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High fat diets and sedentary lifestyles are becoming major concerns for Western countries.
They have led to a growing incidence of obesity, dyslipidemia, high blood pressure, and a
condition known as the insulin-resistance syndrome or metabolic syndrome. These health
conditions are well known to develop along with, or be precursors to atherosclerosis,
cardiovascular disease, and diabetes. Recent studies have found that most of these disorders
can also be linked to an increased risk of Alzheimer’s disease (AD). To complicate matters,
possession of one or more apolipoprotein E e4 (APOE e4) alleles further increases the risk or
severity of many of these conditions, including AD. ApoE has roles in cholesterol metabolism
and Ab clearance, both of which are thought to be significant in AD pathogenesis. The
apparent inadequacies of ApoE e4 in these roles may explain the increased risk of AD in
subjects carrying one or more APOE e4 alleles. This review describes some of the
physiological and biochemical changes that the above conditions cause, and how they are
related to the risk of AD. A diversity of topics is covered, including cholesterol metabolism,
glucose regulation, diabetes, insulin, ApoE function, amyloid precursor protein metabolism,
and in particular their relevance to AD. It can be seen that abnormal lipid, cholesterol and
glucose metabolism are consistently indicated as central in the pathophysiology, and possibly
the pathogenesis of AD. As diagnosis of mild cognitive impairment and early AD are becoming
more reliable, and as evidence is accumulating that health conditions such as diabetes,
obesity, and coronary artery disease are risk factors for AD, appropriate changes to diets and
lifestyles will likely reduce AD risk, and also improve the prognosis for people already
suffering from such conditions.
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Introduction

Age-related diseases are becoming a major concern,
especially in Western countries, as their populations
grow older owing to advances in medical technology,
pharmaceutical drugs, immunization, and health
services. Dementia accounts for a large proportion of

age-related diseases, and Alzheimer’s disease (AD) is
the most common form of age-related dementia. The
social and economic consequences of this neurode-
generative disease present a significant challenge to
society and it is imperative that strategies to prevent
or delay the onset of AD are developed.1

In Australia, the number of people who suffer from
AD is an estimated 135 000,2 with this figure
predicted to double by the year 2030.3 In the US,
age-adjusted death rates are on the increase for AD yet
are decreasing for heart disease, cancer, and stroke.3

About 12% of the total population over 65 years of age
will develop AD in the US.4 Over 80 years of age, this
figure rises to 45%.4 AD is a neurodegenerative
disease which presents clinically with key symptoms
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including a progressive decline in memory, impair-
ments in speech, language, spatial orientation, and
dysfunction in the sensori-motor systems.5–7 These
symptoms subsequently result in an inability to cope
with the demands of ordinary daily living, eventually
leading to complete reliance on nursing care. Suf-
ferers of AD are arbitrarily divided into two groups
based on age of onset. Sufferers older than 65 years
are classified as suffering from late-onset AD (LOAD),
whereas those younger than 65 years are classified as
early-onset AD (EOAD)8 with a significant proportion
of these cases exhibiting a family history and termed
early-onset familial AD (EOFAD). However, the two
groups have very similar neuropathological features.
EOFAD is caused by autosomal dominant inheritance
of mutations in the amyloid precursor protein (APP)
or presenilin genes9–14 in 50% of families, whereas
the defective gene(s) in the remainder have yet to be
identified. Although EOFAD cases only represent
about 5% of all AD patients, studying the EOFAD
defective genes has provided considerable insight
into AD molecular pathology.15 The majority of AD
cases are late-onset cases, and are not thought to be
due to genetic mutations. A combination of factors,
including oxidative stress, abnormal lipid metabo-
lism, abnormal glucose metabolism, physical inacti-
vity, and cerebral hypoperfusion are thought to be
necessary co-contributors or initiators of the disease
process in these cases.

The memory loss and neurodegenerative damage of
AD are essentially irreversible. Therefore, clinical
research has been increasing emphasis on early
diagnosis, and on the identification of risk factors
that may be modified at preclinical or early clinical
stages of the disease. Risk factors for LOAD that have
been known for a while include old age, a family
history of dementia, and possession of one or more
APOE e4 alleles.16 The discovery of AD neuropathol-
ogy in a large proportion of non-demented coronary
artery disease (CAD) cases at post-mortem led
researchers to investigate CAD as a risk factor. High
cholesterol and CAD17 are now believed to be
important risk factors for AD. Other studies have
shown that obesity,18,19 type II diabetes mellitus,20,21

and polymorphisms in the gene that codes for low-
density lipoprotein receptor-related protein-1 (LRP-1)
are also associated with LOAD.22–24 Some studies
suggest repeated head trauma is another risk factor for
AD.16,25,26 Risk factors for which there are conflicting
results include gender and ethnic group.27,28

High cholesterol levels, obesity, diabetes, CAD,
LRP-1, and apoE are physiologically or biochemically
connected: they are all associated in some way with
the transport and metabolism of lipids. This review
brings together a lot of the evidence that has led to the
above factors and conditions being linked to AD. It
becomes obvious that it is very difficult to assess
these factors in isolation owing to their biochemical
connections, and it is likely that a combination of
several of these factors add up to produce pathophy-
siological conditions liable to lead to AD.

Alzheimer’s disease characteristics

AD is characterized histologically by the presence of
intracellular and extracellular amyloid deposits in the
brain, together with widespread neuronal cell loss.
Extracellular amyloid deposits are known as neuritic
or senile plaques.29 Amyloid deposits within and
around blood vessels and intracellular neurofibrillary
tangles (NFT) are characteristics of AD brain patho-
logy too, however these can occur in several other
neurological disorders. The main protein constituent
of AD senile plaques, a peptide known as Ab29,30 is a
normal proteolytic product of a much larger trans-
membrane protein, the amyloid precursor protein
(APP).31 Ab can be detected in plasma, cerebrospinal
fluid (CSF), and in cell culture media.32,33 APP can be
cleaved by three proteases, classified as a, b, and g
secretases.34,35 The protease a-secretase cleaves APP
within the Ab domain thereby precluding its forma-
tion. Ab is produced via a two-step process involving
the b-secretase or b-amyloid cleavage enzyme-1
(BACE-1)34 and g-secretase.35 The two major forms of
Ab are Ab1�40 and Ab1�42 corresponding to 40 and
42 amino acid-long peptides, respectively. Ab1–40 is
synthesized in the early secretory and endocytic
cellular pathways and Ab1–42 is generated mainly
in the secretory pathway.36 In AD, Ab peptides
aggregate into insoluble fibrils which deposit in the
brain to produce the characteristic amyloid plaques.
Studies of the FAD-associated genetic mutations
have shown them to lead to increased production
of Ab, particularly the longer, more amyloidogenic
form Ab1�42.15 These studies as well as many
in vitro and transgenic mice studies have led to the
‘amyloid hypothesis’, which states that Ab accumula-
tion is central to AD pathogenesis.15 Although
plaques and NFT are the obvious pathology of the
disease, evidence suggests that plaques are large,
almost inert ‘tombstone’ accumulations, and the
‘toxic principle’ of AD may consist of Ab dimers or
small soluble oligomers of the peptide.37 AD is
thought to be a central nervous system (CNS)
disorder, however NFT-like tangles have been
detected in the liver, pancreas, ovary, testis, and thyroid
of AD patients, suggesting that AD may be a systemic
disorder.38

Cholesterol and CAD as AD risk factors

In a 1990 study, abundant amyloid plaques were
found in the brains of non-demented CAD subjects
(75%), when compared to the brains of non-heart
disease subjects (12%).17 It is now recognized that
individuals with heart disease often have demon-
strable AD-like Ab deposits within neurons in the
brain,39 and that cerebral atherosclerosis is strongly
associated with an increased frequency of neuritic
plaques.40 As CAD has been linked to changes in
cholesterol profiles, studies have tried to characterize
the relationships between cholesterol metabolism,
CAD and AD. Comparisons of total brain cholesterol
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or plasma cholesterol levels in AD subjects relative to
controls produced conflicting results.39,41,42 However,
more detailed studies found significantly lower
plasma high-density lipoprotein (HDL) cholesterol
levels and higher low-density lipoprotein (LDL)
cholesterol levels in AD patients when compared to
age-matched controls.42,43,44 Similarly, serum apo A1
levels have been shown to be (a) markedly lower in
AD patients and (b) highly correlated with AD
cognitive decline.44 Interestingly, decreased HDL
cholesterol levels, increased LDL cholesterol levels,
and decreased apo A1 levels are also known to be
important risk factors for coronary atherosclerosis,45

demonstrating an overlap in the risk profiles for the
two conditions.

Cholesterol and AD pathogenesis
Ab, apoE, cholesterol, and cholesterol oxidase have
been shown to co-localize in the core of fibrillar
plaques in transgenic mice models of AD,46,47 sup-
porting the suggestion that cholesterol and apoE are
involved in fibrillar plaque formation.47.Cholesterol
may be directly involved in Ab aggregation: abnormal
oxidative metabolites such as cholesterol-derived
aldehydes can modify Ab, firstly promoting Schiff
base formation, then accelerating the early stages of

amyloidogenesis.46,48 Other studies have shown that a
novel Ab species, having a conformation distinct from
that of soluble Ab, is characterized by its tight binding
to GM1 ganglioside (GM1). This binding appears to be
facilitated in cholesterol-rich environments and is
dependent on the cholesterol-induced clustering of
GM1 in the membranes.46

The changes in HDL- and LDL-cholesterol levels in
AD suggest a disturbed cholesterol metabolism in AD.
The cholesterol metabolite 24S-hydroxycholesterol is
more soluble than cholesterol, and is more easily
exported from the brain (Figure 1).49 The amount of
24S-hydroxycholesterol exiting the brain is thought to
reflect brain cholesterol synthesis levels, and CSF
24S-hydroxycholesterol levels are higher in AD
individuals when compared with appropriate con-
trols.50–53 However, in severe cases of AD, plasma 24S-
hydroxycholesterol/cholesterol ratios have been
found to be reduced.53 Cholesterol is converted to
24S-hydroxycholesterol by cholesterol 24-hydroxy-
lase encoded by the CYP46 gene,49 and it has been
suggested that its levels may play a role in AD.50–53

Some studies have found CYP46 gene polymorphisms
are associated with AD pathophysiology,54 however
others have found CYP46 polymorphisms not to affect
AD risk.55,56

Figure 1 Some aspects of the interactions between cholesterol and APP metabolism.
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In AD patients, the cholesterol flux is elevated.57

The ATP-binding cassette transporter (ABCA1) is a
major regulator of plasma HDL: it transports cellular
cholesterol and phospholipids from cells onto HDL.
ABCA1 plays a rate-limiting role in the process by
which peripheral cholesterol is transported back to
the liver for metabolism and subsequent excretion.58

It has been hypothesized that if ABCA1 also stimu-
lates cholesterol flux from the CNS to the periphery, it
is likely to cause an increase in the internal cycling of
brain cholesterol, and thereby prevent the accumula-
tion of excess cholesterol in neurons (Figure 1).59 In
fact, ABCA1 has been detected in neurons, and
increased expression is accompanied by cholesterol
efflux from neurons and glia.60 Increased neuronal
expression of ABCA1 also affects APP processing,
causing a decrease in Ab production.60 In a recent
study, astrocyte cultures from ABCA1 (�/�) mice
were found to secrete lipoprotein particles containing
markedly less apoE and cholesterol, and had smaller
apoE-containing particles than astrocyte cultures
from ABCA1 (þ /þ ) mice. The ABCA1 (�/�) mice
themselves had greatly decreased levels of apoE in
both the cortex (80% less than normal) and CSF (98%
less than normal).61 Individuals with a genetic
polymorphism (R219K) in the ABCA1 gene have
30% lower cholesterol in their cerebrospinal fluid,62

this polymorphism is therefore likely to modify brain
cholesterol metabolism. Interestingly, this poly-
morphism is associated with a 1.7 year delay in AD
age of onset.62

Cholesterol levels are also regulated by sterol
regulatory element-binding proteins (SREBP). SREBP
belong to a family of transcription factors that regulate
intracellular cholesterol and lipid metabolism.63

Factors SREBP-1a and SREBP-1c affect genes in-
volved in fatty acid synthesis,64 and a single G
deletion (DG) polymorphism in the SREBP-1a gene
has been found to lower 24S-hydroxycholesterol
levels, increase clearance of cholesterol from the
brain, and thereby reduce brain cholesterol levels.65

In APOE e4 carriers, this polymorphism is associated
with a decreased risk of AD, underscoring the
significance of abnormal cholesterol metabolism in
AD.65

Cholesterol modulates the expression of APP and Ab
The intracellular metabolism and distribution of
cholesterol markedly affects APP metabolism.66.Cell
culture studies have found that APP inside cholesterol-
rich cell membrane lipid raft clusters (detergent-
resistant membranes, or DRMs) is cleaved by BACE-1,
whereas APP outside rafts undergoes cleavage by a-
secretase67 (Figure 1). The completely assembled,
biologically active g-secretase complex also resides
within DRMs.68 Studies have shown that lowering
membrane cholesterol (e.g. by statin treatment) causes
both an increase in the secretion of soluble APP
(sAPP, a-secretase product) and a decrease in Ab
production.67,69–71 Increasing membrane cholesterol
decreases the secretion of sAPP,72,73 possibly due to

cholesterol interfering with glycosylation in the
protein secretory pathway.74 As sAPP is thought to
have neurotrophic properties, decreasing sAPP levels
may promote neurodegeneration. However, in another
study, the significant reduction in membrane choles-
terol of hippocampal membranes from AD patients
and rodent hippocampal neurons again caused a
decrease in Ab production, yet a more moderate
reduction in membrane cholesterol in this latter study
caused an increase in Ab production, suggesting a
dose-dependent effect.75

The links between cholesterol and APP metabolism
add up to a complex web of interactions (some of
which are depicted in Figure 1). LRP-1, a receptor
likely to be involved in brain lipid and cholesterol
distribution, binds and internalizes a diverse array of
ligands including Ab–ApoE complexes in liver cells
as well as some forms of sAPP.76,77 This receptor has
been shown to be another substrate for BACE-1.78

LRP-1 is also a g-secretase substrate: it interacts with
PS-1, a critical component of g-secretase, and it
competes with APP for g-secretase activity.79 In other
studies, Ab1�40 has been found to reduce cholesterol
synthesis by inhibiting the enzyme 3-hydroxy-3
methylglutaryl coenzyme A (HMG-CoA) reductase
(involved in cholesterol synthesis), in a putative
negative feedback loop, and Ab1�42 has been found
to activate neutral sphingomyelinase, an enzyme that
cleaves sphingomyelins to produce ceramides,
thought to be primary effectors of apoptosis.80 This
latter finding is consistent with the fact that cerami-
de:sphingomyelin ratios are higher in vulnerable
brain regions of AD patients.81

The liver X receptors (LXR) are nuclear receptors
that induce a variety of genes involved in cellular
cholesterol efflux and are expressed in the cells of the
CNS.82 A major LXR target gene in the brain has been
shown to be ABCA1 (Figure 1).83 Activation of LXR
has been shown to stimulate ABCA1 levels and
decrease Ab concentrations.83 Therefore, LXR activa-
tion may provide a novel approach for the treatment
of AD.

Cholesterol esterification, APP metabolism, and AD
The enzyme acyl-coenzyme A: cholesterol acyltrans-
ferase 1 (ACAT) esterifies cholesterol with long-chain
fatty acids, and thereby controls the ratio of cellular
free cholesterol and cholesterol esters.84.Cholesteryl
ester (CE) levels appear to have a profound effect on
APP processing, as ACAT inhibitors directly mod-
ulate Ab generation, and in cells that lack ACAT
activity, production of Ab is completely abolished
(Figure 1).85,86 In transgenic mice expressing human
APP, treatment with the ACAT inhibitor (CP-113 818)
decreased brain CE and amyloid pathology, and
resulted in an improvement in spatial learning.87 A
polymorphism in the ACAT gene (the A/A genotype
of rs1044925) that results in low brain cholesterol
content has been associated with low brain amyloid
load and a reduced risk for AD in European popula-
tions.88 ACAT inhibitors have been widely studied for
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the treatment of atherosclerosis, and may prove
equally important for the treatment and prevention
of AD. However, the exact mechanism by which CE
levels modulate the generation of Ab is not known.

Statins and AD
Large-scale studies have indicated that certain cho-
lesterol-lowering drugs (statins) reduce the risk of AD
in human subjects,89,90 therefore they are currently
being tested as potential therapies for the prevention
of AD. Statins are inhibitors of the enzyme HMG-CoA
reductase (Figure 1), the rate-limiting enzyme
involved in cholesterol synthesis. Statins also trigger an
upregulation of LDL receptor levels, which in turn
assists in reducing LDL levels.89,90 In some studies of
transgenic mice and guinea pigs, cholesterol-lowering
agents have been found to reduce plasma and brain
cholesterol;91–93 however, in other guinea pig studies,
despite an 83% reduction in plasma cholesterol, brain
cholesterol content was unaffected by simvastatin or
pravastatin.94,95 Many (but not all) studies suggest that
lowering cholesterol levels causes a decrease in Ab
levels, for example, in the latter study levels of Ab1–
42 and Ab1–40 in the brain and CSF of guinea pigs
were reduced by simvastatin.95 In contrast, one study
using AD model transgenic mice found that lovastatin
decreased cholesterol levels in all the mice, yet
enhanced Ab production, although only in the female
mice.93 A recent clinical study has found that statin
treatment over 12 months had no effect on patient Ab
levels in plasma or CSF, yet there was evidence that
the non-amyloidogenic pathway was enhanced.96

The mechanisms of action of statins in lowering the
risk of AD are evidently still unclear: one suggestion
has been that the improved brain oxygenation result-
ing from statin treatment is more relevant in reducing
AD risk97 and in fact recent results of the Rotterdam
study suggest that cerebral hypoperfusion precedes
and possibly contributes to the onset of clinical
dementia.98 Other non-statin cholesterol lowering
drugs have also been tested, and one such drug,
probucol, can lead to significant increases in CSF
apoE levels and a decrease in CSF Ab1�42 in mild to
moderate sporadic AD.99 Interestingly, the recent
finding that Ab1�40 peptides can inhibit HMG-CoA
reductase in a putative negative feedback loop is
consistent with the theory that reducing cholesterol
production/levels will lower g-secretase activity.80

Statins have also been shown to increase lipopro-
tein lipase (LPL) activity. LPL is an enzyme that
hydrolyses triglyceride-rich lipoproteins (chylomi-
crons and very-low-density lipoproteins (VLDLs)) to
convert triglycerides to fatty acids and glycerol. After
hydrolysis of triglyceride-rich particles by LPL,
cholesterol-rich remnants are formed that are cleared
mainly by the liver following receptor-mediated
endocytosis. In the brain, LPL binds to apoE particles
and LRP-1 for the transfer of lipids to cells. LPL has
been found in amyloid plaques in AD individuals,
and mutations in the LPL gene have been associated
with clinically diagnosed AD, suggesting that inade-

quate levels of LPL increase the risk of the disease.100

In contrast, the LPL 447ter allele has been associated
with a protective effect on AD, resulting in fewer
amyloid plaques and tangles, and less neuronal death
when compared with AD patients lacking this
allele.100 Rabbit and rat studies have shown that
statin treatment can markedly increase LPL activity,
decrease plasma triglyceride levels, and increase LPL
mRNA expression in certain tissues.101,102 Therefore,
it would appear that statins can favourably modify
lipid metabolism in several ways, and more studies
are needed to establish how statins decrease the risk
of AD.

High fat/high cholesterol diets, obesity, and AD
Epidemiological studies have shown that people of
similar ethnic origins yet living in different environ-
ments can have significantly different risks of de-
mentia and AD.103,104.For example, Nigerians in Africa
have a much lower incidence of AD when compared
with African Americans living in the US.103 Similar
results were obtained with Japanese people living in
Japan: they have much lower rates of AD when
compared with Japanese Americans living in the
US.104 Diet and fat intake appear to be important
when comparing the lifestyles of populations screened
for AD,103 however epidemiological results have
produced conflicting results. For example, one study
has found that the more fat consumed in a meal, the
greater the risk of developing AD, and senile
dementia, more generally.41 However in the large
Rotterdam study, a high total intake of saturated fat
and cholesterol was not associated with an increased
risk of dementia.105 Fat consumption is only one
aspect of diet, and other environmental factors and
lifestyle issues such as level of exercise, oxidative
stress, and other aspects of diet may be of equal
importance when considering AD risk.

Animal studies have produced less conflicting
results, possibly as it is easier to eliminate unwanted
variables. A strong correlation between high fat/high
cholesterol diets and increased brain Ab levels has
been shown in numerous experimental animal mod-
els, demonstrating that an inappropriate diet is likely
to increase the risk of AD in the same way it increases
the risk of CAD and stroke. For example, in rabbits
with diet-induced hypercholesterolemia, increased
levels of Ab and apoE protein have been found in the
temporal and frontal cortex of the brain,106 and in
Watanabe rabbits with a genetic defect in the LDL
receptor, both hypercholesterolemia and neuronal Ab
deposition occur.107 AD transgenic mouse models
develop Ab plaque-like deposits more quickly if fed a
high fat /high cholesterol diet,108 and the levels of
brain Ab in these mice correlate strongly with both
plasma and CNS total cholesterol levels.108 Caloric
restriction, in contrast, decreases Ab peptide genera-
tion and neuritic plaque deposition in the brains of
such mouse models.109 Interestingly, guinea pigs fed
a high cholesterol diet show increases in plasma
but not brain cholesterol levels. Instead, de novo
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cholesterol synthesis appears to be inhibited, as there
is a decrease in the levels of the cholesterol precursor
lathosterol.110

The conflicting results in the human epidemiologi-
cal studies mentioned above with respect to fat intake
may also have arisen from differences in the types of
dietary fat. For example, studies in humans and other
animals have reported effects of high fat intake on
cognitive performance; with saturated and polyunsa-
turated fats having apparently opposite effects.
Animal studies have demonstrated that feeding high
levels of saturated fat to rats for 3 months can result in
severe learning and memory impairments,111–114 yet
diets with chronically high levels of polyunsaturated
fatty acids result in better discrimination learning
than those diets containing saturated fat.113

Many clinical studies, as well animal studies such
as those mentioned above, have shown that high fat/
high cholesterol diets lead to increases in brain Ab
levels and to HDL/cholesterol and LDL/cholesterol
levels linked to AD and CAD, therefore it is under-
standable that obesity is now also recognized as an
important risk factor for AD.115–117 Obese men have
been found to have lower cognitive function when
compared with non-obese normotensive men,115 and
in an 18 year follow-up study in overweight women, a
high risk for dementia (particularly AD) was found in
these women relative to controls.116 In our own recent
studies, we have observed a strong positive correla-
tion between body fat and blood Ab1�42 levels in
cognitively normal individuals,118 and in a recent
longitudinal study of 1149 individuals, mid-life
obesity was found to be a significant risk factor for
AD later in life.119 This association has now also been
linked to hyperinsulinemia: insulin infusion (indu-
cing temporary hyperinsulinemia) increases blood
plasma Ab1�42 levels in cognitively normal indivi-
duals who are offspring of AD patients: and the
magnitude of Ab1�42 increase is greater in subjects
with increased abdominal body fat.117

High fat diets appear to interfere with glucose
tolerance and insulin sensitivity, and again have
different effects depending on the types of fat.120–122

The risk of type II diabetes is also associated with a
high trans-fatty acid intake and a low unsaturated:
saturated fat intake ratio.123 There are reports that
saturated and trans-fatty acids increase insulin resis-
tance, whereas mono- and poly-unsaturated fats
decrease resistance and offer protection against dis-
ease.123–125 Therefore, the detrimental effect of a
prolonged high fat diet on cognitive performance
may, at least in part, be due to abnormalities in
glucose regulatory mechanisms.

Glucose regulation, insulin resistance, diabetes,
and AD

The insulin-resistance syndrome is characterized by
insulin resistance, hyperinsulinemia, impaired glu-
cose tolerance, abnormal cholesterol and/or triglycer-
ide levels, low HDL, high blood pressure, and obesity,

also all independent risk factors for CAD. Insulin-
resistance syndrome is a precursor to type II diabetes.
Many studies have now associated insulin-resistance
syndrome and diabetes with AD,20,126–129 and diabetes-
linked cerebrovascular disease has been suggested
as the connection,20,127,128 however, abnormal glu-
cose regulation itself may be of equal importance, as
discussed below. Type II diabetes is also associated
with an increased risk for vascular dementia.20,128,130–132

In obese and diabetic individuals, there is a marked
decrease in the clearance and metabolism of
cholesterol-rich lipoproteins from plasma.133 Choles-
terol synthesis is also elevated and cholesterol
absorption impaired in diabetes,134,135 and this is
thought to be related to impaired blood glucose
regulation.135

The association between diabetes and AD is
particularly strong among APOE e4 carriers: indivi-
duals with type II diabetes who possess the APOE e4
allele have twice the risk of developing AD as
compared with non-diabetics with APOE e4.136 In
addition, brain pathology from type II diabetic
patients frequently includes amyloid deposition or
NFT, yet amyloid deposition is markedly greater in
individuals with both diabetes and the APOE e4
genotype.136,137

Glucose metabolism and brain function in AD
Studies using positron emission tomography (PET)
have consistently documented decreased brain glu-
cose metabolism in moderately and severely demen-
ted patients compared to age-matched normal
individuals,138,139 and recent studies have shown
impaired glucose utilization in neocortical associa-
tion areas of the brains of patients with mild cognitive
deficit, a precursor to AD.140.In diabetic individuals,
therefore, impairments in glucose and insulin regula-
tion may contribute to AD pathology through
mechanisms including decreased cortical glucose
utilization, particularly in the hippocampus and
entorhinal cortex. Studies have in fact found a
correlation between blood glucose levels and memory
performance in AD patients,138,141 although in the
fasting state, others have observed no differences in
resting glucose and insulin levels in AD patients
compared to age-matched controls.132

Findings after oral glucose testing have varied, with
the following all being observed in AD patients
relative to controls: (i) higher insulin levels,142,143 (ii)
higher glucose levels,141 (iii) lower glucose levels,142

and no differences between patients and controls.144,145

However, at the time of these studies, the relevance of
excluding patients with cerebrovascular disease or
diabetes was not known, and accurate diagnostic
techniques for early stages of AD were not available.
Therefore patients with one or more of these condi-
tions may have been inadvertently included/wrongly
categorized in some of these studies, confounding the
results.132 The stage of AD is also of importance, as
high insulin levels are observable at the mild stages of
AD, but decline as dementia progresses.145
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Paragraph recall memory tasks are known to be
sensitive indicators of mild AD, and these have been
used to demonstrate improved cognitive functioning
in AD patients following glucose ingestion.141 AD
patients display a greater increase in blood glucose
levels after peripheral glucose administration than
controls, supporting the hypothesis of a systemic
dysfunction in glucose regulation in AD.146,147

A longitudinal investigation using intravenous
glucose administration148 found that memory perfor-
mance (immediate and delayed paragraph recall)
improved in the hyperglycaemic stage for patients
with very mild AD, and at follow-up (12–18 months
later), very mild AD patients who had remained at
this stage of dementia again showed significant
hyperglycaemic memory facilitation. In contrast, very
mild AD patients whose dementia had progressed
showed no hyperglycaemic enhancement of memory
performance at follow-up. Therefore, these research-
ers suggested that the degree of cognitive facilitation
during hyperglycaemia may be of prognostic rele-
vance regarding the severity and progression of AD.
However, other researchers have found that the
administration of glucose (50 g) to moderately to
severely demented patients (probable AD) did
improve memory.149

Deficits in glucose metabolism might also potenti-
ate the neuronal cell death produced by other
pathological processes (such as cerebral hypoperfu-
sion, abnormal cholesterol metabolism, or high levels
of toxic Ab), which in turn might be influenced by
genetic predisposition such as possession of APOE e4
alleles. In support of this argument it has been
demonstrated that glucose utilization in the brain is
reduced in younger (47–68 year old) asymptomatic
individuals who carry an APOE e4 allele, when
compared to non-APOE e4 individuals.150 Glucose
regulatory mechanisms can also affect APP metabo-
lism: following ingestion of glucose, blood insulin
and glucose levels significantly increase, whereas
plasma APP concentration decreases.151

Insulin, insulin receptors, and Ab peptides

A link between insulin-resistance syndrome or dia-
betes and AD has been debated for over a decade, and
most evidence now supports the theory that these are
risk factors for AD. Several molecular mechanisms
apart from the abnormal glucose regulation men-
tioned above and diabetes-associated cerebrovascular
disease have been proposed to be responsible for this
increased risk, and the true picture may be a
combination of all these mechanisms. For example,
the formation and accumulation of advanced glyca-
tion end products (AGEs) occurs in diabetes, and
recent studies have confirmed that AGEs, and inter-
actions with their receptor (RAGE), may play a role in
the pathogenesis of diabetic vascular complications
and neurodegenerative disorders including AD. AGEs
have been detected in both AD plaques and NFTs, and
glycation of Ab enhances its aggregation in vitro.

RAGE has also been found to be a cell surface receptor
for Ab, eliciting neuronal cell perturbation.152

Insulin and/or insulin receptors appear to contribute
to learning and memory via the activation of specific
signalling pathways, one of which is associated with
long-term memory formation,153 therefore, desensitiza-
tion of the neuronal insulin receptor, which occurs in
diabetes and the insulin-resistance syndrome, may be
another key factor in the pathogenesis of AD.147

Insulin levels may also have an impact on the
regulation of Ab proteolytic degradation, as the
insulin degrading enzyme (IDE) can break down
several peptides, including insulin, Ab, glucagon,
and amylin. A recent study has shown that the APP
intracellular domain (AICD) can also be cleaved by
IDE.154 In APP transgenic mice lacking the IDE gene,
there is a 50% decrease in amyloid degradation, an
increase in AICD fragment levels, and brain amyloid
accumulation.155 IDE (�/�) mice also develop hyper-
insulinemia and glucose intolerance. It has been
suggested that when insulin levels are elevated in
diabetes, IDE preferentially degrades insulin leading
to higher levels of Ab.

Diet-induced insulin resistance in AD-model trans-
genic mice promotes amyloidogenic Ab generation in
the brain, due to increased g-secretase activities and
decreased IDE activities, and recent clinical studies
have shown that induced hyperinsulinemia causes an
increase in plasma and brain Ab1�42 levels, as well as
increased levels of inflammation markers in CSF.156

Insulin resistance also leads to a functional decrease
in insulin receptor (IR)-mediated signal transduction
in the brain, again consistent with the hypothesis that
hyperinsulinemia157 or insulin resistance158 may
potentiate the risk of AD. A pathological feedback
mechanism may occur between increased Ab genera-
tion and high insulin levels characteristic of insulin
resistance, accelerating the pathological process. In
support of this, we have demonstrated that elevated
Ab levels, characteristic of AD, inhibit insulin binding
to the insulin receptor.159 In fact, Ab appears to be a
direct competitive inhibitor of insulin binding to its
receptor.160 One of the many effects of insulin binding
to the insulin receptor is the promotion of sAPP
secretion, and Ab binding to insulin receptors can
inhibit this effect.160 Inhibitor studies have implicated
the phosphatidyl inositol 3 kinase (PI3K) signalling
pathway in the promotion of sAPP secretion by
insulin.161 Adding further links between insulin and
APP metabolism are other recent studies which have
found that insulin also reduces intracellular accumu-
lation of Ab, by accelerating APP trafficking through
the trans-Golgi network (a major site for Ab produc-
tion) to the plasma membrane. In this latter study,
insulin’s effect on APP metabolism was found to be
mediated via a receptor tyrosine kinase/mitogen-
activated protein kinase (MAPK) kinase pathway.162

Recent studies have linked a polymorphism in the
MAPK81P1 gene with AD.163 This gene codes for
islet-brain1 (IB1, DNA-binding transactivator of the
glucose transporter GLUT2)/c-Jun N-terminal kinase
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interacting protein-1 (JIP-1), a neuronal scaffold
protein that interacts with several membrane proteins
including LRP, ApoE e2, the reelin receptor, and APP.
The �499A > G promoter polymorphism in
MAPK81P1 causes an increase in transcription,
resulting in enhanced binding activity. This poly-
morphism was not found to be linked to AD in the
general population, however a strong association was
found in subjects also carrying a particular LRP gene
polymorphism (CC genotype).163 A separate poly-
morphism in the MAPK81P1 gene has been linked
with diabetes.164 A missense mutation in the coding
region of this gene segregated with diabetes in a
diabetes type II family. In vitro studies found that this
mutation reduced insulin transcription, and reduced
IB1’s ability to prevent apoptosis.164

Insulin-like growth factors, their receptors, and
changes in AD
The insulin-like growth factors IGF-I and IGF-II exert
a variety of effects on cell metabolism, cell prolifera-
tion, apoptosis, and differentiation.165.For example, as
well as promoting glucose utilization, IGF-1 promotes
neuronal survival during brain development, projec-
tion neuron growth, dendritic arborization, and
synaptogenesis.165,166 IGF receptors include the
insulin receptor, the type 1 IGF receptor (IGF-IR), and
the type 2 IGF receptor (IGF-IIR)/mannose-6-phos-
phate (M6P) receptor, thereby activating some form of
signalling.165 IGF-IR and the insulin receptor belong
to the subfamily of receptor tyrosine kinases, yet
mediate different effects.167 High levels of IGF-1 and
IGF-1 receptors are expressed in the brain, particu-
larly in the hippocampus.168

Transcription of the genes for IGF-I, IGF-II, and the
insulin and IGF-I receptors is reduced in AD brains
when compared to controls.169 AD brains also demon-
strate reduced expression of the insulin receptor
substrate (IRS), IRS-associated PI3K, and activated
Akt/protein kinase B; suggesting downstream abnorm-
alities in the insulin and IGF intracellular signalling
mechanisms in AD brains.169 As mentioned earlier,
activation or inhibition of these signalling mechanisms
can influence the metabolism of APP and Ab.161,162

IGF-1 has also been shown to block Ab toxicity in
primary cultures of hippocampal neurons.170 This
inhibition of Ab toxicity occurs by activation of
extracellular signal-regulated kinase (ERK), activation
of Akt/protein kinase B, and the prevention of c-Jun
N-terminal kinase (JNK) activation in a PI3K-depen-
dent manner.171,172 Conversely, secreted APP, which is
known to have neurotrophic properties, has been
shown to stimulate the phosphorylation of IRS-1,
thereby activating the IRS-1 signalling pathway.173

Apolipoprotein E function, alleles, and its role in
cerebral cholesterol homeostasis

ApoE structure and isoforms
ApoE is a polypeptide of 299 amino acids with a
molecular weight of 34 kDa.174 It is highly ordered in

terms of its physical structure, and apoE derived from
the CSF is post-translationally different to that in
plasma. Isoelectric focusing-based studies have
revealed three main isoforms of apoE in humans,175

and these arise from single amino-acid substitutions
with arginine or cysteine at residues 112 and 158,
resulting in significant functional differences.176 Each
isoform is coded for by the APOE gene on chromo-
some 19q13.2.174,175 The most common allele in the
human population is APOE e3, followed by APOE e4
and APOE e2.177 For example, in the Australian
population, the e3, e4, and e2 allele frequencies are
78, 14, and 8%, respectively.176 Most studies con-
ducted on other populations agree that the order of
allele frequency is e3 > e4 > e2, even if the frequencies
are not identical between various populations.178–180

ApoE function
In the periphery, apoE aids the transport of triglycer-
ide, phospholipid, cholesteryl esters, and cholesterol
into cells, by mediating the binding, internalization,
and catabolism of lipoprotein particles.181 It is the
main ligand for the LDL receptor found on the liver
and other tissues, and for the specific apoE receptor
(chylomicron remnant) of hepatic tissues.181 In
human CSF, most of the apolipoprotein content is
represented by apoE and apoA and these are present
on astrocyte-secreted lipoproteins which have a
density similar to plasma HDL.182,183 ApoE is required
for lipoprotein uptake via LDL receptors and LRP-1 in
the CNS, most likely in order to mediate the uptake
and redistribution of lipids and cholesterol within the
CNS, as it does in the periphery.183–186

Cholesterol homeostasis and ApoE
Cholesterol can be synthesized in the brain, therefore
brain cholesterol homeostasis may be independent of
the periphery.187.In support of this, dietary levels of
cholesterol have marked effects on de novo peripheral
cholesterol synthesis, yet appear to have little or no
effect on brain cholesterol synthesis or metabolism.188

In addition, although one study has found that LDL
can cross the blood-brain barrier (BBB) by receptor-
mediated transcytosis,189 most studies suggest that
plasma lipoproteins do not cross the BBB.

In AD, brain cholesterol flux is elevated: when
compared to controls, higher levels of the more
soluble form of cholesterol, 24S-hydroxycholesterol,
are found in both CSF and plasma of AD patients,
even in early stages of dementia,50–53 although the
cause of this is unknown. As mentioned in an earlier
section, AD patients respond positively to cholester-
ol-lowering drugs. This underscores the relevance of
cholesterol metabolism in AD, despite the fact that
brain cholesterol levels are not necessarily affected by
the drugs.

ApoE is known to play a greater part in normal
cholesterol metabolism than any other protein. For
example, the various apoE isoforms interact differ-
ently with specific lipoprotein receptors, resulting
in significantly different effects on cholesterol
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metabolism.181 ApoE appears to be required for
cholesterol mobilization and lipid homeostasis in the
CNS, and it is likely that CNS apoE levels, distribu-
tion, and ApoE allele status can influence AD risk via
fluctuations in CNS cholesterol metabolism.181

ApoE and AD

In 1993 a locus within an apolipoprotein gene cluster
on chromosome 19 was shown to be a risk factor for
AD. ApoE was implicated, based on the knowledge
that apoE is found in plaques and NFT, it binds the Ab
peptide, and the fact that it is also the commonest
brain apolipoprotein. A strong allelic association
between AD and the APOE e4 allele was subsequently
demonstrated.190,191 However, this risk appears to be
limited to Western countries: in less-developed coun-
tries, there is often no increased risk for AD associated
with the APOE e4 allele.192,193 APOE allelic variation is
also thought to influence one’s risk for cardiovascular
disease (CVD), particularly CAD, via its effect on
cholesterol levels. APOE e4 alleles are associated with
higher total cholesterol and higher LDL cholesterol
levels than average, whereas APOE e2 alleles are
associated with lower levels of these markers.181 The
higher intake of fat in the Western diet may be partly
responsible for the increased risk of AD associated
with APOE e4, when compared with lower fat intake
in less-developed countries.194,195 In contrast, the
APOE e2 allele appears to protect against developing
AD, as this allele is significantly under-represented in
many populations of AD-affected individuals.

ApoE isoforms and synaptic plasticity/neurite
outgrowth
A deficiency in either apoE or the LDL receptor in
mice results in impaired learning and memory
functions,196,197 implying an important role for ApoE
in synaptic plasticity. Recent studies have even found
isoform differences: apoE e4, when compared to apoE
e3, inhibits synaptic plasticity in the hippocampus
and entorhinal cortex, following environmental sti-
mulation.198

Cultures of rabbit dorsal root ganglia treated with
apoE e3-loaded lipoproteins show significantly great-
er neurite extension and branching than those treated
with apoE e4-loaded lipoproteins.199 This effect
requires the binding of apoE to LRP-1.184 It has also
been found that intraneuronal apoE interacts with the
microtubule-associated proteins tau and MAP2,
affecting microtubule formation, the polymerization of
tubulin and thereby influencing neurite extension.200

Studies using N2A cells201 and primary cultures of
mouse hippocampal neurons202 found that incubation
with apoE e4 produced fewer polymerized micro-
tubules than incubation with apoE e3:201 ApoE e4 was
found to destabilize microtubule assembly, whereas
apoE e3 stimulated the polymerization of b-tubulin
and the formation of microtubules.201

ApoE also has a key role in the repair process after
neuronal injury. In response to brain lesions, apoE

mRNA levels increase, neuronal cholesterol synthesis
decreases, and lipoprotein binding to the cell
increases.203–205 Collectively, these changes suggest that
apoE helps to repair cells by recycling membrane
components from damaged cells. As yet, few studies
have examined apoE e2 and its apparent protective
effect in AD with respect to neuronal modelling and
plasticity.

ApoE/Ab interactions
ApoE has been found to be directly involved in APP
metabolism. For example, apoE added to cell cultures
causes a decrease in Ab secretion and an accumula-
tion of APP C-terminal fragments in cell extracts,
suggesting an inhibition of g-secretase.206 ApoE has
also been shown to bind to the N-terminus of APP
(independent of Ab region)207 and this is thought to
influence maturation and secretion of APP.208 The
ApoE receptor LRP-1 binds sAPP, the secreted form of
APP, and mediates its degradation.76 However, more
studies have been carried out on the interactions
between Ab and apoE.

ApoE/Ab complexes are major components of AD
brain amyloid deposits,209–211 and among AD patients,
individuals homozygous for APOE e4 manifest greater
extracellular amyloid plaque size and density.212,213

Further studies showed that ApoE can accelerate the
transformation of soluble Ab into the b-pleated sheet
conformation of amyloid fibrils in vitro.214 This led to
the hypothesis that apoE may be involved in Ab
aggregation and plaque formation. Studies soon
produced support for this theory, as it was found that
purified apoE forms SDS-resistant complexes with
Ab, and purified apoE e4 forms the most stable
complexes, when compared to purified apoE e3 or
apoE e2.191,215,216 However, it was later discovered that
the purification of apoE, involving delipidation and
denaturation, alters the behaviour of apoE relative to
the native biologically available form.217,218 In fact,
native non-denatured apoE e2 and apoE e3 bind Ab
avidly, while apoE e4 has a much lower affinity for the
peptide.217,219,220 It was also found that apoE may be
involved in Ab clearance, as the binding of apoE to Ab
actually reduces Ab toxicity in culture. LDL receptors
were found to be necessary for this effect, suggesting
LRP-1-mediated uptake and degradation of Ab.221

This apoE-mediated Ab binding and uptake was
shown to be promoted by apoE e2 and apoE e3 but
not apoE e4.221,222 These latter findings led to the
alternate hypotheses that apoE/Ab complex formation
promotes Ab clearance via LRP-1-mediated uptake
and degradation, and that apoE e4 weakly associates
with Ab (compared to apoE e2 or apoE e3), indicating
a reduced ability to clear Ab, thereby promoting Ab
accumulation and senile plaque formation. It has
been suggested that Ab/ApoE binding alters the
conformation of Ab, and not only mediates cellular
uptake via apoE receptors but it may also decrease
neurotoxicity and neuroinflammation in the brain.223

Studies of peripheral Ab clearance have shown
similar patterns. For example, physiological levels of
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Ab reduce the binding of apoE e3 or apoE e4
lipoprotein-like emulsions to liver cells, yet apoE e2
enhances the binding.224 The apoE/Ab interaction
promotes the uptake of lipoproteins via the LRP-1
pathway in liver cells, a pathway likely to be vital in
both cholesterol and Ab metabolism,224 and support-
ing this theory, our Ab clearance studies in apoE
(þ /þ ) and apoE (�/�) mice have shown that the
interaction of apoE with Ab receptors for uptake by
influences its clearance from the kidney and liver.225

In other apoE studies, Ab (at much higher concentra-
tions) almost abolished the binding and uptake of
apoE e3 or apoE e4-rabbit b-very-low-density lipopro-
teins (bVLDL) by fibroblast cells.226

ApoE and Ab transport across the BBB
The transport of circulating Ab into the brain has been
detected in some animals, and another LDL receptor-
related protein, LRP-2 (also known as megalin), has
been identified as the BBB receptor involved in the
uptake of apoE/Ab complexes into the brain. In vitro
studies indicate that other receptors, such as the
receptor for AGEs (RAGE) and the macrophage
scavenger receptor can mediate the binding of Ab to
the BBB and regulate uptake into the brain.227

However, most transport of Ab across the BBB appears
to occur in the direction of brain to periphery,
following the concentration gradient, and evidence
suggests that this transport, followed by degradation
in the liver, is the main mechanism for Ab removal
from the body as mentioned above.225,227 Ab transport
across the BBB to the periphery has been shown to be
mediated by LRP-1 and regulated by ligands such as
apoE and a2-macroglobulin.227 P-glycoprotein
expressed on the BBB has also recently been shown
to aid Ab transport into the periphery,228 providing a
novel therapeutic target, as many drugs are known to
enhance its activity. The importance of LRP-1 in Ab
efflux from the brain is underscored by recent studies
that have shown the homeobox gene MEOX2 is
expressed at very low levels in brain endothelial cells
of AD autopsy samples, and that reducing MEOX2
expression at the BBB causes a significant reduction in
both LRP-1 expression and BBB clearance of Ab.229

However it should be noted that it is not yet known if
the drop in MEOX2 expression in AD precedes or is
secondary to the neuronal loss found in AD.

ApoE’s involvement in Ab metabolism is not
restricted to facilitating the removal and degradation
of the peptide, either via brain cells or via transport
across the BBB. The brains of aged APPV717F AD
transgenic mice contain considerable fibrillar amy-
loid deposits. Crossing these mice onto a mouse apoE
knockout background results in a substantial reduc-
tion in Ab load and almost no neuritic degenera-
tion.230 This suggests apoE is in fact a requirement for
Ab deposition, and supports the early studies that
found ApoE can accelerate Ab fibril formation.214

However, when the AD apoE (�/�) transgenic mice
carry human apoE isoforms, there is a reduction in
amyloid load when compared to the original AD

transgenic mice, with apoE e3 being more effective
than apoE e4 at reducing this load.230 Studies have yet
to determine whether the role of apoE as a patholo-
gical chaperone outweighs its role in Ab clearance,
however these results reinforce the theory that apoE
e4 is not an effective mediator of Ab homeostasis in
the brain.230

Apolipoprotein E and sulphatide in AD
Sulphatides are sulphated galactocerebrosides, a
subclass of sphingolipids produced mostly by oligo-
dendrocytes in the CNS, and they mediate processes
like cell growth, neuronal plasticity, and signal
transduction. A deficiency in sulphatide and an
increase in ceramide, a lipid second messenger
thought to be a degradation product of sulphatide,
occur very early in AD. In addition, significant
reductions in CSF sulphatide levels occur in incipient
AD, supporting the theory that disturbed lipid
metabolism occurs early in AD pathogenesis, and
potentially providing an excellent marker for AD.231 A
new explanation for apoE e4’s role in AD has also
been provided, as transgenic mouse studies have
shown that sulphatide levels are dependent on APOE
allele status, with the lowest levels being found in
apoE e4 expressing mice.232

Conclusions

In Western countries, obesity and type II diabetes are
becoming very common conditions. These are both
known to be risk factors for atherosclerosis and other
CVDs, and now also AD. The Western diet, known to
be high in fat, particularly cholesterol, is known to
increase considerably the risk of obesity and type II
diabetes. As factors such as abnormal insulin regula-
tion and abnormal cholesterol metabolism have been
discovered in each of these conditions, overlap in
pathogenesis has been suggested. In support of this,
apoE e4 does not appear to be as effective as apoE e3 or
apoE e2 in the maintenance of cholesterol home-
ostasis, and possession of apoE e4 alleles can increase
the risk of most of these conditions as well.137 The
treatment of AD patients with cholesterol-lowering
drugs such as statins, already proven effective in the
treatment of CVD, has been associated with a reduced
risk of AD.49,94 This reduced risk may be associated
with reduced brain cholesterol levels and reduced Ab
production, however improved brain oxygenation
may be equally relevant. ApoE also appears to be
intimately involved in Ab degradation in the brain,
Ab clearance from the brain, Ab deposition, neurite
outgrowth, and sulphatide content. The relative
importance of each of these roles in AD risk is not
yet clear.223,227

Caloric restriction and exercise,233,234 and diets with
low fat content and high antioxidant, trace mineral,
and fish content have been associated with a
decreased risk of AD.235,236 Possession of APOE e4
alleles often does not increase the risk for AD in
countries where people have low fat diets and more
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active lifestyles, supporting the concept that modifi-
able lifestyle factors may contribute significantly to
the risk of AD.

An assessment of AD risk that takes into account
both environmental and genetic factors may well
provide the most useful model for clinical manage-
ment in the future, with the emphasis on prevention.
With mounting evidence for a convergence of AD and
CVD risk factors, it is also apparent that improving
metabolic health more broadly may well pay signifi-
cant dividends in reducing the burden of these
diseases in the future.
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