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Abstract. Security has been a concern in recent years, especially in the Internet 

of Things (IoT) system environment, where security and privacy are of great im-

portance. Our lives have significantly transformed positively with the emergence 

of cutting-edge technologies like big data, edge and cloud computing, artificial 

intelligence (AI) with the help of the Internet, coupled with the generations of 

symmetric and asymmetric data distribution using highly valued real-time appli-

cations. Yet, these cut-edge technologies come with daily disastrous ever-in-

creasing cyberattacks on sensitive data in the IoT-based environment. Hence, 

there is a continued need for groundbreaking strengths of AI-based models to 

develop and implement intrusion detection systems (IDSs) to arras and mitigate 

these ugly cyber-threats with IoT-based systems.  Therefore, this chapter dis-

cusses the security issues within IoT-based environments and the application of 

AI models for security and privacy in IoT-based for a secure network. The chap-

ter proposes a hybrid AI-model framework for intrusion detection in an IoT-

based environment and a case study using CIC-IDS2017and UNSW-NB15 to test 

the proposmodel's performance. The model performed better with an accuracy of 

99.45%, with a detection rate of 99.75%. The results from the proposed model 

show that the classifier performs far better when compared with existing work 

using the same datasets, thus prove more effective in the classification of intrud-

ers and attackers on IoT-based systems. 

Keywords: Security and privacy, Internet of Things, Intrusion detection sys-

tems, Artificial intelligence, Deep Learning, Cloud computing, Edge compu-

ting, Symmetric, and asymmetric data 

1 Introduction 

The emergence of innovative technologies like the Internet of Things with storage re-

sources of cloud computing has resulted in the generation of big data called big data. 

This has led to the witness of massive data generation by humans through IoT-based 

devices and sensors [1], thus changing the world of businesses in various aspects and 

https://www.scopus.com/redirect.uri?url=https://orcid.org/0000-0002-3556-9331&authorId=56962766700&origin=AuthorProfile&orcId=0000-0002-3556-9331&category=orcidLink%22


2 

society in general [2]. The authors in [3] argue that these cutting-edge technologies 

recently drive the global market with the connecting and productive big data managed 

by big data analytics. Hence, these infrastructures have created attractions from the 

business industries and the government and resulted in the illegal accessibility of these 

valuable and sensitive data globally [4]. But these big data in real-world applications 

have been categorized into asymmetric and symmetric data distribution.  

The symmetric data comes from the relationship of social networks users, and the 

asymmetric data comes as a result of regular network traffic with the probability of 

dissemination of various malicious within network protocols. There are still great hid-

den patterns and knowledge within real-world applications, irrespective of the missing 

information. Hence, it resulted in an effective and efficient way of purifying various 

valuable patterns from these huge data generated from the IoT-based systems, and this 

becomes significant in such an environment [5]. 

These ubiquitous technologies have really impacted people's lives in respective of 

background, race, and every aspect of society, and these have resulted into various 

kinds of attacks on these pervasive technologies, and the growing dependency on the 

use of Internet facilities have led to a continuous risk against the nodes and protocols 

of the network [6]. Thus, the ubiquitous technologies need incorporated and tangible 

security solutions for proper security and privacy platform. The most important features 

of cyberspace security are confidentiality, integrity, and availability (CIA). Anything 

cut short of these features by negotiating the CIA or bypassing these technologies' se-

curity components is called cybercrime or network intrusion [7-8].  

With the rapid growth of ubiquitous technologies and the inception of the internet, 

several kinds of cybercrime or attacks have grammatically evolved globally. Not mind-

ing the tireless efforts of various experts in cybersecurity developing various defense 

techniques, intruders have not relented and have always found a way of targeted, valu-

able resources by launching automated, cultured, and adaptable cyberattacks. These at-

tackers have causes remarkable mayhem to individuals, governments, and even various 

businesses worldwide [9]. A report form authors of [10] have shown that by 2021 from 

cybersecurity over six trillion US dollar may be lost due to various cybercrimes, and 

these several cutting-edge attacks could have resulted to loss of billion dollar world-

wide. These result from over five million cybercrimes recorded daily through comput-

ers that have been compromised, thus a whopping 1.5 trillion US dollars. Consequently, 

due to the intrinsic ability of Intrusion Detection Systems (IDSs) to detect an intrusion 

in real-time, the methodology in recent times has witnessed increasing popularity [11]. 

The IDS is a difficult field that deals with detecting cyber-threats such as hostile 

activities or policy violations on data networks by examining the information included 

in the data packets that have been transmitted [12]. The data packets' contents are con-

verted into a vector of continuous and categorical variables such as size, addresses, and 

flags, among other things that denotes the existence of a network link. This vector can 

be compared to pre-registered vectors associated with normal traffic or attacks like sig-

nature-based intrusion detection (ID), looking for comparable patterns [12]. To detect 

attacks, the vector might be utilized as an input to statistical or machine learning clas-

sification methods.  
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For instance, the authors of [13] provide a good summary of the importance of 

security features in cloud computing platform surveillance. They also presented a three-

level cloud-based IDS that employed rules to express event Calculus's definition and 

monitoring aspects. Additionally, the suggested technique made advantage of the hy-

pervisor framework to focus on application supervision during runtime and facilitate 

automatic reconfiguring of these programs. Finally, the article claimed to have consid-

erably enhanced the security of cloud computing. The ID is the process of measuring 

and reviewing events occurring in a computer system or network for evidence of intru-

sion [14].  

Furthermore, they describe an intrusion as an attempt to circumvent a network's 

or computer system's security safeguards, thereby jeopardizing the system's CIA. Fi-

nally, based on network packets, network flow, system logs, and rootkit analysis, [15-

16] authors define an IDS as a piece of hardware or software that monitors various 

malicious actions within computer systems and networks. The misused detection 

(knowledge or signature-based) and anomaly-based approaches are the two basic ap-

proaches of detecting intrusions within computer systems or networks. However, the 

hybrid-based strategy has exploded in popularity in the last decade, combining the ben-

efits of the two ways outlined above to create a more robust and effective system [17]. 

There are a variety of traditional methods for ID, such as access control systems, 

firewalls, and encryption. These attack detection systems have some drawbacks, espe-

cially when systems are subjected to a large number of attacks, such as denial of service 

(DOS) attacks. Furthermore, the systems can achieve higher false positive and negative 

detection rates. Researchers have applied AI models for ID in recent years with the goal 

of boosting attack detection rates over traditional attack detection methodologies. Since 

simple machine learning algorithms have significant drawbacks, and security threats 

are on the rise. The newest versions of AI learning models are needed, especially for 

the selection of features and intrusion analysis. Therefore, this chapter presents the se-

curity issues within IoT-based environments and discusses the state-of-the-art AI mod-

els for ID in an IoT-based environment for a secure network. The chapter also proposes 

a particle swarm optimization (PSO) model to extract relevant features from the da-

tasets, and Convolution Neural Network (CNN) was used to classify the intruder within 

the IoT-based environment. The proposed system can automatically perform the selec-

tion of significant features that can be used for the classification of the datasets.  Hence, 

the major contributions of this chapter are: 

(i) The chapter proposed a novel feature extraction based on PSO algorithms, 

and CNN was used to identify and detect an attacker within an IoT-based 

network. The combined algorithms were utilized to make use of their ca-

pabilities while avoiding computational overhead expenses. 

(ii) The proposed system was evaluated using two widespread and recent da-

tasets by analyzed the capture packet file within a network and using var-

ious performance metrics like accuracy, precision, recall, F1-score, and 

ROC, respectively.  

(iii) The model was compared with the state-of-the-art methods basic of con-

ventional AI-based models. The findings show that the model outper-

forms recent work that uses the same datasets. 
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(iv) The IDS model also achieves huge scalability with meaningful reduction 

of the training time and giving low probability of false alarms rate with 

an overall high degree of accuracy when compared with existing methods. 

The remaining part of this chapter is as follows: section 2 presents the security issues 

in the Internet of Things environments, section 3 discusses the applications of Artificial 

Intelligence for security and privacy in Internet of Things systems. Section 4 presents 

the methodologies used, and section 5 discusses the results with a comparative analysis 

of the chapter. Finally, section 6 concluded the chapter. 

2 The Security Issues within IoT-based Environments 

Because of the growing number of services and users in IoT networks, the security of 

IoT systems has become a critical concern [7]. Smart things become more effective 

when IoT systems and smart surroundings are integrated. The consequences of IoT se-

curity flaws, on the other hand, are extremely harmful in vital smart contexts such as 

health and industry [18]. Applications and services will be at risk in IoT-based intelli-

gent devices without adequate security mechanisms. Information security in IoT sys-

tems demands more research to meet these challenges [19-20]. The CIA are three fun-

damental security principles of applications and services in IoT-based embedded sys-

tems. IoT-based smart houses, for example, suffer security and privacy issues that cut 

across all layers of the IoT framework [21]. 

The security of IoT systems and the complexities and interoperability of IoT settings 

are significant impediments to the establishment of intelligent devices in the physical 

world [22]. Attacks on IoT networks, such as DoS or DDoS attacks, have an impact on 

IoT services and consequently on the services provided by embedded systems. Re-

searchers look at the IoT's security concerns from a variety of perspectives, including 

the security susceptibility of IoT routing protocols [23-24]. This chapter will concen-

trate on IDSs for IoT-based systems, regardless of protocol.  

The security vulnerabilities that arise in the various IoT layers are the source of IoT 

security concerns. The physical layer faces obstacles such as physical damage, hard-

ware failure, and power limits. The network layer faces issues such as DoS assaults, 

sniffers, backdoor attacks, and illegal users. The application layer faces issues such as 

malicious code attacks, application vulnerabilities, and software flaws [25]. According 

to [26], any IoT system's security issues can be divided into four categories: Threats to 

authentication and physical security, as well as dangers to confidentiality, data integ-

rity, and privacy. 

For IoT-based users around the world, cyber security is a top priority. However, 

some concerns go beyond conventional cyber threats and can result in severe security 

breaches. Figure 1 displays the security and privacy in IoT-based systems. 
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Fig. 1. The Security and Privacy in Internet of Things Systems 

2.1 The following are some examples of malicious threats: 

Security Problem in RFID.  

The RFID system isn't without flaws. It has a wide range of applications. RFID is vul-

nerable to a variety of security threats and problems, all of which must be handled and 

addressed in WHD (wearable health care devices). Confidentiality and key manage-

ment are essential. One of the most widely used techniques for automatically identify-

ing things or individuals is radio frequency identification (RFID). The RFID applica-

tion, which is based on a combination of tags and readers, is widely employed in a 

variety of industries, including distribution networks, engineering, and transportation 

control systems. Despite its many advantages, however, the technology raises a lot of 

hurdles and concerns, particularly in terms of security and privacy, which are deterring 

more researchers. RFID systems, like other devices and networks, are susceptible to 
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both physical and electronic attacks. As technology advances and becomes more acces-

sible, hackers who wish to steal private information, get access to restricted areas, or 

bring a system down for personal benefit are becoming more common. Spying occurs 

when an unauthorized RFID reader listens in on conversations between a label and a 

reader and obtains classified information. The hacker must also understand the basic 

protocols, tags, and reader information in order for this technique to work. 

All that is required for the assault on force research is a hacker's brain and a cell 

phone. According to top specialists, power analysis assaults on RFID devices can be 

mounted by monitoring the energy usage levels of RFID tags. When examining the 

power pollution levels of smart cards, researchers discovered an intrusion method, spe-

cifically the difference in supply voltages between valid and incorrect passwords. RFID 

tags and readers, like other goods, can be reverse-engineered; however, to get optimal 

performance, a thorough grasp of the protocols and features is required. Attackers will 

deconstruct the chip to figure out how it works in order to accept files from it. 

During signal transmission, a man-in-the-middle attack occurs. Similar to eaves-

dropping, the attacker waits for communication between a label and a user before in-

tercepting and modifying the data. While posing as a standard RFID component, the 

attacker intercepts the unique indication and then sends incorrect data. A Denial of Ser-

vice attack is any RFID device malfunction that is linked to an attack. Physical attacks 

are widespread, including utilizing noise interference to jam the device, obstructing 

radio signals, and even erasing or deactivating RFID labels. 

Cloning and hacking are two distinct procedures that are frequently carried out at the 

same time. Cloning is the process of transferring data from an original tag and applying 

it to a modified tag to get access to a restricted area or object. Because the intruder must 

know the label's details to reproduce it, this type of assault has been utilized in access 

control and inventory management operations. Viruses may not have adequate storage 

capacity in RFID tags right now, but they could represent a substantial threat to an 

RFID system in the future. When a virus programmed on an RFID tag by an unknown 

source is read at a plant, it has the potential to bring the RFID device to a halt. The virus 

moves from the sticker to the reader, then to corporate servers and apps, resulting in the 

failure of associated devices, RFID modules, and networks. 

Distributed denial of service attacks (DDos).  
Since the introduction of non-legacy IoT devices, DDoS attacks have become increas-

ingly dangerous. Attackers may now use the weak security implementation of IoT de-

vices to gain control of them and use them to launch an attack on the targeted system 

or network. The number of attacks has been shown to increase as the cost of adding 

additional IoT devices rises. A DDoS attack's principal goal is to deny legitimate users 

access to channel and latency facilities, resulting in service interruption [27-28]. The 

invader begins with non-legacy IoT systems like CCTV cameras, camcorders, baby 

tracking devices, and wearable gadgets, which have insufficient built-in security and 

other flaws, including low computational power and energy density. 

IoT systems are not just difficult to attack, but they are also cheap. Attackers can 

obtain control of compromised IoT devices for free or at a fraction of the cost of hosting 

a server rather than investing in and maintaining expensive networks to launch power-

ful DDoS attacks. Companies do not maintain track of a device's security credentials 
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until after it has been released to the public. Hackers take advantage of several authen-

tication flaws in the code. The makers do not release security fixes for these devices 

that correct the flawed software. If an attacker gains control of a compromised IoT 

device, he or she is free to change the device's security credentials. Suppose the infected 

computer is ever tracked for the duration of the attack. In that case, the device's vendor 

or manufacturer will be unable to retune the safety permits and reclaim control from 

the invader. The invader plans to exploit the system to cause as much harm as possible 

to the victim for as long as feasible. 

Mobile Devices for Internet of Things Services.  
Mobile devices with secure credential storage, increased storage capacity, wireless 

networking interfaces, and computer power can now be utilized in healthcare to collect 

crucial health parameters, as in Body Area Networks, and manage healthcare. The im-

portance of privacy and protection in IoT-based systems cannot be overstated [29]. The 

IoT-based system's users must be aware of the potential of security vulnerabilities and 

information manipulation and practices becoming accessible on mobile devices as more 

devices and sensors become available [30]. The use of tablets and handheld devices by 

various users of IoT-based platforms elevates the potential of security breaches on both 

sides of the IoT-based settings. An intruder will install sophisticated malware in cell-

phones, which will remain dormant until the person in possession of the malware-in-

fected computer enters a specific place, at which point the virus will be activated. As a 

result, an adversary can employ malware to tarnish a hospital's reputation by activating 

it whenever users of malware-infected PCs visit the facility. 

IoT-based systems are becoming increasingly dangerous, and any disruption or 

abuse could result in significant financial loss or even life-threatening difficulties. 

Weak authentication mechanisms could allow a malicious attacker to get access to sen-

sitive data and shut down all hospital systems. As a result, it's critical to ensure the 

safety of patients, linked devices, and hospital networks and make the operating eco-

system immune to such attacks [31-32]. 

An attacker can steal a client's medical record using a Man-in-the-Middle (MITM) 

attack on the communication network. This allows the intruder to quickly collect plain-

text data from internet traffic and change a message. EMRs may also be obtained by 

the opponent using malicious software portable apps used by patients. The public up-

loading of the EMR on the network will jeopardize patients' privacy, especially for 

those who do not want their health problems publicized. Reverse technology is the pro-

cess of creating things out of thin air. An attacker can use malicious software on mobile 

devices to interact with medical equipment and supply incorrect data through the appli-

cation layer of the medical devices. Control system errors can lead to a physician mak-

ing the wrong decision, which can have major ramifications for the patient's health [33-

34]. 

Unintentional Misconduct.  
IoT-based security is not always compromised by unscrupulous individuals seeking 

to harm others. Twelve percent of security issues in IoT systems were caused by unin-

tended human behavior that resulted in a breach of patient data protection. These errors 

might range from misplacing a patient's file to malfunctioning security equipment. 



8 

They can also happen when old computers with patient data are discarded [1-2]. Hack-

ers, network invaders, former workers, and others have the ability to steal or access 

information, disrupt operations, and harm systems. An intruder gains access to an IoT-

based system via an external network and steals patient records in this pure technology 

hazard. As a result, it's an unsolved issue on the horizon (National Research Council, 

1997). During an emergency, hospitals encourage doctors to shatter the glass (BTG) 

approach, which allows them to bypass entry authorisation. The IoT system's normal 

work cycle is disturbed in BTG scenarios. This BTG method permits doctors or other 

staff employees to abuse or divulge sensitive information about patients without their 

knowledge or consent. Health-care providers preserve records to protect against delib-

erate or inadvertent information misuse. In BTG scenarios, the new method is both 

preventative and unsuccessful [35-36]. 

Insider Abuse.  
In 2013, insider misuse was responsible for 15% of all security breaches in the 

healthcare industry [37]. This word refers to circumstances in which firm employees 

steal goods or information or participate in other criminal conduct. Surprisingly, the 

amount of persons who work in the healthcare profession only to infiltrate the system 

and obtain access to patient health information stands out as an example of insider mis-

appropriation. This information is typically stolen in order to get access to funds or 

commit tax fraud. Insider threats are becoming more and more of a worry for busi-

nesses. If these attacks are carried out, insiders' in-depth knowledge of security proce-

dures and monitoring protocols puts firms in jeopardy. As a result, finding insiders is a 

significant task that has captivated the interest of scholars for over a decade. The au-

thentication of the approved sensor nodes might be compromised, or the culprit could 

steal token or other information from the networks and start an attack on the entire 

system. 

Detecting anomalies suggestive of unusual and malicious insider behavior [38], rec-

ognizing elements in attacks [39], and recognizing behavioral causes [39] have all been 

thoroughly discussed [40]. In an effort by the CMUCERT Insider Threat project, a pi-

oneering assess insider threats age, sabotage, and intellectual property (IP) theft [41]. 

The study used a paradigm called System Dynamics to identify and characterize im-

portant paths, which the majority of insiders follow in a series of isolating questionable 

behavior and MERIT (Management and Information on the Risks of Security Breach) 

copies. In addition, the authors distinguish between insiders who unknowingly aid an 

attack or expose the IoT to unnecessary harm and stakeholders who act deliberately by 

breaking standards (to allow their daily activities) or becoming irresponsible (phishing 

targets) [42]. 

Insider risks occur when personnel within an IoT use their privileged access to com-

promise the system's security, credibility, or availability [43]. The severity of the insider 

threat is well acknowledged, as evidenced by numerous real-life incidents and detailed 

studies [38], [43-44]. We believe that in an era of IoT, where everything is a device 

capable of connecting, preserving, and exchanging important corporate data, the danger 

will become far more difficult to control for IoTs; this is a viewpoint shared by many 

others [45]. In some circumstances, it makes no sense to let these gadgets be "insiders" 
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recognize anything as having the potential for permitted entrance because standard pe-

rimeters are getting increasingly vague. As a result, it's critical to understand how to 

deal with the threat of insiders in IoT contexts. Regrettably, no comprehensive investi-

gation of this threat has been conducted so far. 

Data Integrity Attack.  
In a Data Integrity attack, an attacker can tamper with a patient's data, further deceive 

the recipients by introducing inaccurate patient information, and then submit the erro-

neous information. Erroneous treatment, patient status, and emergency calls to specific 

people may all be the outcome of these threatening attacks. Data manipulation has the 

potential to result in a patient's death. Denial of Service (DoS) attacks are widespread 

at all layers of the network and can be carried out in a number of ways. 

Data integrity is one of the most important security concerns in the Internet of Things 

since it affects both data storage and transfer. In the Internet of Things, data is con-

stantly sent, with some of it being deposited and exchanged by third-party vendors who 

provide utilities to users. Throughout the life of the data, it must be kept confidential. 

Multiple service access interfaces may result in security issues. Data deposited in the 

schemes can be amended or deleted by attackers. Malicious apps, for example, could 

be installed and cause data loss. Smart city systems must mitigate this danger in order 

to assure data privacy. Data that does not meet the applicable requirements should be 

discarded using acceptable ways during the data lifecycle in IoT, which includes vari-

ous phases. Data dependability is a serious concern because IoT-based data is robust in 

design and large in size [46]. 

Denial of Service Attack (DoS).  
In a DoS attack, an intruder floods the system's data exchange with unidentified traf-

fic, rendering services unavailable to others and preventing other nodes from transmit-

ting data until the busy channel is recognized [47]. In a DoS assault, the attacker usually 

takes advantage of the activity by altering a certain number of flags in control ledges. 

Due to the labels in control packets, it is difficult to trace such an attack because nodes 

in the IEEE 802.11 standard do not counter-check everything. Patient data could be 

accessed in a DoS attack if there is no certification or authority to examine data [48]. 

The DoS assault frequently keeps the device's data channel busy, preventing any other 

data from reaching the network's other sensors. Data connection across networks is dis-

rupted or unavailable as a result of DoS attacks. This type of attack puts system or 

healthcare facility accessibility and network operation, and sensor responsibilities in 

jeopardy. 

The most common and easiest-to-enforce DoS attacks are on IoT networks. They are 

described as an incursion that can compromise the network's or systems' capacity to 

achieve their intended goals in a variety of ways. The Internet of Things has been heav-

ily condemned from its beginning for the lack of attention devoted to safety issues in 

the design and deployment of its hardware, apps, and infrastructure parts [1-3], [7]. This 

sloppy approach has resulted in a slew of vulnerabilities that hackers and cybercrimi-

nals have successfully exploited to infiltrate IoT elements and utilize them for a variety 

of purposes, including staging Denial of Service and DoS attacks [49]. Users cannot 

access network facilities or data due to DoS assaults and DoS (DDoS) sharing. A DDoS 
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assault is defined as a DoS attack that has been compromised by several nodes. Given 

their often sophisticated and economically appealing exterior form, many IoT devices 

are built from low-cost generic hardware parts. Security vulnerabilities are almost often 

built-in to these processors and software, making it impossible for owners and admin-

istrators to keep track of them. Furthermore, the wireless problem's facilities and team-

work for firmware and software updates are still immature. As a result, updating or 

repairing these unprotected IoT PCs is difficult. 

Router Attack.  

Data routing is crucial for healthcare-based systems since it enables the supply of 

intelligence over the internet and simplifies connection mobility in huge facilities. 

Routing, on the other hand, is complicated by the fact that wireless networks are trans-

parent. In this invasion, the attacker focuses on data transferred between sensors in var-

ious wireless sensor nodes. This is because the safe transmission of medical records to 

the intended recipient, who could be a physician or a specialist, is the most important 

prerequisite of a wireless health care system. Few implementations employ multi-trust 

guiding in this attack, steering basic and key facts displaying patients' daily care rank-

ings. Multi-trust guidance is critical for growing the system's incorporation district and, 

as a result, providing stability at the expense of complexity. 

By facilitating data flow, routers play a critical role in network communications. 

Protocol flaws, router software oddities, and weak authentication can all be exploited 

by router assaults. Two types of attacks that can arise are distributed denial of service 

and brute force assaults. Attacks have an immediate impact on network services and 

business processes. The TCP protocol employs synchronization packets known as 

TCP/SYN packets for link requests between computers and servers. The originator's 

computer When an SYN flood attack occurs, a large number of TCP/SYN packets with 

a forged URL are sent out. The channel's destination node is unable to connect to the 

root because the path is unreachable. If a router is unable to verify a TCP message, it 

will quickly run out of resources [50]. This is a sort of denial of service since the breadth 

of the assault will deplete the router's resources. 

A brute force attack occurs when a hacker tries to guess a password in order to gain 

access to a router. The invader will utilize software with a dictionary of terms to crack 

the password. Depending on the strength of the password and the combinations used to 

discover a match, the attack could take a short time if it is relatively weak. This type of 

attack isn't limited to business routers; if a hacker is within range of the router, it can 

also happen at home. Unauthorized access to routers can be gained by a dissatisfied 

employee who has access to the network topology, router login and password infor-

mation, and knowledge of the network topology. To avoid this problem, passwords 

should be changed regularly, and rigorous access controls should be implemented. 

Routers must have robust and up-to-date software with solid configurations to decrease 

their vulnerability to assaults. 

Select Forwarding Attack (SFA).  

In order to carry out the attack, the attacker must get access to one or more sensors. 

As a result, community-oriented particular forwarding is the name given to this type of 
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forwarding. In this technique, an attacker gains access to a sensor and drops data pack-

ets, sending them to nearby sensors to arouse suspicion. This attack significantly im-

pacts the device, especially if the sensor is located close to the base. As a result of the 

packet loss generated by the SF attack, pinpointing the source of packet loss can be 

challenging. As a result of the partial data received by the receiver, the attack is ex-

tremely dangerous to any patient or smart medical health system. 

Attacking wireless communication with selective forwarding has a major impact on 

network efficiency and wastes substantial energy. Previous countermeasures assumed 

that all peers within the communication range could notice the attacker's wrongdoing. 

Previous techniques have struggled to accurately detect misbehaviors because smart 

networks require a minimum signal-to-noise ratio to adequately gather frames and be-

cause nodes incursion is unavoidable in densely spread wireless sensor networks. In a 

selective forwarding assault (SFA), an intruder impersonates a normal node throughout 

the transmission period and selectively dismisses traffic from neighboring nodes [51]. 

Non-critical data can be delivered properly, but vital data can be destroyed, such as 

information obtained from an adversary in a military application. Because it is immoral 

to lose confidential information in monitoring [52], it will do major harm to WSN. 

Detecting and isolating SFA is a major research topic in the field of WSN defense. 

Sensor Attack.  

Due to accidental sensor malfunction in suspicious behavior on a cellular network 

perpetrated by external attackers. Sensor control necessitates the usage of cellular net-

work limits since the sensor might be exhausted and switched off. In this situation, an 

attacker might simply replace a malicious sensor in the network and carry out harmful 

activities with ease. As a result, if the patient data is not dispersed evenly among nu-

merous sensors, the hacker has complete control over the data. As a result of the lack 

of a legal permission format, false data can be injected or served. 

Replay Attack.  

When an intruder gains unauthorized access to a computer, a reverse attack might 

occur. When the sender stops sending data, the attacker runs a test on the system and 

sends a signal to the receiver. The attacker then takes over as the primary source. The 

attacker's main goal in these attacks is to generate network assurance. The attacker 

sends a notification to the receiver that is primarily used in the validation process. A 

replay attack is defined as a security breach in which data is processed without author-

ization and then rerouted to the recipient with the intent of luring the latter into doing 

something illegal, such as misidentifying or authenticating themselves or a duplicate 

operation. Any threat has some sort of effect on the system. The most significant effects 

on a health monitoring system include unauthorized access, data alteration, rejection of 

continuous surveillance, data goal route adjustment, and data reduction. 

In this type of attack, an unauthorized person gains access to the Smart Health sys-

tem, captures network traffic, and transmits the message to the receiver as the original 

sender [53]. The attacker wants to earn the trust of the system. A replay attack is a 

security breach in which any data is kept without permission and then sent again to the 

intended recipient. By gaining unauthorized access and then stealing critical medical 

information, this attack might severely impact an IoT-based system [54]. 
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3 Applications of Artificial Intelligence for Security and 

Privacy in Internet of Things Systems 

The development of smart devices with sensing and acting capabilities has increased 

the IoT platform's functionality. Because so many devices are connected to the network, 

a tremendous amount of data is generated [59]. In an IoT world, processing and com-

puting is a difficult problem; thus, AI and other new technologies come to the rescue to 

handle the IoT security challenge. As illustrated in Figure 5, IoT and AI can be used 

together to enhance overall analysis, productivity improvement, and overall accuracy.  

 

 

 
Fig. 2. The common proficiencies of IoT and AI. 

Recent breakthroughs in AI may enhance the accuracy of security solutions, reduc-

ing the threats posed by the current cyberattacks [57-58]. While using AI techniques 

like classification and clustering is not new, their importance has lately been high-

lighted as AI models (e.g., deep learning) grow. Historically, the majority of AI-based 

security study based on predicting attack patterns and their distinctive properties. It can, 

nevertheless, be intrinsically vulnerable to new sorts of advanced attacks with unique 

properties. A recent tendency has been to apply the concept of anomaly detection to 

construct more generic ML algorithms to overcome this restriction of present ML sys-

tems and effective security countermeasures against unexpected assaults not identified 

by conventional attack patterns [60].  

Most applications, such as antivirus scanners, NIS, spam detectors, and fraud detec-

tion systems could benefit from AI models. In general, such systems leverage AI mod-

els to analyze massive volumes of data generated by network traffic, host processes, 

and human users to identify suspicious activity [61]. There is a general belief that using 

AI for security applications will become commonplace in the near future. However, 

security solutions based on AI may be subject to a new sort of complex attack known 

as adversarial AI [62-63]. The adversary can effectively alter the contents of the input 

to AI models to circumvent classifiers designed to detect them in numerous security 
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domains (e.g., e-mail spam detection). Furthermore, moving normal samples to the ab-

normal sample class and/or vice versa could compromise the training data set used to 

build classifiers. 

The authors in [64] demonstrated how AI might aid IoT in processing large amounts 

of unstructured and contradictory data in real-time, making the system more realistic. 

In this study [65], the authors suggest the large margin cosine estimation (LMCE) tech-

nique for detecting the adversary in IoT-enabled systems. In paper [66], the work on 

malware detection in IoT systems using AI is discussed. Similarly, in the article [67], 

the authors suggested a model for making the system tamper-proof by combining 

Blockchain and AI in IoT design.  

The authors of [68] proposed a critical infrastructure intrusion detection system that 

uses an ANN classifier with backpropagation and Levenberg-Marquard features to de-

tect abnormal network behavior. In a related effort, the authors used an ANN model for 

DoS/DDoS detection in IoTs in [69], and provided a decentralized IDS for IoT devices 

based on artificial immunity in [70]. In [71], another group of researchers introduced 

the Possibility Risk Identification centered Intrusion Detection System (PRI-IDS) ap-

proach to detect replay attacks using Modbus TCP/IP protocol network traffic to detect 

replay assaults. On the other hand, these systems had a high rate of false alarms and 

had difficulty detecting certain novel threats. 

The authors developed IDs in wireless networks in [72], and the Aegean AWID da-

taset was utilized to validate the system's accuracy. A PC, two laptops, one tablet, two 

cellphones, and a smart TV were used to collect the AWID dataset using a SOHO 

802.11 wireless network protocol. On the other hand, the collection only includes traces 

from the MAC layer frame and excludes IoT device telemetry data. The authors of [73] 

created a BoT-IoT dataset based on a realistic IoT network architecture. DDoS, DoS, 

service scan, keylogging, and data exfiltration are examples of attacks that include both 

legal and hostile traffic. The network traffic reported by the simulated IoT-based model 

utilizing the BoT-IoT dataset was above 72 million.  

The author has provided a scaled-down version of the dataset with roughly 3.6 mil-

lion records for evaluation purposes. In a similar study [74], an IoT-based dataset was 

employed for ADS detection in a network of IoT devices based on DoS threats. 

SNMP/TCMP flooding, Ping of Death, and TCP SYN flooding were used to capture 

data in a smart home scenario utilizing traditional and DoS assaults. However, because 

the dataset was not taken using an IoT-based device, it was free of XSS-Cross-site-site 

Scripting and malware threats. Reference [75] proposed Deep RNN for IOT IDS, which 

included a traffic analysis engine and categorization. The pieces of traffic information 

are preprocessed in a format that can be processed. Finally, a backpropagation algo-

rithm is used to train the deep NN classifier. The classifier is divided into two categories 

based on system traffic: normal and attack, and an alarm is triggered if an attack is 

identified. 
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4 Methods and Materials 

4.1 Particle Swarm Optimization (PSO) Model for Feature Extraction 

The algorithm is an evolutionary model inspired by the predatory of birds' behaviors 

and was proposed [76]. The process of findings optimal fitness solutions for particles 

can be mimic using the methods of birds finding foods. The local optimal fitness value 

and the current best global fitness value of particles without knowing the optimal fitness 

value can provide the speed of motion for each particle. This provides the overall par-

ticle swarm to move in the direction of the best possible solution. 

The two parameters of each particle can be mathematically represented by 

The position is denoted by 

𝑥𝑖
𝑘 =  [𝑥𝑖1

𝑘 , 𝑥𝑖2
𝑘 , 𝑥𝑖3

𝑘 , … , 𝑥𝑖𝑑
𝑘 ]      (1) 

And the velocity by 

𝑥𝑣
𝑘 =  [𝑣𝑖1

𝑘 , 𝑣𝑖2
𝑘 , 𝑣𝑖3

𝑘 , … , 𝑣𝑖𝑑
𝑘 ]      (2) 

The position and velocity transform during the iteration update formula of each par-

ticle to: 

𝑣𝑖𝑑
𝑘+1 =  𝜔𝑣𝑖𝑑

𝑘 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑 −  𝑥𝑖𝑑
𝑘 ) +  𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑

𝑘 )  (3) 

𝑥𝑖𝑑
𝑘+1 =  𝑥𝑖𝑑

𝑘 +  𝑣𝑖𝑑
𝑘+1,       (4) 

where the local optimal position is represented by 𝑝𝑏𝑒𝑠𝑡𝑖𝑑  of the 𝑖−𝑡ℎ , the global 

optimal of all particles in the population is represented by 𝑔𝑏𝑒𝑠𝑡𝑖𝑑, 𝜔 is the inertia 

weight, k the number of the current iteration,  𝑣𝑖𝑑
𝑘+1 is the  𝑑−𝑡ℎ part of the velocity of 

the 𝑖−𝑡ℎ particle of k iteration, 𝑐1 and 𝑐2 represented the cognitive and social parameters 

called acceleration coefficients, 𝑟1 and 𝑟2 uniformly distributed over the interval [0, 

1] are two random numbers, the 𝑑−𝑡ℎ component of the position of the 𝑖−𝑡ℎ particle is 

represented by 𝑥𝑖𝑑
𝑘+1 particle in the 𝑘 + 1 iteration, and the velocity of the 𝑖−𝑡ℎ particle 

in the k  iteration of the 𝑑−𝑡ℎ the component is represented by the 𝑥𝑖𝑑
𝑘  . 

Particles can readily escape the current local ideal value when the inertia weight is 

too great, but they are not directly coupled in the final iteration. When the inertia weight 

is too low, the particles, on the other hand, are easily sucked into the local ideal value. 

Therefore, it is necessary to adjust the inertia weight adaptively. Hence, a dynamic in-

ertia weight called the APSO algorithm is introduced. This model was used to adjusts 

the inertia weight adaptively with the fitness values. The algorithm can be represented 

mathematically as follows: 

 

𝜔 =  {𝜔𝑚𝑖𝑛 −  (𝜔𝑚𝑎𝑥 −  𝜔𝑚𝑖𝑛) ∗
(𝑓𝑐𝑢𝑟− 𝑓𝑚𝑖𝑛)

(𝑓𝑎𝑣𝑔− 𝑓𝑚𝑖𝑛)
, 𝑓𝑐𝑢𝑟  ≤  𝑓𝑎𝑣𝑔, 𝜔𝑚𝑎𝑥 , 𝑓𝑐𝑢𝑟  >  𝑓𝑎𝑣𝑔, 

 (5) 

Where the current particle fitness value is represented by 𝑓𝑐𝑢𝑟, the current population 

average fitness value is represented by 𝑓𝑎𝑣𝑔, and the smallest particles fitness values 

represented by 𝑓𝑚𝑖𝑛 in the current population. 

4.2 The Convolutional Neural Network Algorithm 

The newest version of neural network with a multi-layer structure is called CNN com-

posed of the various two-dimensional plane in each layer of the network [77-78]. To 
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activate the weighted sum of the elements in the previous layer, the output of each 

neuron is obtained.  

The 𝐶1 layer can be represented by 𝐶1𝑖𝑗
𝑜𝑢𝑡 given output of the 𝑗−𝑡ℎneuron on the 𝑖−𝑡ℎ 

feature plane can be mathematically given as: 

𝐶1𝑖𝑗
𝑜𝑢𝑡 = 𝐹 (∑ 𝑤𝑡

𝑖𝑛 x 𝑓
−𝑟𝑎𝑤𝑡

𝑖𝑛
𝑓𝑙 x 5
𝑖=1 ),     (6) 

Where the feature of the position of the characteristic plane is represented by 𝑓
−𝑟𝑎𝑤𝑡

𝑖𝑛  

corresponding to the convolution kernel weight in the input layer, 𝑤𝑡
𝑖𝑛 represents the 

weight of the 𝑡−𝑡ℎ position of the convolution kernel, and the length of the filter is 

represented by fl.  Three types of nonlinear activation functions were used the sigmoid, 

tanh, and relu represents by Fi(∙)(𝑖 = 1, 2, 3) and can be mathematically denoted as 

follows:  

𝐹1(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

(1+ 𝑒𝑥𝑝−𝑥)
,     (7) 

𝐹2(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
(𝑒𝑥𝑝𝑥−  𝑒𝑥𝑝−𝑥)

(𝑒𝑥𝑝𝑥+  𝑒𝑥𝑝−𝑥)
,     (8) 

𝐹2(𝑥) = 𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥),      (9) 

In the F2 layer, the output of the m-th neuron 𝑓𝑢𝑙𝑙 1𝑚
𝑜𝑢𝑡 is as follows: 

𝑓𝑢𝑙𝑙 1𝑚
𝑜𝑢𝑡 = 𝐹(∑ 𝑤𝑚𝑖𝑛

𝑘𝑒𝑒𝑝
 x 𝑘𝑒𝑒𝑝𝑛 + 𝑏𝑚

𝑓2𝑛𝑘𝑒𝑒𝑝

𝑛=1 ),   (10) 

where 𝑏𝑚
𝑓2

 is the offset of the  𝑡−𝑡ℎ neuron of the F2 layer, the connection weight 

between 𝑛 − 𝑡ℎ neurons is 𝑤𝑚𝑖𝑛
𝑘𝑒𝑒𝑝

 and remaining working neuron after the processing 

of the previous layer, and 𝑘𝑒𝑒𝑝𝑛 is the 𝑛 − 𝑡ℎ neuron of the remaining working neuron.  

Initially, the number of F3 neurons and activation mode is specified. In the same 

way that the F2 layer connects to the preceding layer, each neuron in this layer connects 

to the previous layer. The third and fourth layers of the fully connected layer are in-

tended to improve learning of nonlinear combinations of compressed elements and 

learn the innovative functions generated by the convolution layer using the weight net-

work connection. In the F4 layer, F3's output value is transmitted to an output layer in 

the last layer. The number of multi-classification task categories governs the output 

layer's number of neurons.  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑦)𝑖 =
𝑒𝑥𝑝𝑦𝑖

∑ 𝑒𝑥𝑝𝑦𝑖𝑘𝑖𝑛𝑑
𝑖=1

,      (11) 

where the output value of the 𝑖 − 𝑡ℎ neuron is 𝑦𝑖  in the output layer, and the number 

of the network attack types is represented by kind.  

4.3 The CIC-IDS2017dataset characteristics 

The Canadian Institute for Cybersecurity has released the CIC-IDS2017 dataset [79], 

which is unique, complex, and exhaustive, meeting the eleven most important criteria. 

For example, attack diversity, which includes 80 network velocity components, is a 

broad feature set and the necessary processes for compiling an accurate and consistent 

benchmark dataset. Furthermore, the authors cleverly structured the dataset to collect 

network traffic for five days, from Monday to Friday, which includes innocuous activ-

ity on Monday, but not on Tuesday, Wednesday, or Thursday. The first day is consid-

ered normal, and the next days are filled with cutting-edge attack traffic like DDoS, 

Brute Force, Heart-bleed, and Infiltration. Finally, taking into account the whole com-

putational complexity of the CIC-IDS2017 dataset, a subset of this dataset was created 
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by selecting 565,053 instances at random for testing purposes. Table 1 provides the sta-

tistical summary of the CIC-IDS2017 dataset. 

Table 1. The detailed summary of the CIC-IDS2017 dataset 

 

4.4 Performance analysis 

The proposed hybrid model was evaluated using various metric performances and 

compared to other current models using the same dataset with the following perfor-

mance metrics like accuracy, precision, recall, F1-score. To solve the confusion ma-

trix, the statistical indices true positive (TP), true negative (TN), false positive (FP), 

and false-negative (FN) were generated, as indicated in equation (12 – (25). 

Accuracy: 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
   (12) 

Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (13) 

Sensitivity or Recall:  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (14) 

Specificity: 
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (15)  

F1-score: 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (16) 

TPR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (17) 

FPR = 
𝐹𝑃

𝐹𝑃+𝑇𝑁
     (18) 

5 Results and Discussion 

The CIC-IDS 2017 dataset was used to test the effectiveness of the proposed system, 

PSO classifier was used for features extraction to reduce the features of the dataset to 

only the most relevant attributes, and CNN was used to classified the attack on the 

dataset. The PSO was used for dimensionality reduction and reduced the features to 11 

Classes Instances Training set Testing set 

DDoS 60,477 42335 18,142 

 DoS 111,082 77,757 33,325 

Botnet 1,504 1,053 451 

Probe 67,929 47,550 20,379 

SSH_Patator 4,715 3,301 1,414 

FTP_Patator 6,348 4,444 1,904 

Web Attack 4,743 3,320 1,423 

Normal 990,814 693,570 297,244 

Total 1,247,612 873,328 374,284 
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relevant features.  The total number of instances in the dataset is 1,247,612, and this 

was divided to 70%(873,328) training and 30%(374,284) testing due to the huge 

amount of data involved, thus help to work with reduced numbers of instances on the 

dataset. The performance of the proposed method is shown in table 2 using various 

metrics.  

Table 2. The performance evaluation of the proposed model 

Models Accuracy Sensitivity Specificity Precision F1-Score Time (Sec) 

CNN 95.32 96.07 95.05 96.12 95.54 69 

PSO-CNN 99.98 98.99 99.62 99.49 99.73 69 

Table 2 shows the performance evaluation of the proposed model using two classes 

of attacks and normal, and the results show a better performance with the PSO-CNN 

model with an accuracy of 99.45%, the sensitivity of 98.99%, specificity of 97.62%, 

the precision of 98.49%, and F1-score of 99.07% with time (sec) of 69 stamps respec-

tively. The proposed model achieved optimal results on the CIC-IDS 2017 dataset used 

to test the proposed model's performance for detecting intrusion. Figure 2 displays the 

overall performance of the proposed model PSO-CNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The performance evaluation of PSO-CNN model 

The comparison of the proposed model with the existing model 

The PSO-CNN model was compared with some selected methods that used the same 

dataset for performance effectiveness. The two models also used different feature se-

lection classifiers with an ensemble classifier, and the results are presented in Table 3.  
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The proposed model recorded a far-fetched performance in term of the metrics used for 

evaluation. 

Table 3.   The comparison of the proposed model with two existing methods using CIC-IDS 

2017 datasets. 

Model Accuracy FAR Precision F-Score DR 

K-Means [4] 99.72 0.011 0.992 0.992 0.997 

One-Class SVM [4] 98.92 0.011 0.982 0.990 0.989 

DBSCAN [4] 97.76 0.012 0.986 0.985 0.977 

EM [4] 95.32 0.013 0.960 0.949 0.952 

KODE [4] 99.99 0.011 0.992 0.993 0.997 

CNN 98.38 0.009 0.981 0.995 0.989 

Proposed Model 99.98 0.009 0.995 0.997 0.999 

Table 3 shows the comparison results of the proposed model with existing classifi-

ers, and the finding reveals that the model performs better with the results recorded. For 

instance, the accuracy of the proposed model is 99.98, which is almost the same as the 

KODE proposed by authors in [4] with 99.9% accuracy, but the model performed better 

in precision and F1-score with 99.49% and 99.73%, respectively. The model records a 

low model building time of 69 against the 217.2s in the KODE model and 0.009 false 

alarm rate against o.012 in the KODE model. 

6 Conclusion 

The loss of non-creditworthy customers has created a huge amount of loss for banks 

and other sectors; thus fraud detection has become useful in the financial segments. But 

the detection and prediction of fraud in financial sectors are very difficult due to the 

diversity of applicant behaviors. This study provided an intelligent model based on 

ANN for detecting credit and loan fraud in a highly competitive market for credit leaden 

limits management. ANN simplifies how banks would detect loan fraud within credit 

management and will make an efficient judgment in the event of a reduction in loaning 

supply if faced with a negative liquidity shock. Hence, concentrate on the primary goal 

of increasing bank profits. The results show that ANN greatly detects fraud among loan 

lenders and loan administrators. Therefore, the bank profit is increased by implement-

ing the advised loan choice based on real facts. The results reveal that our proposed 

method outperforms other state-of-the-art methods using real transaction data from a 

financial institution. Future work could apply a genetic algorithm for better feature se-

lection, which would improve the system's performance and a hybrid technique for a 

better result. 
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