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Abstract. Metabolomics is paramount for precision agriculture. Know-
ing the metabolic state of the vine and its implication for grape quality is
of outermost importance for viticulture and wine industry. The MetBots
system is a metabolomics precision agriculture platform, for automated
monitoring of vineyards, providing geo-referenced metabolic images that
are correlated and interpreted by an artificial intelligence self-learning
system for aiding precise viticultural practices. Results can further be
used to analyze the plant metabolic response by genome-scale models.
In this research, we introduce the system main components: (i) robotic
platform; (ii) autonomous navigation; (iii) sampling arm manipulation;
(iv) spectroscopy systems; and (v) non-invasive, real-time metabolic
hyper-spectral imaging monitoring of vineyards. The full potential of the
Metbots system is revealed when metabolic data and images are analyzed
by big data AI and systems biology vine plant models, establishing a new
age of molecular biology precision agriculture.

Keywords: Metabolism · Spectroscopy · Artificial intelligence ·
Autonomous systems · Non-invasive · ‘In-vivo’ monitoring

1 Introduction

Wine is a highly complex biotechnology product. It all begins at the vineyard,
where the interaction of soil, climate and plant physiology, determines the desired
characteristics. Producing high-quality wines on a constant basis is the major
goal of precision viticulture.

Multi-spectral satellite, drone imaging and ‘in-situ’ sensors, when comple-
mented with pattern recognition and artificial intelligence, are today the state-
of-the-art of the 21st century viticulture [34]. Although aerial technologies are
able to cover significant land masses [17,33,37], almost no information about the
plant metabolism, grape quality and soil nutrients, is possible to be obtained
from these methods. A characteristic example is the normalized difference vege-
tation index (NDVI). NDVI is poorly correlated to important metabolites, such
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Fig. 1. Metbots metabolic imaging: (a) AgRob V16 robotic platform (navigation, posi-
tioning, sampling); (b) geo-referenced uv-vis-swnir hyperspectral metabolic imaging

as, the phenolic composition [17]. Only ‘in-situ’ technology is able to provide
rich metabolic information.

‘In-situ’ technology is available to viticulture, such as: (i) computer vision:
determining production yield [1,6]; (ii) soil composition (vis-swnir, x-ray fluo-
rescence, LIBS) [31,32], and (iii) grape composition [23,36]. Uv-vis-swnir spec-
troscopy has shown to be a robust metabolomics tool in viticulture [8,23]. Param-
eters such as: degree Brix, total soluble solids [5,18], total acidity and reducing
sugars and acids [9], and polyphenols [15]. Furthermore, results from ‘in-situ’
systems [12,36] have shown random sampling of grapes during traditional matu-
ration control, and cannot describe the ‘terroir’ nor viticultural practices impact
on grape quality. High-resolution geo-referenced metabolic imaging technology
is able to characterize the impact of soil, climate and viticultural practices on
grape quality, with emphasis on sugar/acids, anthocyanin, beta-carotene and
lutein [23].

We developed a precision geo-referenced metabolic imaging using uv-vis-
swnir spectroscopy [24]. The system accuracy was significantly increased by
developing a big data self-learning AI methodology, for the accurate quantifi-
cation and classification of spectral information, under complex variability and
multi-scale interference. This new method has allowed to decrease most of quan-
tification errors of previous technologies to low quantification errors [20].

Grape maturation was followed from May to September in experimental
fields, using a geo-referenced sampling mesh (spectra and grape samples were
collected at nodal points), mostly in Douro, Dão and Ribatejo, to grape vari-
eties such as Tinta Roriz, Touriga Franca, Syrah, Touriga Nacional and Pinot
Noir. The developed system performs geo-referenced metabolic images to: glu-
cose, fructose, tartaric and malic acids, neoxanthins, zeoxanthins, anthocyanins,
beta-carotene and lutein [13,21–23]. The user can visualize the metabolic evo-
lution of grape maturation with a viewer software, and navigate along the field
for obtaining the grape composition at the points of sampling an in-between, by
the finite element method.
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Fig. 2. Metbots IoT Spectroscopy System: (a) IoT Spectroscopy device; (b) Grape
structures captured by light; and spectra along maturation from (c) grapes; (d) grape
skins; (e) grape pulps and (f) grape seeds. The capacity of measuring these three
structures is of most importance to wine quality, as different compounds are present
in skin, pulp and seeds.

Fig. 3. Metbots LIBS system: (a) LIBS probe for agricultural applications; (b) leaf
spectra without pesticide treatment; (c) leaf spectra with pesticide treatment.
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Uv-vis-swnir is capable to show that: (i) the soil composition influences
directly the grape maturation process; and (ii) irrigation regime influence on
technical maturation (sugars/acids), anthocyanins and beta-carotenes [13,23].

The system is capable of monitoring chlorophyll-like compounds and
carotenoids present in the grapes. These are important precursors of noriso-
prenoids, a key constituent of high-quality Port wine aromas. During Port
wine ageing due to oxidation, beta-carotenes levels decrease, giving rise to
TDN, vitispirane and TCH. In lutein supplemented wines, b-damascenone
increases, and when supplemented with b-carotene, b-ionone and b-cyclocitral
levels increase 2.5 times [13]. Carotenoids are known to depend on cultivar, cli-
mate conditions, viticultural region, irrigation, sunlight exposure and ripening
stage [29].

Carotenoids are mostly present in the grape skin (65% of total berry
carotenoids: lutein, xanthophyll and b-carotene), being easily detected by spec-
troscopy (Fig. 2). Carotenes are considered as light harvesters, as a protection
to excessive light in unripe grapes. However, during maturation, grapes exposed
to light have lower levels of carotene [8]. Oliveira et al. [29] also found that
terrain elevation (lower temperatures and higher humidity) lead to the produc-
tion of higher contents of carotenoids. Also, lower vegetative indexes correspond
to lower carotenoid concentrations. Furthermore, soils with low water retention
capacity always produce grapes with higher levels of carotenoids [29].

Figure 2 presents the current system under design and how it measures grape
composition. It can work as portable miniature analyzer IoT device, that con-
nects to a mobile phone or the AgRob V16 robot. The reflection probe in Fig. 2b
uses a special designed fibre optics reflection probe, to provide spectral inte-
gration of the grape internal anatomy. With this configuration, the optics can
obtain spectral information about the skin, pulp and seeds. Spectral integration
is shown in Fig. 2c–f, where the grape spectra Fig. 2c is the integration of the
skin (Fig. 2d), pulp (Fig. 2e) and seeds (Fig. 2e) spectra.

The miniaturized spectrometer can be used by a human to record the spectra
(Fig. 2). It is not adequate for covering vast areas and difficult terrains, such
as the Douro valley, and therefore this task is automated in Metbots. There
is still very few available robots for agricultural applications. In fact, in the
last two decades some robotic solutions were developed for specific tasks in
agriculture, however, due to the characteristics of the terrain and the type of
crops used, many of these solutions are not easily scalable and/or reproducible
to other farms. The INESCTEC robotics lab has been developing steep slope
robotic platforms [35] (AgRob V16 - agrob.inesctec.pt) and ROMOVI (P2020
project) [26] for operating in the Douro valley terrains, that overcame: GPS
signal problems, harsh terrain conditions that limit instrumentation and slopes
impose precise path planning.

The present generation of robots uses our developed VineSLAM system [35]
takes into consideration the natural and artificial features of the vineyard to
recognize the localization, compensating for poor GPS accuracy. Tests of AgRob
V16 in a real steep slope vineyard show that this platform can overcome ditches,
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Fig. 4. Manipulation state machine

rocks and high slopes (30%). With a robust localization system, it can perform
autonomously a crop monitoring task (crop yield, soil/air temperature/humidity
and crop water stress index), being cost effective for the end-user.

The MetBots project main objective is to research and develop a robotic and
AI system for metabolomics precision agriculture, using uv-vis-swnir and laser
induced breakdown spectroscopy (LIBS), in conjunction with the AgRob V16
system (Fig. 1), to monitor the plant metabolism.

The project is divided into three main parts: (i) robotics and sensors - spec-
troscopy sensors are incorporated with the robotic platform for automatic moni-
toring; (ii) system infrastructure -where all the information is stored and processed
by self-learningAI technology; and (iii) field tests - to validate the efficiency of auto-
matic monitoring and diagnosis in real scenarios.

The research project is developed by Institute for Systems and Computer
Engineering, Technology and Science (INESC TEC) and Duriense Viticul-
tural Development Association Laboratories (ADVID), aiming to implement
metabolic diagnosis in precision viticulture at the Portuguese Douro Valley wine
region.

2 Manipulation

For a fully intelligent and autonomous system, it is required a robotic arm capa-
ble of handling the spectroscopy sensor, in order to copy the human behaviour
on this task. However, autonomous sensing problem cannot be solved as some
industrial problems, where static trajectories are predefined and the robot exe-
cutes them repetitively. Instead, this case needs to accomplish active perception
solutions [2] for grape recognition. So a complete manipulation solution has to
accomplish the following steps: bunch of grapes and grapes detection and recog-
nition [3,25], path planning [14,27], and trajectory control.

The Fig. 4 states the different stages of the manipulation sensing process. On
rest state, a manipulator included sensor will continuously look to the vineyard
searching for grapes bunches [3]. When a new bunch is detected, the system
chooses if this bunch will be sampled. In a positive case, a gross planning is
done to a near point of the bunch [14] and after a final path planning is made
relative to the end-effector frame until the selected grape [25,27]. Finally, the
manipulator returns to an initial standard position through a global path plan.
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Table 1. Average quantification benchmark results for Tinta Roriz, Touriga Franca,
Syrah and Cardinal cultivars

Parameter Range DL R2

Degree Brix 5.0–25.0 5.2 0.78

Glucose 1.3–160.0 7.3 0.77

Fructose 3.3–100.0 6.3 0.78

Malic Acid 1.0–10.0 0.37 0.82

Tartaric Acid 1.0–8.0 0.30 0.76

3 Spectroscopy Measurement Control

High-quality spectra, as shown in Fig. 2c, are necessary for accurate metabolite
quantification. The spectral probe must contact the grape skin in order to avoid
any reflections into the pin-hole receiver fiber (Fig. 2b). External fibers illuminate
all regions of the grape, in order to obtain an integration of all grape structures
(skin, pulp and seeds) (Fig. 2d to f).

Once the robotic arm positions the probe at 0.5 cm of the grape to be ana-
lyzed, the spectrometer data assumes positioning control. The spectra pattern
is used to know if the probe is in the correct position, by the following pro-
cedure: (i) record spectra with the maximum power of the light source, while
pushing forward the probe, until no surface reflection from the grape is detected;
(ii) adjust the light source power and integration time for optimal spectra record-
ing inside the linear region of quantification; and (iii) record the grape spectra.

The spectra pattern is analyzed by the projection into a principal compo-
nents feature space, where a linear discriminant model, discriminates between
the reflected light spectra and grape spectra.

4 Spectroscopy Processing

Vis-swnir spectrum were pre-processed to remove artifacts, such as, effects of
baseline shifts, Mie and Rayleigh scattering and stray-light [7,10].

Correlation between spectra and grape composition was modelled by partial
least squares regression (PLS) [11]. PLS is a linear multivariate model based
on latent variables (eigenvectors/eigenvalues) that maximizes the co-variance
matrix (XtY) between the spectrum matrix (X) and the analytical chemistry
data (Y): Y = Xb + e; where b translates the linear combination that projects
the spectral information into the analytical chemistry data [30] (Fig. 5).

Grape variety may influence how we can relate the composition and spectral
variation. Therefore, independent calibration predictive models were built for the
different grape varieties: Touriga Nacional, Touriga Franca, Tinta Roriz, Syrah;
and further table grapes of Cardinal variety. Representative samples across the
different composition levels are paramount to build a globally stable PLS model.
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Fig. 5. Metbots metabolic geo-referenced uv-vis-swnir imaging in grapes, foliage and
soil composition.

Therefore, each level of sugars and acids has the same level of representation in
the global PLS model [4].

The PLS model describes a linear relationship between composition and spec-
tral features. Such means that the correct number of latent variables (LV) is
considered optimal, once it balances bias vs variance. In PLS modelling, the
optimal number of LVs is considered the global minimum of the test set. This
is the case in simple systems, where prediction errors increase due uncorrelated
information present in the spectra. This does not happen when correlating grape
spectra shown in Fig. 2 with composition, as the spectra is extremely rich in
information about the grape composition. In this case, the PRESS continuously
decreases, and no saddle point exits. Such means that we must ensure a new
way of choosing the correct number of LVs that ensure model linearity, at the
expense of higher variance, so that the PLS model can be used as a generalized
linear model, capable of quantification along the range of variation.

To mitigate bias-variance and PLS linearity, we devised the following two
step validation scheme:

i. global cross-validation: we used all data to develop the global model cross-
validation PRESS curve and select solely the number of LVs that are with
the steepest descent on PRESS optimization to the second step. The proce-
dure is as follows: we devised the composition range into 50 intervals with
n-k samples at each level. The remaining k samples were used to perform the
model validation at each level. The cross-validation PRESS is computed for
the k validation datasets, until all data is used to build validation datasets.
The Kennard and Stone algorithm [16] was used to select representative sam-
ples at each level, so that all natural variability is all accounted for in the
regression model, minimizing the risk of biased models. This scheme allows
to set-up an uniform sampling bootstrapping and cross-validation [19].
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ii. extrapolation cross-validation: using only the selected number of LVs in the
previous step, we now must select the minimum number of LVs that allow
to maintain a stable linear model, by minimizing biased predictions under
extrapolation, so that:

Range(%) =
max(Y) −min(Y)
max(Yc) −min(Yc)

(1)

where Yc is the dataset used for the calibration, and Y the corresponding
global calibration dataset. The objective of the 2nd step is to obtain the min-
imum number of LVs that hold a maximal range of prediction with minimal
range of training set, so that a globally stable linear unbiased calibration is
obtained. To further understand if the extracted PLS coefficients are statis-
tically stable, 1000 boostrap samples with n-1 samples were used to deter-
mine the coefficients variation and significance assessed by the t-student test
[19,28].

This method allows to derive quantification for the major constituents of
the grape, as presented in Table 1. PLS modeling allows to reasonably quantify
‘in-situ’ the degree Brix, glucose, fructose, malic and tartaric acids. The project
aims to develop model calibrations also for: chlorophylls a and b, pheophytins a
and b, anthocyanins and carotenoids, using uv-vis-swnir. The project will further
explore the measurement of elements in soils and leaves (e.g. N, Fe, Cu, S, Cl,
Mn, Zn, P, K) using LIBS spectroscopy, as well as, determine the amounts of
applied agro-chemicals, as presented in Fig. 3, where trace levels of pesticide can
be discriminated between control (Fig. 3b) and treated leaf (Fig. 3c).

5 Hyperspectral and Metabolic Imaging

Hyperspectral images are assembled from individual spectral measurements at
nodal points from a pre-established geo-referenced mesh that minimizes sam-
pling time (see Fig. 1). The robot is set into a pre-determined path to stop
at specific vines, where it collects geo-referenced measurements. A part of this
measurements is uv-vis-swnir and LIBS spectra. In uv-vis-swnir measurements,
three grapes are measured at each vine. Each measurement takes approximately
1 min. Images are taken with 100 nodal points density per hectare, which can
be done in approximately 2 h, depending on the ‘terroir’ topographic features.
The metabolic image is reconstructed by inference of composition from spec-
tral PLS regression models at each node. Metabolite gradients are interpolated
using triangular finite elements, so that visualization is continuous across the
vineyard mesh. Metabolic images can be validated by physical collection of sam-
ples at selected nodal points and performing corresponding laboratory chemical
analysis.

The full potential of metabolic imaging using uv-vis-swnir and LIBS spec-
troscopy is presented in Fig. 4. Uv-vis-swnir and LIBS spectroscopy provides a
comprehensive characterization of metabolites and nutrients, such as: chloro-
phylls a and b, pheophytins a and b, anthocyanins, carotenoids, tartaric and
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malic acids, degree Brix, glucose and fructose; as well as, major inorganic nutri-
ents (nitrogen, potassium, phosphorous, sulfur, iron, magnesium, manganese,
boron, zinc or copper). These parameters can be, for the first time, geo-referenced
and compiled for grapes, leaves and soil; providing a significantly more complete
set of information about the vine metabolism than previous technologies.

Metbots records information about plant metabolism. It is a new tool that
opens precision viticulture to molecular biology viticultural management prac-
tices. Molecular information will allow to use data science/ artificial intelligence,
to both analyze and predict the effects of agricultural practices, as well as, to
make use of state of plant genome scale models, inferring the vine plant physio-
logical response at the genetic, proteomic and metabolome levels. The Metbots
project hopes to bring to the field, precision metabolomics and molecular biol-
ogy, allowing producers and researchers to confront knowledge obtained under
controlled laboratory or field test conditions, against what is observed in the
open field by large scale sampling and integrative data from climate-soil-plant.
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