An Existence Theorem of Solutions for the System of Generalized Vector Quasi-Variational-Like Inequalities

Shamshad Husain¹, Sanjeev Gupta¹*, Vishnu Narayan Mishra²

¹Department of Applied Mathematics, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh, India
²Department of Applied Mathematics & Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, India

Email: s_husain68@yahoo.com, *guptasanmp@gmail.com, vishnunarayansh Micha@gmail.com

Received May 14, 2012; revised June 20, 2012; accepted July 8, 2012

ABSTRACT

In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff topological vector spaces, which include the system of vector quasi-variational-like inequalities, the system of vector variational-like inequalities, the system of vector quasi-variational inequalities, and several other systems as special cases. Moreover, a number of C-diagonal quasiconvexity properties are proposed for set-valued maps, which are natural generalizations of the g-diagonal quasiconvexity for real functions. Together with an application of continuous selection and fixed-point theorems, these conditions enable us to prove unified existence results of solutions for the system of generalized vector quasi-variational-like inequalities. The results of this paper can be seen as extensions and generalizations of several known results in the literature.

Keywords: The System of Generalized Vector Quasi-Variational-Like Inequalities; Fixed Point Theorem; Open Lower Section; Upper Semicontinuous; C-Diagonal Quasiconvexity

1. Introduction and Formulation

In recent years, the system of generalized vector quasi-variational-like inequality, which is a unified model for the system of vector quasi-variational-like inequalities, the system of vector variational-like inequalities, the system of vector variational inequalities, the system of vector equilibrium problems and the system of variational inequalities etc., has been studied (see [1-18] and references therein).

In this paper, we consider the systems of four kinds of generalized vector quasi-variational-like inequalities with set-valued mappings and discuss the existence of its solutions in locally convex topological vector space (l.c.s. in short), motivated and inspired by the recent works of Peng [1] and Ansari et al. [2].

Throughout this paper, unless otherwise specified, assume that I be an index set. For each i ∈ I, let Z_i be a locally convex topological vector space (l.c.s., in short) and K_i be a nonempty convex subset of Hausdorff topological vector space (t.v.s., in short) E_i. Let Y_i be a subset of continuous function space L(E_i, Z_i) from E_i into Z_i, where L(E_i, Z_i) is equipped with a σ-

Corresponding author.

topology. Let int A and coA denote the interior and convex hull of a set A respectively. Let C_i : K → 2^{E_i} be a set-valued mapping such that int C_i(x) ≠ ∅ for each x ∈ K. Denote that K = ⋂_{i∈I} K_i and E = ⋂_{i∈I} E_i.

For each i ∈ I, let η_i : K_i × K → E_i be a vector-valued mapping, G_i : L(E, Z) → 2^{(E_i, Z_i)}

S_i : K × K → 2^{E_i}, T_i : K → 2^{Y_i} and D_i : K → 2^{Y_i} be four set-valued mappings. Then,

1) Strong type I system of generalized vector quasi-variational-like inequalities which is to find

(\bar{x}, \bar{r}) ∈ K × Y such that \bar{x} ∈ D_1(\bar{x}), \bar{r} ∈ T_1(\bar{x}) and

\{G_i(\bar{r}, \eta_i(y, \bar{x})) + S_i(\bar{x}, y)\} \subset C_i(\bar{x}), \forall y ∈ D_i(\bar{x}), (1.1)

2) Strong type II system of generalized vector quasi-variational-like inequalities which is to find

(\bar{x}, \bar{r}) ∈ K × Y such that \bar{x} ∈ D_1(\bar{x}), \bar{r} ∈ T_1(\bar{x}) and

\{G_i(\bar{r}, \eta_i(y, \bar{x})) + S_i(\bar{x}, y)\} \cap C_i(\bar{x}) ≠ ∅, \forall y ∈ D_i(\bar{x}), (1.2)

3) Weak type I system of generalized vector quasi-variational-like inequalities which is to find

(\bar{x}, \bar{r}) ∈ K × Y such that \bar{x} ∈ D_1(\bar{x}), \bar{r} ∈ T_1(\bar{x}) and

Copyright © 2013 Shamshad Husain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
where \(l(x) \) denotes the evaluation of \(l(x, E, z) \) at \(x \in E \). By the corollary of the Schaefer [3], \(L(E, z) \) becomes a l.c.s. By Ding and Tarafdar [4], the bilinear map \(\langle \cdot, \cdot \rangle: L(K, z) \times K \to \mathbb{R} \) is continuous.

The following problems are the special cases of above four kinds of systems of generalized vector quasi-variational-like inequalities.

The above system of generalized vector quasi-variational-like inequalities encompass many models of system of variational inequalities. The following problems are the special cases of (1.4).

1) If for each \(i \in I \), let \(G_i \) be an identity mapping, \(S_i = 0 \), problem (1.4) reduces to the system of generalized quasi-variational-like inequalities of finding \(x \in K \) such that for each \(i \in I \), \(x \in T_i(x) \) and

\[
\forall y_i \in D_i(x), \exists T_i \in T_i(x) : \langle T_i, \eta_i(y_i, x) \rangle \notin \text{int} C_i(x),
\]

which was introduced and studied by Peng [1].

2) If for each \(i \in I \), let \(G_i \) be an identity mapping, \(S_i = 0 \) and \(D_i(x) = K_i \), problem (1.5) reduces to the system of generalized quasi-variational-like inequalities of finding \(x \in K \) such that for each \(i \in I \), \(x \in K_i \) and

\[
\forall y_i \in K_i, \exists T_i \in T_i(x) : \langle T_i, \eta_i(y_i, x) \rangle \notin \text{int} C_i(x).
\]

In addition, let \(Z_1 = \mathbb{R}^n \) and let \(C_i(x) = \mathbb{R}^n = \{ r \in \mathbb{R} | r \geq 0 \} \) for all \(x \in K \), then problem (1.5) reduces to the system of generalized vector quasi-variational inequalities studied by Ansari and Yao [5].

3) If for each \(i \in I \), \(G_i \) be an identity mapping, \(S_i = 0 \), \(\eta_i(y_i, x) = y_i - x \), and \(D_i(x) = K_i \), then problem (1.5) reduces to the system of generalized vector quasi-variational inequalities of finding \(x \in K \) such that for each \(i \in I \), \(x \in K_i \) and

\[
\forall y_i \in K_i, \exists T_i \in T_i(x) : \langle T_i, y_i - x \rangle \notin \text{int} C_i(x).
\]

4) If \(I = \{1\} \), problem (1.4) reduces to generalized vector quasi-variational-like inequalities of finding \(x \in K \) such that \(x \in D(x) \) and

\[
\langle G \eta(y, x), x \rangle + S(x, y) \notin \text{int} C(x), \forall y_i \in K,
\]

such type of problem studied in [6-10].

5) If \(I = \{1\} \) and \(\eta(y, x) = y - x \), \(T \) is single valued mapping, \(G \) be an identity mapping, \(S = 0 \), and \(C(x) = \mathbb{R}^n \) for all \(x \in K \), then problem (1.4) reduces to classical variational inequality problem of finding \(x \in K \) such that \(x \in D(x) \) and

\[
\forall y \in D(x), \exists T \in T(x) : \langle T(x), y - x \rangle \notin \text{int} C(x),
\]

which was introduced and studied by Hartman and Stampacchia [11].

2. Preliminaries

Definition 2.1. [12] Let \(E \) and \(Z \) be two t.v.s. and \(K \) be a convex subset of t.v.s. \(E \). Let \(C: K \to 2^Z \) and \(\theta: K \times K \to 2^Z \) be two set-valued mappings. Assume given any finite subset \(\Lambda = \{x_1, x_2, \ldots, x_n\} \) in \(K \), any \(x = \sum_{i=1}^{n} \alpha_i x_i \), with \(\alpha_i \geq 0 \) for \(i = 1, \ldots, n \), and \(\sum_{i=1}^{n} \alpha_i = 1 \). Then, 1) \(\theta \) is said to be strong Type I C-diagonally quasiconvex (SIC-DQC, in short) in the second argument if for some \(x_i \in \Lambda \),

\[
\theta(x, x_i) \subseteq C(x);
\]

2) \(\theta \) is said to be strong Type II C-diagonally quasiconvex (SIIC-DQC, in short) in the second argument if for some \(x_i \in \Lambda \),

\[
\theta(x, x_i) \cap C(x) \neq \emptyset;
\]

3) \(\theta \) is said to be weak Type I C-diagonally quasiconvex (WIC-DQC, in short) in the second argument if for some \(x_i \in \Lambda \),

\[
\theta(x, x_i) \cap \text{int} C(x) \neq \emptyset;
\]

4) \(\theta \) is said to be weak Type II C-diagonally quasiconvex (WIIC-DQC, in short) in the second argument if for some \(x_i \in \Lambda \),

\[
\theta(x, x_i) \notin \text{int} C(x).
\]

It is easy to verify that the following proposition, 1) SIC-DQC implies SIIC-DQC; 2) SIIC-DQC implies WIC-DQC; 3) WIC-DQC implies WIIC-DQC. The converse is not true. Following example shows that the converse is not true.

Example 2.1. Let \(E = Z = \mathbb{R} \) and \(\varphi(x, x_i) = \cos \{x, x_i\} \).

1) If \(C(x) = [x + \epsilon, +\infty) \). Then \(\varphi \) is SIC-DQC, but it is not SIIC-DQC.

2) If \(-\text{int} C(x) = (-\infty, x + \epsilon) \). Then \(\varphi \) is WIC-DQC, but it is not WIIC-DQC.

Definition 2.2. [13] Let \(E \) and \(Z \) be two t.v.s. and \(K \) be a convex subset of t.v.s. \(E \). A mapping \(\theta: K \times K \to 2^Z \) is called (generalized) vector 0-
diagonally convex if for any finite subset
\[\Lambda = \{x_1, x_2, \ldots, x_n\} \] of \(K \) and any \(x = \sum_{i=1}^{n} \alpha_i x_i \) with
\[\alpha_i \geq 0 \quad \text{for} \quad i = 1, \ldots, n, \quad \text{and} \quad \sum_{i=1}^{n} \alpha_i = 1, \]

\[\sum_{i=1}^{n} \alpha_i \theta(x_i, x_i) \notin \text{int} \ C(x). \]

Definition 2.3. [14] Let \(X \) and \(Y \) be two topological spaces and \(T : X \rightarrow 2^Y \) be a set-valued mapping. Then,

1) \(T \) is said to have open lower sections if the set
\[T^{-1}(y) = \{x \in X : y \in T(x)\} \]

is open in \(X \) for every \(y \in Y \);

2) \(T \) is said to be upper semicontinuous (u.s.c., in short) if for each \(x_o \in X \) and each open set \(U \) in \(Y \) with \(T(x_o) \subseteq U \), there exists an open neighborhood \(V \) of \(x_o \) in \(X \) such that \(T(x) \subseteq U \) for each \(x \in V \);

3) \(T \) is said to be lower semicontinuous (l.s.c., in short) if for each \(x_o \in X \) and each open set \(U \) in \(Y \) with \(T(x_o) \cap U \neq \emptyset \), there exists an open neighborhood \(V \) of \(x_o \) in \(X \) such that \(T(x) \cap U \neq \emptyset \) for each \(x \in V \);

4) \(T \) is said to be continuous if it is both upper and lower semicontinuous;

5) \(T \) is said to be closed if for any net \(\{x^n\} \) in \(X \) such that \(x^n \rightarrow x^o \) and any net \(\{y^n\} \) in \(B \) such that \(y^n \rightarrow y^o \) \(\text{and} \quad y^n \in T(x^n) \) for any \(o \), we have \(y^o \in T(x^o) \).

Lemma 2.1. [15] Let \(X \) and \(Y \) be two topological spaces. If \(T : X \rightarrow 2^Y \) is u.s.c. set-valued mapping with closed values, then \(T \) is closed.

Lemma 2.2. [16] Let \(X \) and \(Y \) be two topological spaces and \(T : X \rightarrow 2^Y \) is u.s.c. mapping with compact values. Suppose \(\{x^n\} \) is a net in \(X \) such that \(x^n \rightarrow x^o \). If \(y^n \in T(x^n) \) for each \(o \), then there are a \(y^o \in T(x^o) \) and a subnet \(\{y^{o_n}\} \) of \(\{y^n\} \) such that \(y^o \rightarrow y^o \).

Lemma 2.3. [17] Let \(X \) and \(Y \) be two topological spaces. Suppose that \(T : X \rightarrow 2^Y \) and \(K : X \rightarrow 2^Y \) are set-valued mappings having open lower sections, then

1) A set-valued mapping \(F : X \rightarrow 2^Y \) defined by, for each \(x \in X \), \(F(x) = \text{co}T(x) \) has open lower sections; and

2) A set-valued mapping \(J : X \rightarrow 2^Y \) defined by, for each \(x \in X \), \(J(x) = T(x) \cap K(x) \) has open lower sections.

For each \(i \in I \), \(E_i \) a Hausdorff t.v.s. Let \(\{K_i\} \) be a family of nonempty compact convex subsets with each \(K_i \) in \(E_i \). Let \(K = \prod_{i \in I} K_i \) and \(E = \prod_{i \in I} E_i \). The following system of fixed-point theorem is needed in this paper.

Lemma 2.4. [18] For each \(i \in I \), let \(T_i : K \rightarrow 2^{K_i} \) be a set-valued mapping. Assume that the following conditions hold.

1) For each \(i \in I \), \(T_i \) is convex set-valued mapping;
2) \(K = \bigcup \{ \text{int} T_i^{-1}(x) : x \in K_i \} \).

Then there exist \(\overline{x} \in K \) such that \(\overline{x} \in T(\overline{x}) = \bigcap_{i \in I} T_i(\overline{x}) \), that is, \(\overline{x} \in T_i(\overline{x}) \) for each \(i \in I \), where \(\overline{x}_i \) is the projection of \(\overline{x} \) onto \(K_i \).

3. Main Results

Theorem 3.1. For each \(i \in I \), let \(Z_i \) be a l.c.s., \(K_i \) a nonempty compact convex subset of Hausdorff t.v.s. \(E_i \), \(Y_i \) a nonempty compact convex subset of \(L(E_i, Z_i) \), which is equipped with a \(\sigma \)-topology. For each \(i \in I \), assume that the following conditions are satisfied.

1) \(D_i : K \rightarrow 2^{K_i} \) and \(T_i : K \rightarrow 2^{Y_i} \) are two nonempty convex set-valued mappings and have open lower sections;

2) For each \(t_i \in Y_i \) and \(x_i \in \text{co} A_i \), the mapping \(\{G(t_i, \eta((., x_i))) + S_i(x_i, x_i) : K \rightarrow 2^{K_i} \} \) is WIIC-DQC;

3) For each \(y_i \in K_i \), the set \(\{x(t, x) \in X \times Y : \{G(t_i, \eta((., x_i))) + S_i(x_i, x_i) \} \subseteq \text{int} C_i(x) \} \) is open.

Then there exist \(\overline{x} \in D_i(\overline{x}) \) and \(\overline{y}_i \in T_i(\overline{x}) \) such that \(\{G(\overline{y}_i, \eta((., \overline{x})) + S(\overline{x}, y_i) \} \subseteq \text{int} C_i(\overline{x}) \), \(\forall y_i \in D_i(\overline{x}) \).

Proof. Define a set-valued mapping \(P_i : K \times Y \rightarrow 2^{K_i} \) by

\[P_i(x, t) = \{ y_i \in K_i : \{G(t_i, \eta((., x_i))) + S_i(x_i, x_i) \} \subseteq \text{int} C_i(x) \}, \]

\(\forall (x, t) \in K \times Y \).

We first prove that \(x_i \not\in \text{co}(P_i(x, t)) \) for all \((x, t) \in K \times Y \). To see this, suppose, by way of contradiction, that there exist some \(i \in I \) and some point \((\overline{x}, \overline{t}) \in K \times Y \) such that \(\overline{x}_i \in \text{co}(P_i(\overline{x}, \overline{t})) \). Then, there exist finite points \(y_{i_1}, y_{i_2}, \ldots, y_{i_n} \in K_i \) and \(\alpha_j \geq 0 \) with \(\sum_{j=1}^{n} \alpha_j = 1 \) such that \(\overline{x}_i = \sum_{j=1}^{n} \alpha_j y_{i_j} \) and \(y_{i_j} \in P_i(\overline{x}, \overline{t}) \) for all \(j = 1, \ldots, n \) such that \(\{G(\overline{y}_{i_j}, \eta((., \overline{x})) + S(\overline{x}, y_{i_j}) \} \subseteq \text{int} C_i(\overline{x}) \), \(j = 1, \ldots, n \), which contradicts the hypothesis 2). Hence, \(x_i \not\in \text{co}(P_i(x, t)) \).

By hypothesis 3), for each \(i \in I \) and each \(y_i \in K_i \), we known that
\[Q^{-1}(y) = \{ (x,t) \in K \times Y : \langle G_i, \eta_i(y,x) \rangle + S_i(x,y) \subseteq - \text{int } C_i(x) \} \]

is open and so \(P_i \) has open lower sections.

For each \(i \in I \), consider a set-valued mapping \(Q : K \times Y \to 2^{K} \) defined by

\[Q_i(x,t) = \text{co}(P_i(x,t)) \cap D_i(x), \quad \forall (x,t) \in K \times Y. \]

Since \(D_i \) has open lower sections by hypothesis 1), we may apply Lemma 2.3 to assert that the set-valued mapping \(Q_i \) has also open lower sections. Let

\[W_i = \{ (x,t) \in K \times Y : Q_i(x,t) \neq \emptyset \} \subset K \times Y. \]

There are two cases to consider. In the case \(W_i = \emptyset \), we have

\[\text{co}(P_i(x,t)) \cap D_i(x) = \emptyset, \quad \forall (x,t) \in K \times Y. \]

This implies that, \(\forall (x,t) \in K \times Y \),

\[P_i(x,t) \cap D_i(x) = \emptyset. \]

On the other hand, by condition 1), and the fact \(K_i \) is a compact convex subset of \(E_i \), we can apply Lemma 2.4 to assert the existence of a fixed point \(x_i^* \in D_i(x_i^*) \). Since \(T_i(x_i^*) \neq \emptyset \), picking \(t_i^* \in T_i(x_i^*) \), we have

\[P_i(x_i^*, t_i^*) \cap D_i(x_i^*) = \emptyset. \]

This implies \(\forall y_i \in D_i(x_i^*), y_i \notin P_i(x_i^*, t_i^*) \). Hence, in this particular case, the assertion of the theorem holds.

We now consider the case \(W_i \neq \emptyset \). Define a set-valued mapping \(S_i : K \times Y \to 2^{K} \) by

\[S_i(x,t) = \begin{cases} Q_i(x,t), & (x,t) \in W_i \\ D_i(x), & (x,t) \in K \times Y \setminus W_i. \end{cases} \]

Then, \(S_i(x,t) \) is a convex set-valued mapping and for each \(u \in K \), \(S_i(u) = Q^{-1}(u) \cup (D^{-1}(u) \setminus Y_i) \) is open. For each \(i \in I \), consider the set-valued mapping \(H_i : K \times Y \to 2^{K \times Y} \) where \(H_i = \Pi_{i=1}^{n} H_i \) defined by

\[H_i(x,t) = (S_i(x,t), T_i(x,t)). \]

By condition 1) and the properties of \(S_i(x,t), H_i \) satisfies all the conditions of Lemma 2.4. Therefore, there exists \((x^*, t^*) \in K \times Y \) such that

\[(x^*, t^*) \in H_i(x^*, t^*). \]

Suppose that \((x^*, t^*) \in W_i \), then

\[x_i^* \in \text{co}(P_i(x_i^*, t_i^*)) \cap D_i(x_i^*), \]

so that \(x_i^* \in \text{co}(P_i(x_i^*, t_i^*)) \). This is a contradiction.

Hence, \((x^*, t^*) \notin W_i \). Therefore,

\[(x^*, t^*) \in D_i(x_i^*, t_i^*), \quad \text{and } Q_i(x_i^*, t_i^*) = \emptyset. \]

Thus

\[x_i^* \in D_i(x_i^*), t_i^* \in T_i(x_i^*), \quad \text{co}(P_i(x_i^*, t_i^*)) \cap D_i(x_i^*) = \emptyset. \]

This implies

\[P_i(x_i^*, t_i^*) \cap D_i(x_i^*) = \emptyset. \]

Consequently, the assertion of the theorem holds in this case.

Corollary 3.2. For each \(i \in I \), let \(Z_i \) be a l.c.s., \(K_i \) a nonempty compact convex subset of Hausdorff t.v.s. \(E_i \), \(Y_i \) a nonempty compact convex subset of \(L(E_i, Z_i) \), which is equipped with a \(\sigma \)-topology. For each \(i \in I \), assume that the following conditions are satisfied.

1) \(D_i : K \to 2^K \) and \(T_i : K \to 2^Y \) are two nonempty convex set-valued mappings and have open lower sections;

2) For all \(y_i \in K_i \), the mapping \(\{ G_i, \eta_i(y_i, \cdot) \} + S_i(\cdot, y_i) : K \times Y \to 2^K \) is an u.s.c. set-valued mapping;

3) \(C_i : K \to 2^Z_i \) is a convex set-valued mapping with \(\text{int } C_i(x) \neq \emptyset \) for all \(x \in K \);

4) \(\eta_i : K \times K_i \to E_i \) is affine in the first argument and for all \(i \in K_i \), \(\eta_i(x_i, x_i) = 0 \);

5) \(S_i : K \times K \to 2^Z_i \) is a generalized vector 0-diagonally convex set-valued mapping;

6) For a given \(x_i \in K_i \), and a neighborhood \(U_i \) of \(x_i \) for all \(u \in U_i \), \(\text{int } C_i(x) = \text{int } C_i(u) \).

Then there exists \(x_i \in D_i(x_i) \) and \(t_i \in T_i(x_i) \) such that

\[\{ G_i, \eta_i(y_i, x_i) \} + S_i(x_i, y_i) \subseteq \text{int } C_i(x_i), \quad \forall y_i \in D_i(x_i). \]

Proof. Define a set-valued mapping \(P_i : K \times Y \to 2^K \) by

\[P_i(x,t) = \{ y_i \in K_i : \{ G_i, \eta_i(y_i, x_i) \} + S_i(x_i, y_i) \subseteq \text{int } C_i(x_i) \}, \]

\[\forall (x,t) \in K \times Y. \]

We first prove that \(x_i \notin \text{co}(P_i(x_i,t_i)) \) for all \((x_i,t_i) \in K \times Y \). By contradiction, for each \(i \in I \), suppose there exists some point \((\overline{x}_i, \overline{t}_i) \in K \times Y \) such that

\[x_i \in \text{co}(P_i(\overline{x}_i, \overline{t}_i)). \]

Then, there exist finite points \(y_1, y_2, \ldots, y_n \in K_i \) such that

\[\{ G_i, \eta_i(y_1, x_i) \} + S_i(x_i, y_i) \subseteq \text{int } C_i(\overline{x}_i), \quad i = 1, 2, \ldots, n. \]

Since \(\eta_i \) is affine and int \(C_i(\overline{x}_i) \) is convex, for \(\alpha_j \geq 0 \) with \(\sum_{j=1}^{n} \alpha_j = 1 \) such that \(\overline{x}_i = \sum_{j=1}^{n} \alpha_j y_{ij} \) and \(y_{ij} \in P_i(\overline{x}_i, \overline{t}_i) \) for all \(j = 1, \ldots, n \) such that

\[\{ G_i, \eta_i \left(\sum_{j=1}^{n} \alpha_j y_{ij}, \overline{t}_i \right) \} + \sum_{j=1}^{n} \alpha_j S_i(\overline{x}_i, y_{ij}) \subseteq \text{int } C_i(\overline{x}_i), \quad j = 1, \ldots, n. \]
Since $\eta_i(x_i, x_j) = 0$ for all $x_i \in K_j$
\[\sum_{j=1}^{n} \alpha_j S_j(\bar{x}_i, y_j) \subseteq -\text{int } C_i(\bar{x}) \]
which contradicts the hypothesis 5). Therefore $x_i \not\in \text{co}(P_i(x, t))$.

We now prove that for each $y_i \in K_i, P_i^{-1}(y_i)$
\[\{(x, t) \in K \times Y : \langle G_i t, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \]
\[\subseteq -\text{int } C_i(\bar{x}) \}\]
is open. Indeed, let $(\bar{x}, \bar{t}) \in P_i^{-1}(y_i)$, that is
\[\langle G_i \bar{t}, \eta_i(y_i, \bar{x}) \rangle + S_i(\bar{x}, y_i) \subseteq -\text{int } C_i(\bar{x}) \].
Since \[\langle G_i \bar{t}, \eta_i(y_i, \bar{x}) \rangle + S_i(\bar{x}, y_i) : K \times Y \to 2^E \] is an u.s.c. set-valued mapping, there exists a neighborhood U_i of (\bar{x}, \bar{t}) such that
\[\langle G_i \bar{t}, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \subseteq -\text{int } C_i(\bar{x}), \forall (x, t) \in U_i. \]

By 6),
\[\langle G_i \bar{t}, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \subseteq -\text{int } C_i(x), \forall (x, t) \in U_i. \]

Hence, $U_i \subseteq P_i^{-1}(y_i)$. This implies, $P_i^{-1}(y_i)$ is open for each $y_i \in K_i$, and so P_i has open lower sections. For the remainder of the proof, we can just follow that of Theorem 3.1. This completes the proof.

Corollary 3.3. For each $i \in I$, let Z_i be a l.c.s., K_i a nonempty compact convex subset of Hausdorff t.v.s. E_i, Y_i a nonempty compact convex subset of $L(E_i, Z_i)$, which is equipped with a σ-topology. For each $i \in I$, assume that S_i and G_i are single valued mappings and the following conditions are satisfied.

1) $D_i : K \to 2^{\varepsilon_i}$ and $T_i : K \to 2^{\varepsilon_i}$ are two nonempty convex set-valued mappings and have open lower sections;
2) For all $y_i \in K_i$, the mapping
\[\{G_i \bar{t}, \eta_i(y_i, \bar{x})\} + S_i(\bar{x}, y_i) : K \times Y \to Z_i \] is a convex set-valued mapping with $\text{int } C_i(x) \neq \emptyset$ for all $x \in K$;
4) $\eta_i : K_i \times K_i \to E_i$ is affine in the first argument and for all $x_i \in K_i, \eta_i(x_i, x_i) = 0$;
5) $S_i : K \times K \to 2^{\varepsilon_i}$ is a generalized vector 0-diagonally convex set-valued mapping;
6) For a given $x_i \in K_i$, and a neighborhood U_i of x_i, for all $u \in U_i$, $\text{int } C_i(x) = \text{int } C_i(u)$.

Then there exist $\bar{x}_i \in D_i(\bar{x})$ and $\bar{t}_i \in T_i(\bar{x})$ such that
\[\langle G_i \bar{t}_i, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \subseteq -\text{int } C_i(x), \forall y_i \in D_i(\bar{x}). \]

Proof. By hypothesis 3), the condition 4) in Corollary 3.2 is satisfied. Hence, all the conditions are satisfied as in Corollary 3.2.

Corollary 3.4. For each $i \in I$, let Z_i be a l.c.s., K_i a nonempty compact convex subset of Hausdorff t.v.s. E_i, Y_i a nonempty compact convex subset of $L(E_i, Z_i)$, which is equipped with a σ-topology. For each $i \in I$, assume that S_i and G_i are single valued mappings and the following conditions are satisfied.

1) $D_i : K \to 2^{\varepsilon_i}$ and $T_i : K \to 2^{\varepsilon_i}$ are two nonempty convex set-valued mappings and have open lower sections;
2) For all $y_i \in K_i$, the mapping
\[\{G_i \bar{t}, \eta_i(y_i, \bar{x})\} + S_i(\bar{x}, y_i) : K \times Y \to Z_i \] is continuous;
3) $C_i : K \to 2^{\varepsilon_i}$ is a convex set-valued mapping with $\text{int } C_i(x) \neq \emptyset$ for all $x \in K$;
5) $S_i : K \times K \to Z_i$ is a vector 0-diagonally convex mapping;
6) $Z_i \setminus \{-\text{int } C_i(x)\}$ is an u.s.c. set-valued mapping.

Then there exist $\bar{x}_i \in D_i(\bar{x})$ and $\bar{t}_i \in T_i(\bar{x})$ such that
\[\langle G_i \bar{t}_i, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \subseteq -\text{int } C_i(x), \forall y_i \in D_i(\bar{x}). \]

Proof. Define a set-valued mapping $P_i : K \times Y \to 2^{\varepsilon_i}$ by
\[P_i(x, t) = \{y_i \in K_i : \langle G_i \bar{t}, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \]
\[\subseteq -\text{int } C_i(x)\}, \forall (x, t) \in K \times Y. \]

We now prove that for each
\[y_i \in K_i, P_i^{-1}(y_i) \]
\[= \{(x, t) \in K \times Y : \langle G_i t, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \]
\[\subseteq -\text{int } C_i(x)\} \]
is open, that is, the set
\[\{(x, t) \in K \times Y : \langle G_i t, \eta_i(y_i, x_i) \rangle + S_i(x_i, y_i) \]
\[\subseteq -\text{int } C_i(x)\} \]
is closed. Indeed, let $\{(x^0, t^0)\}$ be a net in $K \times Y$ such that
\[(x^0, t^0) \to (x^*, t^*) \]
and
\[\{G_i t^*, \eta_i(y_i, x^*)\} \cap S_i(x^*, y_i) \subseteq Z_i \setminus \{-\text{int } C_i(x^*)\}. \]

Since $\{G_i t^*, \eta_i(y_i, x^*)\} + S_i(x^*, y_i) : K \times Y \to 2^{\varepsilon_i}$ is continuous, hence
\[\{G_i t^*, \eta_i(y_i, x^*)\} \cap S_i(x^*, y_i) \]
\[\to \{G_i t^*, \eta_i(y_i, x^*)\} + S_i(x^*, y_i). \]
Since \(|Z \setminus \{\text{int } C_i(x)\}|\) is an u.s.c. set-valued mapping with closed values, by Lemma 2.1, we have
\[
\{G_t^\ast, \eta \left(y, x_t \right) \} + S_i \left(x_t, y \right) \in Z \setminus \{\text{int } C_i(x')\},
\]
and hence \(\{x', y\}^\ast\) in the set
\[
\{(x, t) \in K \times Y :\{G_t, \eta \left(y, x_t \right) \} + S_i \left(x_t, y \right) \in \{\text{int } C_i(x')\}\}
\]
This implies \(P_t^{-1}(y, i)\) is open for each \(y, i\) and so \(P_t^{-1}\) has open lower sections. For the remainder of the proof, we can just follow that of Theorem 3.1 and Corollary 3.2. This completes the proof.

Theorem 3.5. For each \(i \in I\), let \(Z_i\) be a l.c.s., \(K_i\) a nonempty compact convex subset of Hausdorff t.v.s. \(E_i\), \(Y_i\) a nonempty compact convex subset of \(L(E_i, Z_i)\), which is equipped with a \(\sigma\) - topology. For each \(i \in I\), assume that the following conditions are satisfied.

1) \(D_i : K \rightarrow 2^{E_i}\) and \(T_i : K \rightarrow 2^{E_i}\) are two nonempty convex set-valued mappings and have open lower sections;

2) For each \(t \in Y_i\) and \(x \in \text{co} \Lambda_i\), the mapping \(\{G_t, \eta \left(y, x \right) \} + S_i \left(x, y \right) \rightarrow \{\text{int } C_i(x')\}\) is WIC-DQC;

3) \(Z_i \setminus \{\text{int } C_i(x)\}\) is WIC-DQC.

This implies \(P_t^{-1}(y, i)\) holds for each \(y, i\) and \(P_t^{-1}\) has open lower sections.

Proof. Define a set-valued mapping \(P_t : K \times Y \rightarrow 2^{E_i}\) by
\[
P_t(x, t) = \{y \in K_i : \{G_t, \eta \left(y, x_t \right) \} + S_i \left(x_t, y \right) \}
\]
\[
\quad \cap \{\text{int } C_i(x')\} \neq \emptyset,
\]
\[
\forall (x, t) \in K \times Y.
\]
For the remainder proof, we just follow that of Theorem 3.1.

Corollary 3.6. For each \(i \in I\), let \(Z_i\) be a l.c.s., \(K_i\) a nonempty compact convex subset of Hausdorff t.v.s. \(E_i\), \(Y_i\) a nonempty compact convex subset of \(L(E_i, Z_i)\), which is equipped with a \(\sigma\) - topology. For each \(i \in I\), assume that the following conditions are satisfied.

1) \(D_i : K \rightarrow 2^{E_i}\) and \(T_i : K \rightarrow 2^{E_i}\) are two nonempty convex set-valued mappings and have open lower sections;

2) For each \(t \in Y_i\) and \(x \in \text{co} \Lambda_i\), the mapping \(\{G_t, \eta \left(y, x \right) \} + S_i \left(x, y \right) \rightarrow \{\text{int } C_i(x')\}\) is WIC-DQC.
Hence, for all \((x',t') \in U_i(x',y') \cap \{U_i(x') \times Y_i\}\), there exists \(w' \in \left\{(G_{ti},\eta_{i}(y_i,\bar{x}_i)) + S_i(x_i,y_i)\right\}\) such that \(w' \notin Z_i \setminus \{-\inf C_i(x')\}\), which is contradiction. Therefore, the set
\[
\{(x,t) \in K \times Y : \left\{(G_{ti},\eta_{i}(y_i,\bar{x}_i)) + S_i(x_i,y_i)\right\} \cap C_i(x) = \emptyset\}
\]
is closed. Hence, all the conditions of Theorem 3.5 satisfied. Consequently, the assertion of the theorem holds.

Theorem 3.7. For each \(i \in I\), let \(Z_i\) be a l.c.s., \(K_i\) a nonempty compact convex subset of Hausdorff t.v.s. \(E_i\), \(Y_i\) a nonempty compact convex subset of \(L(E_i,Z_i)\), which is equipped with a \(\sigma\) -topology. For each \(i \in I\), assume that the following conditions are satisfied.
1) \(D_i : K \to 2^{K_i}\) and \(T_i : K \to 2^{K_i}\) are two nonempty convex set-valued mappings and have open lower sections;
2) For each \(t_i \in Y_i\) and \(x_i \in \co \Lambda_i\), the mapping
\[
\{G_{ti},\eta_{i}(\cdot,x_i)\} + S_i(x_i,y_i) : K \to 2^{K_i}
\]
is SIIC-DQC;
3) For each \(y_i \in K_i\), the set
\[
\{(x,t) \in K \times Y : \left\{(G_{ti},\eta_{i}(y_i,\bar{x}_i)) + S_i(x_i,y_i)\right\} \cap C_i(x) = \emptyset\}
\]
is open. Then there exist \(\bar{x}_i \in D_i(\bar{x})\) and \(\bar{t}_i \in T_i(\bar{x})\) such that
\[
\left\{(G_{ti},\eta_{i}(y_i,\bar{x}_i)) + S_i(x_i,y_i)\right\} \cap C_i(x) \neq \emptyset, \forall y_i \in D_i(x).
\]

Proof. Define a set-valued mapping \(P_i : K \times Y \to 2^{K_i}\) by
\[
P_i(x,t) = \left\{y_i \in K_i : \left\{(G_{ti},\eta_{i}(y_i,\bar{x}_i)) + S_i(x_i,y_i)\right\} \cap C_i(x) = \emptyset\right\},
\]
\(\forall (x,t) \in K \times Y\).

For the remainder proof, we just follow that of Theorem 3.1.

Corollary 3.8. For each \(i \in I\), let \(Z_i\) be a l.c.s., \(K_i\) a nonempty compact convex subset of Hausdorff t.v.s. \(E_i\), \(Y_i\) a nonempty compact convex subset of \(L(E_i,Z_i)\), which is equipped with a \(\sigma\) -topology. For each \(i \in I\), assume that the following conditions are satisfied.
1) \(D_i : K \to 2^{K_i}\) and \(T_i : K \to 2^{K_i}\) are two nonempty convex set-valued mappings and have open lower sections;
2) For each \(t_i \in Y_i\) and \(x_i \in \co \Lambda_i\), the mapping
\[
\{G_{ti},\eta_{i}(\cdot,x_i)\} + S_i(x_i,y_i) : K \to 2^{K_i}
\]
is SIIC-DQC;
3) For all \(x \in K\), \(C_i(x)\) is closed convex cone \(C_i\). Then there exist \(\bar{x}_i \in D_i(\bar{x})\) and \(\bar{t}_i \in T_i(\bar{x})\) such that
\[
\left\{(G_{ti},\eta_{i}(y_i,\bar{x}_i)) + S_i(x_i,y_i)\right\} \cap C_i(x) = \emptyset, \forall y_i \in D_i(x).
\]

Proof. Define a set-valued mapping \(P_i : K \times Y \to 2^{K_i}\) by
\[
P_i(x,t) = \left\{y_i \in K_i : \left\{(G_{ti},\eta_{i}(y_i,\bar{x}_i)) + S_i(x_i,y_i)\right\} \cap C_i(x) = \emptyset\right\},
\]
\(\forall (x,t) \in K \times Y\).

The rest of the proof is similar to that of Theorem 3.1.

Corollary 3.10. For each \(i \in I\), let \(Z_i\) be a l.c.s., \(K_i\) a nonempty compact convex subset of Hausdorff t.v.s. \(E_i\), \(Y_i\) a nonempty compact convex subset of \(L(E_i,Z_i)\), which is equipped with a \(\sigma\) -topology. For each \(i \in I\), assume that the following conditions are satisfied.
1) \(D_i : K \to 2^{K_i}\) and \(T_i : K \to 2^{K_i}\) are two nonempty convex set-valued mappings and have open lower sections;
2) For each \(t_i \in Y_i\) and \(x_i \in \co \Lambda_i\), the mapping
\[
\{G_{ti},\eta_{i}(\cdot,x_i)\} + S_i(x_i,y_i) : K \to 2^{K_i}
\]
\[\{G_t, \eta_s (x, y)\} + S_s (x, y) : K \to 2^Z \] is SIC-DQC;
3) \(C_G (x) \) is an u.s.c. mapping with closed values.

Then there exist \(x \in D_G (x) \) and \(\bar{x} \in T_G (x) \) such that

\[\{G_t, \eta_s (y, \bar{x})\} + S_s (y, \bar{x}) \subseteq C_G (\bar{x}), \forall y \in D_G (x). \]

Proof. Let \(P : K \times Y \to 2^{K_i} \) a set-valued mapping defined in Theorem 3.9. We prove that for each \(y_i \in K_i \), the set

\[\{(x, t) \in K \times Y : \{G_t, \eta_s (y, x_i)\} \cap S_s (x, y_i) \nsubseteq C_s (x) \} \]

is open, that is, the set

\[\{(x, t) \in K \times Y : \{G_t, \eta_s (y, x_i)\} \cap S_s (x, y_i) \subseteq C_s (x) \} \]

is closed. Indeed, let \(\{(x^o, t^o) \} \) be a net in \(K \times Y \) such that

\[(x^o, t^o) \to (x^t, t^t) \]

and

\[\{G_t, \eta_s (y, x^o_i)\} \cap S_s (x^o, y_i) \subseteq C_s (x^o). \]

We claim that

\[\{G_t, \eta_s (y, x^t_i)\} \cap S_s (x^t, y_i) \subseteq C_s (x^t). \]

To prove this assertion, we can just follow that of Corollary 3.6. Hence, the set

\[\{(x, t) \in K \times Y : \{G_t, \eta_s (y, x_i)\} \cap S_s (x, y_i) \nsubseteq C_s (x) \} \]

is open. Therefore, all the conditions of Theorem 3.9 are satisfied. Consequently, the assertion of the corollary hold.

REFERENCES

