural Network (TDNN), and Recurrent Neural Networks. Most of the major learning 
algorithms were tried: Hebbian learning (Hebb, 1949), backpropagation momentum learning, time 
delay network learning, and topographic learning.  In each of these categories, we generated a few 
types of networks to get a preliminary idea of the suitability of the particular approach in addressing 
the inventory problem. 
 
Investigations into recurrent neural networks, as well as topographic learning, and Hebbian learning 
were discontinued because of poor initial results. Since MLP and TDNN looked especially promising 
in forecasting sales demand, we focused on them. 
 
For the time series prediction problem, we had to choose the optimal size of the time interval.  
Accurate predictions for short time periods (such as daily sales) are more difficult to obtain as 
compared to those for long intervals of time (such as monthly sales).  Short intervals of times require 



a greater number of forecast points, show greater sales demand variability, and exhibit a lesser 
dependence on previous sales history.  As a result, short-interval predictions can be very difficult.  
However, short-interval predictions can be more useful than long-interval predictions because they 
allow one to see sales demand with greater clarity than long-interval predictions.  Using MLP 
architectures and antibiotics sales data, we initially attempted to forecast sales demand on a daily 
basis. The neural net results were unsatisfactory – the nets produced predictions with very low 
Pearson Correlation (generally below 20 %) and very high Absolute Error Values (above 80 %).  
[See section below on statistical measurement of Neural Network Performance].  Such large errors 
rendered the forecast values useless. Therefore, larger time intervals were tried.  Forecasting for a 
week proved more accurate than for a day; forecasting for a month proved more accurate than for a 
week; and forecasting for a year proved even more accurate.  Indeed, if we had to predict aggregate 
sales demand for a year, we obtained average absolute errors of only 2 %. In Medicorp’s judgment, 
the best compromise between prediction accuracy and prediction clarity was provided by a weekly 
prediction interval. 
 
There were two methods by which we presented the neural network historic sales data: the standard 
method and the rolling method.  The difference between these two methods is best shown with an 
example.  Assume that weekly sales data (in units sold) were: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 
etc. In the standard method, we would present the historic data: “10, 20, 30” and ask the network to 
predict the fourth value: “40”.  Then, we would present the network with “40, 50, 60” and ask it to 
predict the next value:” 70”.  We would continue this process until all training data were exhausted.  
On the other hand, using the rolling method, we would present historic data as “10, 20, 30” and ask 
the network to predict the fourth value: “40”; then, we would present the network with “20, 30, 40” 
and ask it to predict the fifth value: “50”.  We would continue using the rolling method until all the 
training data were exhausted. 
 
Either method can be used to produce the training sets.  The rolling method has an advantage over 
the standard method in that the former produces a greater quantity of training examples at the 
expense of training data quality. Often, the rolling method can confuse the network because of the 
close similarity between training examples. Using the previous example for instance, the rolling 
method would produce “20, 30, 40”; “10, 20, 30”;  “30, 40, 50”.  Each of these training examples 
only differs from each other by a single number only.  This minuscule difference may confuse the 
network and destroy its ability to forecast numbers. On the other hand, with the standard method, one 
produces a greater quality of training examples over quantity. The differentiation problem is never 
encountered; training sets, though fewer in number, are adequately different to avoid confusion.  
 
4 MLP Architecture 
 
A single layer (n inputs – m outputs) MLP model is shown in Figure 1, with x(t) denoting the input 
vector, o(t) denoting the output vector, w(i,j) denoting the weights and W denoting the connection 

weight. Held in the relation: , where x(t) is the input vector and o(t) is the output 
vector.  For more information on the specifics of the MLP neural network, please see [8].  Note that 
the MLP has neither time-delay elements nor any recurrent input.  The class of MLP networks is 
among the simplest and most powerful type of neural networks. 



 
 

 
Figure 1: MLP diagram 

 
Two matrices characterize an MLP neural network: 

 

 
 
The MLP search was constrained to the three-layer model where one layer was the input layer, the 
second layer was the hidden layer, and the third layer was the output layer.  This three-layer 
constraint enabled developers to limit vast search architecture space while maintaining universal 
approximation between one finite dimensional space to another. 
 
5 Time Delay Neural Network Architecture 
 
A Time Delay Neural Network (TDNN) model is shown in the figure 2. This type of neural networks 
is especially adept at handling temporal patterns.  In this case, the input data are entered into the 
network one at a time (look at the x(t) on the left-hand side of the diagram).  The network delays 
handing the data to the next node before the new data value is entered.  In this way, the TDNN 
maintains a history of the time sequence within the network.  This history enhances its sales 
forecasting capabilities.  See [9] for more details. 
 



 
Figure 2: TDNN architecture 

We used the “add-and-evaluate” procedure to differentiate useful parameters from those that were 
irrelevant.  First, the neural networks were tried with historical sales data.  These networks were 
statistically evaluated for quality of performance.  Then, we entered both historical sales data and an 
additional parameter (such as sex, days of supply, or customer number) into the network and 
evaluated the quality of the network’s output.  If the quality of the network output was significantly 
better with the additional parameter, we continued to enter the same parameter in the network on all 
subsequent trials. However, if the network quality was found to be degraded or unchanged, we 
avoided the use of the particular parameter in further iterations.  This procedure enabled the 
identification of useful network parameters. 
 
To train neural networks, we first generated the neural network patterns.  Network patterns are those 
which allow one to “feed” training data into a network.  For all networks tested, we used 1994 and 
1995 sales data to train the networks.  A neural network needs to be fed all relevant available 
information pertaining to sales forecasting.  However, it is virtually impossible to determine what 
these parameters are a priori.  In particular, a network developer must be careful in presenting the 
correct number of parameters.  “ . . . An increase in the number of parameters will lessen output 
errors for given training inputs, but will raise additional errors for inexperienced inputs . . .” [1].  
 
Backpropagation is frequently a very slow method.  Indeed, most initial neural network training 
sessions took up to 3 hours on a Sun SPARC 5 or a SGI INDY machine.  In order to speed 
simulation, a variety of techniques were used.  (For more details on speeding backpropagation, 
please see [3] & [4]).   
 
One particular method used to speed back propagation methods was preprocessing of data.  Feed 
forward networks converge to global minimas faster when data are centered around 1 and -1.  
Accordingly, all training pattern files contained data that was pre-normalized to values between 1 
and -1. [2] 
 
Memory is an important property of neural networks, especially in forecasting neural networks.  
Only by training with adequate amounts of historical sales data can the neural network be expected 
to predict future sales demand properly.  However, too much past data can confuse a neural network.  
Therefore, a delicate balance exists between memory and overwhelming.  Once again, no sure way 
exists for knowing a priori exactly how much memory to use within a given neural network or how 
this memory should be presented.   

 



There are two types of memory: implicit and explicit.  Implicit memory is stored by the connections 
within the neural network itself, whereas explicit memory is presented to the network as part of its 
input.  As the issue of memory occupies a central position in the performance of the network, our 
design team experimented with various neural network memory options for optimum effect. For 
example, neural network models using Hebbian learning algorithm were tested as Hebbian learning 
adjusts the network's weights such that its output reflects its familiarity with input. The more 
probable an input, the larger the output will become (on average).  

 
Time delay neural networks and recurrent neural networks have implicit memory; that is, they can 
automatically store the data in architectural memory.  Memory in recurrent neural nets can be 
increased/decreased by increasing/decreasing the number of recurrent nodes.  In the time delay neural 
networks, memory is stored in the hidden layers and can be increased/decreased by 
reducing/increasing size of the hidden nodes.  Both 14 and 7 elements of implicit TDNN memory 
seemed to work optimally for the Medicorp problem. 
 
Data can be presented explicitly. Presenting memory explicitly is especially useful for neural 
network architectures that are incapable of implicit memory (e.g. the MLP architecture) For instance, 
one may present the neural network with the past six weeks of sales data and ask the network to 
forecast the seventh week of sales demand.  The size of this memory can be varied considerably 
depending on the size of the history window.  For Medicorp, we utilized history windows as large as 
14 weeks, and as small as 0 weeks.  The optimal configuration for the MLP was to present seven 
weeks of historical data. 
 
In a way, the data scarcity problem is directly related to the complexity of the neural net.  “However, 
when the input space is of high dimension, the number of connections, and thus of free parameters, 
may become so large that it is impossible to accurately train the network with the available number 
of training examples: typically, the network will eventually come to correctly learn the training set 
and perform poorly on the test set.” [2] Therefore, in order to minimize the data scarcity problem, 
the performance of smaller (less data dependent) nets was analyzed in detail.  Those networks that 
worked especially well to forecast for the Medicorp inventory problem tended to be the smaller nets 
of less than 20 hidden nodes. 

 
The scarcity of data problem was a major hurdle in building the neural nets. This scarcity of data 
problem is not new; it has been encountered in many other neural network problems.  Because the 
data scarcity problem is encountered frequently, various solutions, each having their own advantages 
and disadvantages, have been postulated.  In the inventory problem, we combined a number of 
approaches to tackle the scarcity problem.  

 
One easy way to address the scarcity problem is to utilize one additional year of historical data from 
the Medicorp database. This led to better neural network solutions (as measured by mean squared 
error), significantly reduced the risk of over-training the network, and allowed for better problem 
generalization.  However, this solution also involved increased disk space. One year’s sales demand 
data can be as large as 100-200 megabytes. Required format transformations on the data can increase 
the size to 200-300 additional megabytes.  In all, two-year’s worth of sales demand data can easily 
run up to a gigabyte in disk space.  Furthermore, the amount of training time for a network goes up 
linearly as a factor of how much data is presented to it (i.e., O(n) time).  Therefore, a network using 
only one year’s worth of data (1995) that previously took 3 hours of time to train, can take up to 6 



hours of time to train using two years worth of data (1994 and 1995).  In the real world, where time 
and memory are limited, increasing data is also a limited option. 

 
A number of acute type drugs such as particular types of antibiotics sell infrequently.  In fact, some 
of them may sell only twice or thrice a year at a particular store.  This lack of sales data is a major 
problem in training neural networks. To solve the data scarcity problem, other methods of 
transformation of data, reuse, and aggregation of data had to be employed. Among the various data 
transformation schemes discussed in literature the one that is most commonly used for its 
effectiveness and overall implementation is based on changing future data sets with some known 
fraction of past data sets. If X[i]’ represents the ith changed data set, X[i] represents the ith  initial data 
set, X[i-1] represents the initial (i-1)th initial data set and µ is some numerical factor, then the new 
time series can be computed as X[i]’ = X[i] + µ * X[i-1], X[0]’ = X[0]. The modified time series 
thus has data elements that keep some fraction of past elements. This scheme is particularly useful in 
the present data scarcity problem for acute type of drugs. By modifying the actual time series with 
the proposed scheme, the memory of non-zero drug sales is retained for a longer period of time. It is 
easier to train the neural networks with the modified time series [7]. 

 
Another solution to the scarcity problem is to recycle old data.  That is, allow the neural network to 
learn the same training data set many times.  In the Medicorp project, we allowed the neural 
networks to cycle through the data approximately 3000 times.  The greatest advantage of recycling is 
that it allows for more accurate neural network solutions without having to increase the amount of 
data fed to the neural network (thereby saving space).  However, the recycling method has two 
disadvantages: risk of over-training and overhead time.   
 
Yet another way to deal with the scarcity of data problem is to aggregate different categories of data.  
In the inventory problem, scarcity of data was tackled by aggregating sales demand within nearby 
regions.  In this method, prediction of sales demand is not done for individual stores, but rather for 
all stores that combine to form a ‘market’.  For instance, accurate prediction of sales demand per 
store is nearly impossible for some drugs.  Therefore, we created a ‘Boston market’ or an aggregation 
of stores in the Boston area.  This market idea had two advantages: it allowed for considerably more 
accurate prediction of sales (due to the law of large numbers) and it mitigated the scarcity of data 
problem by adding sales demand data from many different stores. 
 
6 Statistically Evaluating the Best Neural Network Type 
 
In a repertoire of hundreds of neural networks, it is virtually impossible to differentiate and identify 
which types and classes of neural networks are better than others for predicting consumer drug 
demand.  To objectively identify those types of networks that are best, three different statistical 
indicators were used. These coefficients are Pearson Correlation Coefficient (P. Correlation), 
Normalized Mean Square Error (NMSE), and Absolute Error (AE).  Each of the coefficients, in some 
way, represents a specific method of measuring how well a simulation performed.  No one 
coefficient can tell how well one simulation fared against others; instead all of these three numbers 
should generally be considered together. 
 
The Pearson Correlation Coefficient shows how well trends, i.e., bumps and valleys were picked up.  
The Pearson Correlation is a number ranging between -1 and 1.  If our simulation predicts bumps 
and valleys perfectly, then the corresponding Pearson Correlation would be 1.   
 



The Normalized Mean Square Error (NMSE) is a method to compare the mean of a series against the 
predicted values.  If the NMSE is greater than 1, then the predictions are doing worse than the series 
mean.  If the NMSE is less than 1, then the forecasts are doing better than the series mean.  The 
NMSE is a widely used measure in academic journals to evaluate how well a Neural Network has 
performed. 
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The Absolute Error (AE) is another way to compare the forecasts with the actual values.  It indicates, 
as a percentage value, the average difference between the predicted and actual value.  For instance, 
an AE of 0.40 means that the neural network will provide predictions which, on the average, are 
within plus or minus 40% of the actual values.   Unfortunately, the AE tells us nothing of how well 
the computer predicts trends; for that we must use Pearson Correlation factor. 
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Using the above statistical measures, we established that the Multi-Layer Perceptrons architecture 
provided the best results in the case of Acute Type drugs.   

After modeling consumer demand for the acute class of drugs, we conducted analysis on the data for 
the maintenance class of drugs.  In the latter case, we found that the best neural network 
configuration was the TDNN (7, 14).  However the TDNN (7, 14) performed only marginally better 
than the MLP(1) network (MLP with 14 input nodes, 1 hidden node and 1 output node); therefore, 
we concluded that the MLP(1) neural network was adequate in predicting sales demand for both 
acute and maintenance classes of drugs. 
 

7 Interpreting Results 
 
How well did the neural networks perform in predicting customer demand?  Also, how effective are 
the neural networks for minimizing drug inventory levels?   
 
Medicorp is governed by two competing principles: minimize drug inventories and enhance 
customer satisfaction.  As a matter of policy, Medicorp wants to ensure that at least 95% of its 
incoming customers are happy.  That is, Medicorp wishes to fill at least 95% of the prescriptions that 
it receives.  This provides us with a statistical guideline of “customer satisfaction”. 
 
One way to compare various inventory models is to stimulate the models to see how they would 
perform in the real world.  For the flat sales model, we used the 1995 data to develop parameters for 
the model and used the 1996 data to test the predictive performance of the model.  For the MLP type 
neural network, we used the 1994 data to build network parameters and tested them against the 1996 
data.  The reason that we used two different years to build parameters for the different models (1994 
and 1995) was purely due to convenience.  The neural network was more easily built with the 1994 
data available in neural network pattern form; the flat sales parameter statistics were more easily 



built with the 1995 data available in spreadsheet form.  This difference of years should not bias any 
of the test statistics toward any particular model because the statistics were “year insensitive”; that is, 
they did not depend on the year of the sample data.  Furthermore, there was no significant statistical 
difference between the two sets of sample data. 
  
To compare various inventory models, we must have common unbiased statistics to measure how 
well each model fares.  First, as a measure of customer dissatisfaction, the notion of “undershoots” is 
introduced.  The number of undershoots tells how many times a customer would be turned away for 
lack of drug stock had Medicorp implemented that particular inventory model.  The fewer 
“undershoots”, the better a given model fares.  
 
Second and more importantly, the notion of “days-of-supply” is introduced.  The “days-of-supply” 
parameter represents the number of days the drug supply in the inventory is expected to last. The 
“days-of-supply” indicator is similar to the raw amount of the drug in one way: the greater the ‘days-
of-supply’ the greater the amount of the drug in the inventory.  However, “days-of-supply” differs 
from the raw amount of drug in two important ways.  First, the “days-of-supply” parameter allows 
for common comparisons between different types of drugs.  Different drug amounts are measured in 
different ways: liquid drugs are measured in milliliters (ml); solid drugs are measured in milligrams 
(mg); and capsules are measured in strength and number.  If one talked in terms of raw amount, one 
would have to take into account different units of measure, namely, ml, mg, number of capsules, and 
drug strength.  “Days-of-supply” allows us to talk about different amounts in terms of one unit: days. 
 
Another important difference between “days-of-supply” and raw amount is that it allows us to 
intelligently compare models.  For instance, if one were to use raw amount, instead of “days-of-
supply”, one would not know how to judge a given inventory model.  If a given model indicated that 
one should store large amounts of a particular drug X, it could be because X is a popular drug, 
therefore frequently ordered by customers or because “we have a bad inventory model”.  If instead, 
one used the “days-of-supply” indicator, such a difference would be clear.  The 
popularity/unpopularity of a drug would be factored in with the “days-of-supply” indicator.  
 
These two factors, “undershoots” and “days-of-supply”, are important in judging inventory models.  
Each one is a statistically unbiased measure of competing goals: to keep customers happy and to 
minimize drug stock.  
 
Medicorp has traditionally stored three weeks of supply of each pharmaceutical drug regardless of 
the drug type.  In comparison with two other competing models, this system seems simplistic; it 
neither insures customer happiness and loyalty nor does it minimize inventory stockpiles.  The only 
visible benefit to this system is its ease of management.  The “three week rule” is easy to remember 
and administer. 
 
The flat sales model, a simple statistical model and more complex model than Medicorp’s original 
policy, maintains customer satisfaction while attempting to minimize drug inventory.  The flat sales 
model, using 1994 sales data as input, and 1995-96 sales data as output, assumes that the customer 
demand is a normal distribution from January 1995-September 1996.  Assuming that last year’s sales 
for a particular drug are very much like this year’s sales, the flat sales model reveals the amount of 
drug (in days of supply) needed in the inventory to attain 95% satisfaction level. 
 



The flat sale value is computed like this: We assume that 1994 year’s sales distribution forms a 
normal curve.  Then, the sales normal curve (see figure 3) is transformed into a standard normal 
curve (using basic statistical equations), and the demand quantity value at z=1.65 is computed.  This 
flat sales value is the amount of inventory that would have been needed to keep 95% of the 
customers in 1994 happy.  Because we assume that 1995 - 1996 sales curve will look similar to sales 
picture for 1994, we also assume that this computed quantity is also what is needed to keep 95% of 
the customers in 1995 – 1996 happy.  
 
As one can see, the flat sales model relies on two major assumptions: namely, 1995 – 1996 sales will 
mimic 1994 sales (or more generally, that the next year’s sales will be much like this year’s sales), 
and that sales curves are always normal.   
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Figure 3: Sales Density Function 
 
For most established drugs, the normality assumption for this flat sales model is reasonable.  
Established drugs have, for the most part, saturated the market.  Their sales pattern mimics the 
distribution of “white noise” (it resembles a bell curve).  Evidence for this assumption also comes 
from the Shapiro-Wilks' W test. The Shapiro-Wilks’ W test, put forward by Shapiro, Wilk, & Chen 
in 1968, is the preferred test of normality because of its good power properties as compared to a wide 
range of alternative tests, namely the Kolmogorov-Smirnov test and the Lilliefors test. As one can 
see in Figure 4, the W value is close to one, which indicates that the distribution is close to normal. 
Most fast-moving drugs tested under the Kolmogorov-Smirnov test had values close to one, 
indicating that they had distributions close to normal. While the normality assumption and the 
equivalence assumption  (that next year’s sales will be much like this year’s sales) hold for 
established drugs, they fail for both newly introduced and discontinued drugs.  Newly introduced 
drugs have an upward trend in sales since their introduction to the market.  Discontinued drugs have 
a downward sales trend since production ended.  In both these cases, the normality assumption may 
hold using detrending techniques such as differencing. Differencing is often used to eliminate non-
stationarity realizations of data. 



Normal Probability Plot
Drug Sales; Shapiro-Wilk W=.93121, p < .0063
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Figure 4: Shapiro - Wilk’s Test on a Sample Fast Moving Drug Sales Data 
 

Differencing allows one to eliminate polynomial trends as well as seasonality [6].  While detrending 
tools may remedy the normality assumption, the equivalence assumption may not hold.  Therefore, 
one disadvantage to the flat model is its inability to deal effectively with and predict inventory stock 
for newly introduced drugs, or for discontinued drugs. 

 
For slow-moving or established drugs, the MLP model is considerably better than the Flat model (for 
example, in Table 1, file numbers #78, #82, #1235).  While maintaining a 95% probability of 
customer satisfaction (that is, Medicorp is able to fill the prescription), the MLP model reduces days-
of-supply for established drugs in the inventory by 66%.  Since established drugs constitute the 
majority of the drugs in the total drug inventory, a reduction in the days-of-supply offers a major 
benefit.  The neural network model seems to work best in terms of undershoots and days-of-supply.  
On the average, the neural network undershoots only three times (keeping the 95% customer 
satisfaction policy of Medicorp). 

 
8 Conclusions 
 
The deployment of neural network-based inventory management systems will encourage 
organizations to incorporate agile business practices and enabling technologies to produce arbitrary 
quantities of customizable, reconfigurable, and upgradeable products, supported over the entire 
product life cycle.  A neural network-based inventory management system can enable organizations 
to establish effective linkages with their partner organizations in the supply chain process. 
 
 
 
 
 



   Flat Sales MLP Single w/ 94-95 data 

File # Average Standard 
Deviation Undershoots Days of Supply Undershoots Days of Supply

78 68 99 1 84 1 25 
79 134 145 2 28 2 26 
80 1224 729 5 18 10 20 
81 9 37 0 12 0 7 
82 138 170 0 80 2 24 
360 582 133 3 19 5 14 
441 487 233 0 32 3 13 
446 398 152 1 26 5 14 
1118 520 182 1 21 4 15 
1119 381 136 0 21 4 13 
1120 381 136 0 21 4 11 
1121 381 136 0 21 2 22 
1122 158 79 1 21 7 15 
1234 137 133 1 60 1 19 
1235 17 51 1 186 1 41 
1236 1318 928 3 23 3 16 
1237 115 113 2 37 1 38 
1238 53 107 3 31 1 23 
1255 11831 7136 2 21 8 19 
 

Table 1: Comparison of results for acute type drug #ABCDEF 
 
The neural network based inventory management system described in this paper emphasizes the 
following:  
1. Comprehensive decision support capability, enabling the end-user to interactively explore a 

number of tradeoffs using data mining techniques, 
2. Concurrent development and dynamic revision of integrated process planning and inventory 

management solutions, 
3. Use of a common representation for exchanging drug inventory information, and 
4. Coordination with outside information sources such as drug manufacturers, warehouses, 

suppliers and end customers. 
 
Inventory control is a nascent application of neural networks.  After studying the constraints that 
characterize the medical arena, an autonomous inventory management system has been created based 
on an ultra-sparse single layer neural network. By deploying this neural network based model, the 
inventory at Medicorp consisting of over a billion dollars worth of drugs can be reduced by 50 % to 
about one-half billion dollars while maintaining an equivalent customer satisfaction level (95% of 
prescriptions are filled). 
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