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Abstract—Organizations be it private or public often collect
personal information about an individual who are their customers
or clients. The personal information of an individual is private
and sensitive which has to be secured from data mining algorithm
which an adversary may apply to get access to the private
information. In this paper we have consider the problem of
securing these private and sensitive information when used in
random forest classifier in the framework of differential privacy.
We have incorporated the concept of differential privacy to the
classical random forest algorithm. Experimental results shows
that quality functions such as information gain, max operator
and gini index gives almost equal accuracy regardless of their
sensitivity towards the noise. Also the accuracy of the classical
random forest and the differential private random forest is almost
equal for different size of datasets. The proposed algorithm works
for datasets with categorical as well as continuous attributes.

I. INTRODUCTION

Privacy of individual’s personal information has become an
important issue in the digital world. An increasing amount
of personal information is aggregated and stored in data
repositories, and mined to extract useful knowledge. It is im-
portant to develop mechanisms to avoid disclosure of personal
information while extracting the required knowledge from it.

Private companies, government entities and institutions such
as hospitals collect vast amount of personal information about
individuals who are their customers, clients or patients. Indi-
vidual’s personal information is private and sensitive which has
to be secured from adversaries or general public. The problem
of securing statistical databases from revealing the personal
records from collected data has been the subject matter of
research for very long time. There are many methods avail-
able such as input perturbation, output perturbation, objective
perturbation [1] and exponential mechanism [2] to protect the
sensitive data from any possible attack.

Differential privacy measures privacy risk by a parameter ε
that bounds the log-likelihood ratio of the output of a (private)
algorithm under two databases differing in a single individual’s
data [1].

By repeated execution of these algorithms, adversary ana-
lyzes the results and may infer some private information from
an individual’s record. Differential privacy is applied on many
algorithm, such as linear regression, logistic regression and
k-means clustering etc.

In our work, we wanted to investigate whether it is possible
to incorporate differential privacy in any decision tree based
algorithm which gives good accuracy in addition to being com-
putationally efficient. In our work, we consider the problem of

providing differential privacy using random forest [3], which
has better accuracy compared to other decision tree based
algorithms. Random forest runs efficiently on large data sets
without deletion and it also gives estimates of what variables
are important in the classification. In addition to that, major
advantage of using random forest for providing differential
privacy is that there is no need of pruning the tree which is a
common requirement in most of the decision tree based algo-
rithms, hence it is more computationally efficient. In this paper
we study, not only the working of random forest in differential
privacy framework, but also the effect of different quality
functions, such as information gain [4], max operator [5],
and gini index, on the accuracy and their sensitivity towards
the noise with appropriate results. Whenever an adversary
analyzes the results of differential private random forest, he
may not infer any private information. This process is shown
in Fig. 1.

Rest of the paper is organized as follows. Section II,
discusses several related work on differential privacy. Sec-
tion III, briefs required theoretical background on differential
privacy, exponential mechanism and random forest. Section
IV, explains the working of proposed differential private
random forest algorithm. Section V gives experimental results
and section VI discusses those results. Finally, section VII
concludes the paper.

II. RELATED WORK

There are several recent works on the use of differential
privacy for practical applications. Machanavajjhala et al.[6]
applied a variant of differential privacy to create synthetic
datasets from U.S. Census Bureau, with the goal of using
it for statistical analysis of commuting patterns in map-
ping applications. Chaudhuri and Monteleoni [7] proposed
differentially-private algorithms for logistic regression. These
algorithms ensure differential privacy by adding noise to the
outcome of the logistic regression model or by solving logistic
regression for a noisy version of the target function. However,
in categorical or discrete attribute dataset, adding noise is not
possible.

Many algorithms have been proposed to preserve privacy,
but only few have considered classification algorithm in the
differential privacy framework [8]. Noman Mohhamed et al.
[9] applied differential private methods to release differential
private dataset for data mining. They have used exponential
mechanism[2] in generalization of attributes, however, there



PREPRIN
T

Fig. 1. Schematic diagram for providing differential privacy using random
forest algorithm.

is no explanation about where to add the noise during the
attribute selection process.

Several studies have compared the performance of different
splitting criteria for decision tree induction, their results do
not, in general, attest to the superiority of any one criteria
in terms of tree accuracy, although the choice may affect
the resulting tree size [10]. John Mingers[10], considers a
number of different measures and experimentally examines
their behavior in four domains (different type of datasets).
The results show that the choice of measure affects the size
of a tree but not its accuracy, which remains same even
when attributes are selected randomly. McSherry and Mironov
studied the application of differential privacy to collaborative
recommendation systems [11] and demonstrated the feasibility
of differential privacy guarantees without a significant loss in
recommendation accuracy.

Arik Friedman and Assaf Schuster [5] have proposed, data
mining with differential privacy using decision tree induction
as an example. They have concluded that, introduction of for-
mal privacy guarantee into a system requires the data miner to
take a different approach to data mining algorithms. The major
limitation of their work is, the sensitivity of quality functions
such as information gain [4] and max operator [5] with respect
to noise, which affects the final classification accuracy. They
have fed different quality functions such as information gain,
max operator and gini index into exponential mechanism and
found some interesting experimental results. Their results sug-
gests that the use of different quality functions, affect the final
outcome or accuracy. The rationale is the sensitivity of those
functions due to added noise; the information gain is more
sensitive to noise than the max operator. Differential Private
ID3 [5] gives a differential private version of ID3 algorithm.

By applying exponential mechanism on the process of attribute
selection it has overcome the drawback of SuLQ-based ID3
[12]. In SuLQ-based ID3, each attribute is evaluated separately
and so it leads to waste of privacy budget. Differential private
ID3 evaluate all the attributes in one single query, and result
of which is the attribute to use for splitting.

This algorithm works on both continuous and categorical
datasets, and has good accuracy compare to SuLQ-based ID3.
Low accuracy with respect to information gain as quality
function is the major limitation of Differential Privacy ID3
algorithm. In our work we have used differential private ID3
algorithm.

III. THEORETICAL BACKGROUND

This section briefs the required theoretical background
which are the basis for the proposed algorithm, Differential
Private Random Forest.

Let D be the dataset, D = {(Xi, Yi)}ni=1, with Xi ∈ Rd
and corresponds to the data record of an individual i. The
d elements of vector X correspond to different features or
attributes.

A. Differential Privacy

The ε-differential privacy model introduced by Dwork et
al.[13] assures that the removal or addition of a single item in
a database does not have a substantial impact on the output
produced by a private database access mechanism. Differential
privacy measures privacy risk by a parameter ε, that bounds the
log-likelihood ratio of the output of a (private) algorithm under
two datasets D1 and D2 differing in a single individual’s data.
When ε is small, the inferences that an adversary can make
observing the output of the algorithm will be similar regardless
of whether that individual is in the data set or not [1].

Definition 1: A randomized mechanism M satisfies ε-
differential privacy if for databases D1 and D2 differing on at
most one element, and all S ∈ Range(M), then [14]

Pr[M(D1 ∈ S)] ≤ eε × Pr[M(D2 ∈ S)]

The probability is taken over the coin tosses in M.
The parameter ε > 0 is public and specified by the data

owner. Lower values of ε provide a stronger privacy guarantee.
Typically, the values of ε should be small, such as 0.01, 0.1,
or in some cases ln2 or ln3 [14]. The value of ε allows us
to control the level of privacy. Typical, differential privacy
is achieved by adding noise to the outcome of a query. To
obtain ε-differential privacy, calibrate the magnitude of noise
according to the sensitivity of the function. The sensitivity of
a real-valued function expresses the maximal possible change
in its value due to addition or removal of a single record.

Definition 2: For any function f : D 7→ Rd, the sensitivity
of f is defined as

∆f = maxD1∼D2
‖f(D1)− f(D2)‖1

for all D1, D2 differing in at most one record.
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Given the sensitivity of a function f , the addition of noise
drawn from a calibrated Laplace distribution maintains ε-
differential privacy.

Theorem 1: Given a function f : D 7→ Rd over an arbitrary
domain D , the computation

M(X) = f(X) + (Laplace(∆(f)/ε))d

provides ε-differential privacy.
For example, the count function over a set S, f(S) = |S|, has
sensitivity 1. Therefore, a noisy count that returns M(S) =
|S|+ Laplace(1/ε) maintains ε-differential privacy.

B. Exponential Mechanism

Exponential mechanism [2] has a quality function q, that
scores outcomes of a calculation, where higher scores are
better. For a given database and ε parameter, the quality
function induces a probability distribution over the output
domain, from which the exponential mechanism samples the
outcome. This probability distribution favors high scoring
outcomes (they are exponentially more likely to be chosen),
while ensuring ε-differential privacy.

Definition 3: Let q : (Dn ×R) 7→ R be a quality function
that, given a database D ∈ Dn, assigns a score to each out-
come r ∈ R. Let ∆(q) = maxr,D1∼D2

‖q(D1, r)−q(D2, r)‖1.
LetM be a mechanism for choosing an outcome r ∈ R given
a dataset instance D ∈ Dn. Then the mechanismM, is defined
by

M(D, q) =

{
return r with probability ∝ exp

(
εq(D, r)

2∆(q)

)}
maintains ε-differential privacy.

C. Random Forest

Random forest is an ensemble learning method for classifi-
cation (and regression) that operate by constructing a multitude
of decision trees at training time and gives the class that is the
mode of the classes output by individual trees [3].

In random forest, initially it creates a B number of boot-
strap samples [4] from dataset D, and each bootstrap sample
Z∗b, b = 1, 2, . . . , B, is used to construct random forest tree,
Tb. To determine the decision at a node of the tree, it selects
m numbers of input variables at random from d variables, note
that here, m < d. Each tree is fully grown and not pruned. For
prediction, a new sample is pushed down the tree and assigned
a label for the training sample in the terminal node it ends up
in. This procedure is iterated over all trees, and the mode vote
of all trees is reported as the random forest prediction.

IV. DIFFERENTIAL PRIVATE RANDOM FOREST

Now we consider our proposed algorithm wherein we
incorporate the concept of differential privacy in the classical
random forest algorithm. To make random forest private, we
have used Differential private ID3 [5], to construct the random
forest tree on each bootstrap sample. Differential private ID3,

passes all the d attributes or variables to exponential mecha-
nism in order to choose the best split attribute. While using
random forest, we need to pass the m number of attributes to
exponential mechanism instead of passing all d attributes.

The input to the differential private random forest algorithm
is dataset D with attributes A = {A1, . . . , Ad} and a class
attribute C. Each record in the dataset belongs to an individual
person.

In our previous work [15], we have proposed a differentially
private random forest algorithm for only categorical data sets.
In [15], we have considered the datasets with only categorical
attributes, wherein the input to the differential private random
forest is a raw categorical datasets. However, in real life
datasets may not always be with categorical attributes there
are numerous scenarios where datasets are in the continuous
form. In this paper we have extended our earlier work for
continuous data sets as well. In order to modify our differ-
entially private random forest algorithm for categorical data
sets for continuous data sets, we need a preprocessing of the
continuous data sets.

A. Preprocessing

Preprocessing of a given dataset is done by considering
the discretization of continuous attributes. The discretization
process used in our work is Fayyad and Irani’s Entropy-based
discretization [16]. The process is described as below.

Entropy-based discretization is a supervised discretization
method, where the boundaries for discretization are selected
by using class information entropy of candidate partitions. It
considers one large interval containing all known values of an
attribute then recursively partitions this interval into smaller
sub-intervals. This recursive process stops until some stopping
criterion, such as Minimum Description Length(MDL) princi-
ple [17] or an optimal number of intervals is achieved. Entropy
is used as splitting criterion and MDL principle is used as
stopping criterion. The Entropy is defined in definition.4.

Definition 4: The entropy of the dataset D , with respect to
the class attribute C is defined as:

HC(D) = −
∑
c∈C

τc
τ

log
τc
τ
.

Definition 5: Information gain (IG), is defined as, the
measure of the difference in entropy with and without split
on an attribute A, in dataset D, and is given by

IG(A,D) = HC(D)−HC|A(D)

where, HC|A(D) = −
∑
j∈A

τA
j

τ ·HC(DA
j ).

Information gain can be approximated with noisy counts for
τAj and τAj,c to obtain:

IGA =

|A|∑
j=1

|C|∑
c=1

NA
j,c · log

NA
j,c

NA
j

where, IGA is noisy information gain of attribute A.



PREPRIN
T

Given a set of samples S, continuous attribute A and number
of classes k. Each value of A, is considered as a potential split-
point T . The split-point with the lowest entropy is chosen to
split the range into two intervals. The splitting is continued
until a stopping criterion is satisfied. The stopping criterion
used is MDL principle, which stops the splitting when,

IG(S, T ) = H(S)−H(S, T ) < δ

where, IG is information gain given in definition 5. and H(S)
is an entropy of S, T is the potential interval boundary that
splits S into S1(left) and S2(right) parts, and

δ =
log2(n− 1) + log2(3

k − 2)− [mH(S)−m1H(S1)−m2H(S2)]

n

where m, is the number of classes in each Si and n is the
total number of samples in S.

B. Algorithm

We use following notations in algorithm 1 : D refers to a
set of records, τ = |D|, rA and rC refer to the values that
record r ∈ D takes on attributes A and C respectively, DA

j =
{r ∈ D|rA = j}, τAj = |DA

j |, τc = |{r ∈ D|τC = c}|, and
τAj,c = |{r ∈ D|rA = j ∧ rC = c}|. We use t to denote size of
an attribute with maximum number of attribute values. A is the
split attribute selected by exponential mechanism. The noisy
counts that is, releasing of the number of records in a dataset
perturbed by symmetric exponential (Laplace) noise [11] is
referred by N for τ . We use Pε as a overall privacy budget for
an input dataset, that is, before bootstrapping. Pε is distributed
among the B number of bootstrap samples, because for each
sample we are constructing a differential private random tree.
We use ε′ to refer to privacy budget for a single tree and ε
refers to privacy budget for each level or depth, h of the tree.

The single tree budget ε′ is used by limiting the depth h of
the tree and assigning an equal share of the budget, ε for each
level of the tree including leaves. According to composition
property of differential privacy [18], queries on different nodes
on the same level do not accumulate, as they are carried out
on disjoint sets of records.

Within each node, half of the allocated budget is used to
evaluate the number of instances and other half is used to
determine the class counts (in leaves) or evaluate the attributes
(in nodes). Class counts are calculated on disjoint sets, so each
query can use the allocated ε′. To prevent the misuse of privacy
budget, exponential mechanism is used to choose the best split
attribute which avoids splitting of allocated budget ε′ among
multiple queries, and the entire budget is used to find the best
attribute in a single query. The quality function, q, is provided
to the exponential mechanism scores each attribute according
to the splitting criterion which we explain next.

C. Splitting Criteria

To know the order, in which attributes must be chosen to
split the data, we need some measures that would allow us to
compare the attributes on some scale and choose one above the
other. In our work we have considered two splitting criteria,

Algorithm 1 Differential Private Random Forest Algorithm
1) procedure DiffPRandomForest (D,A, C, h,B, Pε)
2) Input: D - private dataset, A = {A1, . . . , Ad}- a set of

attributes, C- class attribute, h- maximal tree depth,
B- number of bootstrap sample, Pε-differential privacy
budget on D .

3) ε
′

=
Pε
B

4) ε =
ε
′

2(h+ 1)
5) for b=1 to B

a) Draw a bootstrap sample Z∗ of size τ from the
training data D

b) Grow a random-forest tree Tb to the bootstrapped
data, by recursively repeating the following steps
for each terminal node of the tree, until A=0 or
h=0
i) Select m variables at random from the d vari-

ables
ii) Use exponential mechanism to select

variable/split-point among the m variables
with probability,

exp

(
ε

2∆q
q(Z∗,A)

)
∑
A∈m exp

(
ε

2∆q
q(Z∗,A)

)
where, A is an attribute , q(Z∗,A) is information
gain.

iii) Split the node into two child nodes.
6) Output the ensemble of trees {Tb}B1 .

To make a prediction at new point x:
Classification: Let Ĉb(X) be the class of the bth

random-forest tree.
Then Ĉbrf (X) = majority vote {Ĉb(X)}B1

information gain and max operator, and used them as a quality
function for exponential mechanism.

The quality function q scores each outcome and induces
probability distribution over output domain, from which expo-
nential mechanism samples the outcome. Each quality function
has sensitivity.

In step 5b(ii) of algorithm 1, the exponential mechanism
selects the attribute for splitting with the probability [9],

exp

(
ε

2∆q
q(Z∗, A)

)
∑
A∈m exp

(
ε

2∆q
q(Z∗, A)

)

where, q(Z∗, A) is the information gain used to score each
attribute A ∈ m, Z∗ is the bootstrap sample and ∆q is the
sensitivity of scoring function q.
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D. Stopping Criteria

The recursive process of tree construction stops either
following conditions,

1) When attribute set A, becomes empty, that is, A=0
2) When all the samples belongs to the same class
3) When tree reaches the maximum height h

Once, either of these criteria succeeds, instead of accurate ma-
jority class, noisy count of majority class is used to determine
the class.

In DiffPID3, when there are only few samples in the leaf,
the noise will overcome the accurate counts and wrong class
will be chosen. To avoid this, a threshold has been introduced,
which depends on the noise added. Once the number of
samples are less than this threshold, further recursive process
stops. In our study, we found that, threshold criteria, reduces
the classification accuracy of DiffPID3. And there is no effect
on accuracy of different quality functions such as, information
gain, max operator and gini index.

Random forest gives good accuracy for any size of dataset,
and dataset with more or less number of attributes. The main
reason behind this is the bootstrapping of data and randomness
in variable selection. We tried, both the cases, that is, with and
without threshold criteria in differential private random forest
and found that, there is no much difference in classification
accuracy. As, we are stopping the recursive process by the
height of tree h and an empty set of attributes, there is no
need to include, threshold criteria.

E. Sensitivity of Quality Functions

The sensitivity of quality functions: information gain and
max operator is discussed further. We denote the quality
function for information gain as,

qIG(D,A) = IG(D,A) = HC(D)−HC|A(D).

The sensitivity of this function is ∆(qIG) = log2|C|, where
|C| is the domain size of the class attribute C. It is because,
the value of the entropy HC(D) is between 0 and log2|C|.
And, the value of conditional entropy HC|A(D) lies between
0 and HC(D). Therefore the maximum change of qIG due to
addition or removal of a record is bounded by log2|C|.

Max operator corresponds to the node misclassification
rate by picking the class with the highest frequency. Quality
function for max operator is defined as,

qMax(D,A) =
∑
j∈A

(maxc(τ
A
j,c)).

The sensitivity of this function is ∆(qMax) = 1. Since a record
can change the count only by 1.

Sensitivity of Gini index is ∆(qgini) = 2. Our results shows
that information gain and max operator gives almost equal
accuracy for different size of data. The reason for getting equal
accuracy is, randomness in attribute selection (step 5b(i) of
algo.1). It is one of the main property of Random Forest.

V. EXPERIMENTAL RESULTS

This section gives experimental results of our work. We
experimented the algorithms on synthetic datasets and real
datasets. The datasets considered in experiments have both
categorical as well as continuous attributes.

A. Synthetic Datasets

We generated synthetic datasets using WEKA [19], an open
source machine learning software, where each dataset consists
of 10 categorical attributes. The size of dataset ranging from
1000 to 10000. In differential private random forest we have
generated 20 bootstrap samples and constructed a differential
private tree on each bootstrap sample. The depth of each tree
h is taken as 5. Privacy budget ε′ considered in our work is
0.1, 0.25, 0.5, 0.75 and 1. We have not excluded the threshold
criteria. The quality functions used to determined the effect
on accuracy are information gain, max operator and gini
index. The accuracy and deviation of DiffPID3 and Differential
private random forest and classical random forest are given in
Table.I. The results are shown in Fig. 2-3, where y-axis is
the average accuracy and x-axis is the privacy budget ε′. The
plot legend marker, DiffPRF-ig represents differential private
random forest with information gain, DiffPRF-Max represents
differential random forest with max operator, and DiffPRF-
Gini represents differential random forest with gini index.

Fig. 2. Comparing accuracy with different size of dataset where, ε′ = 0.1
for DiffPID3 and differential private random forest.

B. Real Datasets

The real datasets which we have chosen for our experiment
are given in Table.II with the required summary. The initial
four datasets has only categorical attributes and rest has both
categorical and continuous attributes. All datasets are real
datasets and are taken from UCI Machine Learning Repository
[20]. The classification accuracy of random forest and differen-
tial private random forest for real datasets is given in Table.III.
We have considered the accuracy with information gain, max
operator and gini index separately. Table.IV and Table.IV
shows the classification accuracy on mushroom database and
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TABLE I
ACCURACY OF DIFFPID3, DIFFERENTIAL PRIVATE RANDOM FOREST (DIFFPRF) AND RANDOM FOREST WITH DIFFERENT QUALITY FUNCTIONS AND

PRIVACY BUDGET ε′= 0.1

No.of samples DiffPID3-Ig DiffPID3-Max DiffPID3-Gini DiffPRF-Ig DiffPRF-Max DiffPRF-Gini RandomForest
1000 49.11±15 49.93±15 50.90±16 77.21±4 78.58±3 79.59±4 84.82±1
2000 48.52±15 48.24±14 50.45±15 75.79±4 73.36±3 76.36±4 84.40±1
3000 50.96±15 52.81±15 52.50±16 78.55±3 78.06±3 78.78±4 83.60±1
4000 47.96±14 51.73±15 51.47±15 75.25±4 77.01±4 77.59±4 84.70±1
5000 49.69±15 50.36±15 49.42±16 76.52±3 77.60±2 81.72±2 84.00±1
6000 51.47±15 51.31±15 48.09±14 77.63±3 75.95±3 80.03±2 83.80±2
7000 50.91±15 48.32±14 46.09±14 78.65±1 77.30±3 81.91±2 84.54±1
8000 50.14±15 51.44±15 47.59±14 76.77±1 75.79±3 82.10±4 84.35±2
9000 49.42±14 51.64±15 51.34±16 75.14±3 73.02±3 81.53±3 84.42±2
10000 50.32±14 50.84±15 54.46±16 76.08±3 72.62±2 80.34±2 84.28±2

Fig. 3. Comparing accuracy with different size of dataset where, ε′ = 1 for
DiffPID3 and differential private random forest.

adult database respectively in different privacy budgets with
different quality functions. The results are shown in Fig. 4-5
with legends similar to the synthetic databases. This shows
that, differential private random forest has almost similar
accuracy when compared to the classical random forest.

VI. DISCUSSION

Table.I gives the accuracy of DiffPID3, differential private
random forest and random forest with different quality func-
tions and privacy budget ε′= 0.1. The datasets are synthetic
with categorical attributes. From Table. I we infer that the
accuracy of differential private random forest is much better
than DiffPID3. For this datasets, we have considered the
threshold criteria in differential differential private algorithm
which reduces the accuracy when compared to random forest.
The Fig. 2 and 3 shows the same result with privacy budget
0.1 and 1 respectively.

Table.III gives the classification accuracy for random forest
and differential private random forest with privacy budget 0.1
on the real datasets from Table.II where, both the algorithms,
have almost same accuracy. We have not considered the
threshold criteria for these datasets as it reduces the accuracy.
In Table.IV and Table.V the accuracy of differential private

Fig. 4. Comparing accuracy with different quality functions for Mushroom
dataset.

Fig. 5. Comparing accuracy with different quality functions for Adult dataset.
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TABLE II
REAL DATASETS

Dataset Number of samples Number of attributes
Tic-Tac-Toe Endgame database [21] 958 36
Car Evaluation Database [22] 1728 9
Mushroom Database [23] 8124 21
Nursery Database [24] 12960 8
Adult datset [25] 48842 4
Credit Approval Dataset [26] 690 14
Iris Dataset [27] 150 4

TABLE III
CLASSIFICATION ACCURACY OF RANDOM FOREST AND DIFFERENTIAL PRIVATE RANDOM FOREST WITH PRIVACY BUDGET ε′= 0.1

Dataset Random Forest(%) DiffPRF-InfoGain(%) DiffPRF-Max(%) DiffPRF-Gini(%)
Tic-Tac-Toe database 90.01±1 89.63±1 86.67±1 92.86±1
Car Database 92.03±2 92.04±1 89.95±2 92.04±2
Mushroom Database 93.70±1 93.58±1 93.14±1 93.51±1
Nursery Database 91.96.±1 87.17±1 87.35±1 88.74±1
Adult Database 86.24.±1 85.29±1 85.73±1 85.62±1
Credit Approval Database 89.07.±1 88.99±2 88.55±3 88.91±2
Iris Database 99.00±1 100.00±0 100.00±0 100.00±0

TABLE IV
CLASSIFICATION ACCURACY OF DIFFERENTIAL PRIVATE RANDOM FOREST FOR MUSHROOM DATASET WITH DIFFERENT QUALITY FUNCTIONS

Privacy budget(ε′) DiffPRF-InfoGain(%) DiffPRF-Max(%) DiffPRF-Gini(%)
0.1 93.35±1 93.89±1 93.34±1
0.25 92.04±1 93.82±2 93.58±2
0.5 93.58±1 94.07±1 94.19±1
0.75 93.32±1 93.82±1 93.58±1
1.00 93.48±1 93.14±1 93.51±1

TABLE V
CLASSIFICATION ACCURACY OF DIFFERENTIAL PRIVATE RANDOM FOREST FOR ADULT DATASET WITH DIFFERENT QUALITY FUNCTIONS

Privacy budget(ε′) DiffPRF-InfoGain(%) DiffPRF-Max(%) DiffPRF-Gini(%)
0.1 84.71±1 85.13±1 85.12±1
0.25 85.11±1 85.07±1 85.13±1
0.5 85.29±1 85.84±1 85.97±1
0.75 85.70±1 86.31±1 85.94±1
1.00 85.64±1 86.31±1 85.92±1

random forest with different privacy budgets and different
quality functions has been given for mushroom dataset and
adult dataset respectively. The attributes in Mushroom dataset
are categorical where as attributes of adult dataset are both
categorical and continuous. Fig. 4 and 5 gives the pictorial
representation of the results given in Table.IV and Table.V.

In our work, we have considered all bootstrap samples are
disjoint datasets, and so we have distributed the privacy budget
Pε in B number of bootstrap samples. But, actually bootstrap
samples are not disjoint datasets as they are created by sam-
pling with replacement from original dataset, D. Constructing
trees on B bootstrap samples is a parallel process, therefore
each sample should get an equal privacy budget.

We have achieved almost equal accuracy in both, random
forest and differential private random forest, by considering
different quality functions. In [5], their results says, as the
information gain is most sensitive to the noise, it gives low

accuracy, and max operator gives high accuracy since it is
least sensitive to noise. However, with our proposed algorithm,
differential private random forest, which makes use of such
quality functions, it is not necessary to be true that the
accuracy depends on their sensitivity. Since our algorithm
gives same accuracy as the random forest, it can be used on
any real time categorical and continuous datasets to achieve
faster and better differential privacy.

VII. CONCLUSION

In this paper we have addressed the problem of providing
differential privacy on datasets with categorical and continuous
attribute with a faster and computationally efficient algorithm.
To achieve this, we have incorporated the concept of dif-
ferential privacy in classical random forest algorithm. Our
results, demonstrates that, the random forest and differential
private random forest has almost same accuracy for datasets
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of different sizes. In addition, we conclude that, with proposed
algorithm, the quality functions such as information gain and
max operator gives almost equal accuracy regardless of their
sensitivity towards the noise. Experimental results confirms
that with any privacy budget the proposed differential private
random forest algorithm gives acceptable accuracy without any
additional computational cost. The discretization process loses
some information of original dataset. To overcome this, in our
future work we are going to make the discretization process
private with the help of exponential mechanism.
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