

F. Cipolla-Ficarra et al. (Eds.): HCITOCH 2011, LNCS 7546, pp. 64–72, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Feature-Oriented WSDL Extension
for Describing Grid Services

Natalia Trejo, Sandra Casas, and Karim Hallar

Unidad Académica Río Gallegos, Universidad Nacional de la Patagonia Austral
Río Gallegos, Argentina

{nbtrejo,karimhallar}@gmail.com,
lis@uarg.unpa.edu.ar

Abstract. Grid computing and Feature-oriented Development Software are
emerging technologies, which can be combined to analyze, model, and specify
Grid services. In a Grid environment, there are a large number of similar
resources provided by different parties, that may provide the same functionality,
but different Quality of Service (QoS) measures. A feature-based approach is
presented to optimize the development of Grid services and Grid service
composition. WSDL specification is extended to contain useful description of
both functional and non-functional characteristics by mean Design by Contract
technique. In this way, Grid users can specify their QoS expectations and select
suitable resources and use them for their Grid workflow at design time before
its execution on the Grid.

Keywords: Grid service, Feature-oriented Software Development, Design by
Contract, QoS Attributes, Grid Service Composition.

1 Introduction

This paper presents a unique blend of ideas from different technical areas: distributed
computing, feature-oriented software development as new software engineering
paradigm, service-oriented architecture, and software design methods. Grid technology
[1] provides a distributed computing environment based on the aggregation and the
sharing of comprehensive, safe and coordinated heterogeneous resources from
different organizations dynamically pooled into Virtual Organizations (VOs).

Grid applications for service-based systems are usually not based on a single
service, but are rather composed of several services working together in an
application-specific manner to achieve an overall goal. An application developer has
to decide which services offered by the Grid should be used in the application, and
he/she has to specify the data and control flow between them. We refer to workflow
as the automation of both - control and data flow - in Grid applications.

QoS is a “combination of several qualities or properties of a service” [2]. In the
context of Service-oriented Architecture (SOA), it is a set of non-functional attributes
that may influence the quality of the service provided by a Web service [3]. Usually,

 A Feature-Oriented WSDL Extension for Describing Grid Services 65

several Web/Grid services are able to execute a given task although with different
levels of quality. In addition, different users or applications may have different
expectations and requirements. However, workflows developers would have to offer
multiple criteria related to non-functional or QoS characteristics. Thus, during design
time of Grid workflows, it is important to consider non-functional attributes of the
Grid application in order to satisfy the needs of each service requester/consumer
before Grid workflow execution.

Feature-oriented software development (FOSD) [4] is a paradigm for designing
and implementing applications based on features. A feature is an end-user visible
characteristic or requirement in a software system. Software is modularized into
feature modules that represent features [5]. To create an application, feature modules
are composed. Thus, features can be composed in different combinations, e.g.,
omitting certain features or implementing alternative features. In this way, FOSD can
be used to develop software product lines.

The concept of Design by Contract (DbC) was first introduced by Meyer [6] to
facilitate component reuse. Grid services are components in computing paradigm
based on Grid technology, and DbC can be used at the level of components specifying
component contracts as part of the components interfaces including functional
requirements and QoS restrictions of Grid applications based on Grid services.

In this work, an outline of the relevance of FOSD to Grid computing domain and
how it could be useful in designing Grid services is given. Preliminary results from
the combination of Grid computing with FOSD are introduced in order to represent
Grid services including both functional and non-functional requirements on their
representation.

The remainder of this paper is organized as follows. Section 2 briefly describes
related concepts and works about Grid services composition and its QoS
characteristics, FOSD approach and its application in Web services. Section 3
describes our model to represent and specify Grid service using FOSD approach and
DbC to include functional and non-functional requirements. An XML-based language
for contract to extend WSDL specification of Grid service is presented. Finally, the
paper provides some conclusions and hints for future research.

2 Related Works

2.1 Grid Services Composition

OGSA standard (Open Grid Services Architecture) [7] addresses all the fundamental
services of Grid computing such as job management, resource management, security
services and service discovery. It specifies standard interfaces for these services and
requires stateful services. Modern Grid middleware environments like Globus Toolkit
(GT) [8], Unicore/GS [9] or gLite [10] are built on the Web Service Resource
Framework (WSRF) [11] standard, which extends Web Services. This allows the
creation of the so-called stateful Web Services that can store the state of operations
and other properties without breaking the compatibility with standard Web services.

In WSRF, the Web service is described in a WSDL document and the resource is
specified in a separate Resource Properties document. A WSDL description is an

66 N. Trejo, S. Casas, and K. Hallar

XML document that contains all the information about service capabilities and
invocation mechanisms. The capabilities are described in terms of the operations of
the service and the input and output messages for each operation.

Composition process can be described as a process that implies the identification of
functionalities required by the services to be composed and their interactions (e.g.
control-flow or data-flow). Component services that are able to provide the required
functionalities are then associated to services composition.

However, a WSDL document only addresses the functional aspects of a Grid
service without containing any useful description of non-functional or QoS
characteristic. Some high-level QoS dimensions have been identified as relevant for
Grid services composition (time, cost, fidelity, reliability, security) [12]. If users were
capable of specifying their QoS expectations of the workflow at design level, it would
be possible to detect and avoid services incompatibility during Grid services
composition. Therefore, in the selection of Grid services, Grid applications developers
must consider both functional and QoS properties.

2.2 QoS Characteristics of Grid Services

Yu and Buyya [12] suggest that at the specification level, workflow languages need to
allow users to express their QoS requirements. At the execution level, the workflow
scheduling must be able to map the workflow onto Grid resources to meet users’ QoS
requirements.

In a Web/Grid environment, multiple Web/Grid services may provide similar
functionalities with different non-functional property values. Therefore, all actors
involved in workflow composition would have a mechanism to distinguish the best
Web/Grid service according to functional and non-functional requirements.

According to the specification designed by the World Wide Consortium (W3C)
[3], QoS requirements for Web services include the following attributes: performance,
reliability, scalability, robustness, accuracy, integrity, accessibility, availability,
interoperability and security.

The authors of [13, 14, 15] analyzed and proposed different solutions to represent
QoS in Web services. Zeng et al. [13] proposed a model to evaluate QoS of both basic
and composite services and a global service selection approach that uses linear
programming techniques to compute optimal service execution plans for composite
services. They present quality criteria in the context of elementary services (e.g.
execution price, execution duration, reliability, and so on), which can be defined for
an entire service or for individual service operations. The quality criteria to evaluate
QoS of composite services are calculated based on QoS criteria of basic services.
D'Ambrogio [14] introduced a lightweight WSDL extension for the description of
QoS characteristics of a Web service. The WSDL extension, called Q-WSDL, is
based on the OMG QoS and SPT Profiles and has been carried out as a meta-model
transformation, according to principles and standards provided by Model Driven
Architecture. In [15], the authors present a study of a Web service discovery system
based on QoS and highlight the advantages and disadvantages of each system.

In the Grid computing field, the works of [16, 17, 18] present a solution to include
non-functional requirements into Grid services. The work of [16] presents a
framework for brokering of Grid resources which allows discovery and selection of

 A Feature-Oriented WSDL Extension for Describing Grid Services 67

resources and automatic allocation of application tasks to them on the basis of both
functional and QoS requirements. For this goal they extended ontology developed
using OWL for QoS description for Web services. Acher et al. [17, 18] analyzed
functional and non-functional variability of imaging services and proposed a Software
Product Line Framework (SPLF). They addressed variability of Grid services for
medical imaging by using an approach based on Software Product Lines. On the basis
of meta-models handling functional and QoS variability, the SPLF describes possible
types of services and workflows for the domain of medical imaging. It considers
services variability, including a set of common properties and a set of possible
differences. Thus, developers are able to describe the structure and the behavior of
services, propose variants and define optional parts. Then, Grid workflows experts are
able to transparently choose and deploy services from SPL and execute applications
composed of several of them. End users just specify data and their requirements and
QoS needs.

There are specific QoS aspects of Grid services beyond classical QoS attributes
defined by W3C. These QoS requirements also depend on the nature of each Grid
application, and could include attributes such as cost, reproducibility, predictability,
minimum storage capability for storage services, user needs (e.g. emergency of
computation, expected output quality, etc.).

2.3 Feature-Oriented Software Development

Feature-Oriented Software Development (FOSD) is a “paradigm for construction,
customization, and synthesis of large-scale software systems where the main concept
is the feature” [19]. These authors define a feature as a unit of functionality of a
software system that satisfies a requirement, represents a design decision, and
provides a potential configuration option. Software system is decomposed in terms of
the features it provides. The concept of decomposition allows constructing well-
structured software that can be tailored to the needs of the user and the application
scenario.

From a set of features, many different software systems that share common
features and differ in other features can be generated. The set of software systems
generated from a set of features where they share common aspects as predicted
variability, is also known as software product line [20].

Apel and Kaestner [19] also present a survey to convey the idea of FOSD as
general development software. The concept of feature is used to structure the design
and code of a software system. Features are the core units of reuse in this approach,
and the variants of a software system vary in the features they provide. The software
is generated in an efficient and correct way on the basis of a set of feature artifacts
and a user’s feature selection.

2.3.1 Feature-Based Approach to Develop SOA Applications
Apel et al. [21] present an approach that integrates the notions of services and feature-
based product lines. The similarity between feature-based approaches and service-
based approaches to software system construction is that both aim at structuring

68 N. Trejo, S. Casas, and K. Hallar

complex software systems into manageable pieces. The authors also present the
benefits of a feature-based approach to SOA and pose several challenges, particularly
when services are black boxes implemented and deployed by different vendors. The
vendors do not share code; only interface descriptions are available. They recommend
creating a common feature model that is well defined for a domain. Based on this
model, vendors can provide a feature-based specification for their services.

A few works for modeling SOA applications using features have been presented.
In [22] a feature diagram notation is used to identify variability in Web Services
architectures. However this approach focuses on the user's point of view instead of
integrating Web services from multiple vendors. More recent works [17, 18] have
analyzed variability of functional and non-functional requirements of medical
imaging processing Grid services. The feature-based approach has been used to
propose meta-models in order to handle functional variability and QoS mechanisms.
Grid services are organized as product line architecture and feature models are used to
structure relevant information in terms of service’s variability. Family of services is
defined as a set of concerns that exhibit variability, each being represented with
several feature models. A set of composition operators is proposed to enable service
composition.

3 Modeling Grid Services Using FOSD

Grid workflows may represent complex scientific and business processes, which
normally change often. Therefore, firstly, we need to capture and represent each task
of these processes by means of Grid services and their interfaces. We propose a new
approach to model Grid services based on FOSD.

VOs usually share their resources using Grid services. These services are black
boxes implemented and deployed by different organizations. Integrating off-the-shelf
services located at different places and using interface descriptions generate Grid
applications. DbC [6] is used at level of Grid services specifying contracts as part of
the service interfaces. The contract will describe non-functional restrictions that Grid
service must hold from its clients/service requester and vice versa.

In this way, a Grid service can offer interfaces that are detailed by Pre-conditions,
Post-conditions and Invariant assertions of DbC technique, which could be related
with input or output operations or non-functional features, e.g. QoS. We will use DbC
in order to extend WSDL specification to functional and no-functional requirements.
Non-functional requirements of Grid service composition will accomplish defining
non-functional requirements for each Grid service.

3.1 Extending Grid Service Interface

Grid Contract Definition Language (GContractDL) is created in order to extend
WSDL specification of Grid services using DbC technique. In this way, Grid
developers are able to specify functional and non-functional restrictions during Grid
service interface definition and Grid services composition.

 A Feature-Oriented WSDL Extension for Describing Grid Services 69

Fig. 1. An example of Grid service Feature Model

We give a simple example of Grid service, called MathService. This Grid service
performs basic arithmetic operations using Resource Properties (RP), Math Resource
Properties which contains two elements: LastOp (last operation) and Value. The
internal logic of Math Service is as follows: Once a new resource is created, the Value
RP is initialized to zero, and the LastOp RP is initialized to NONE. The elementary
operations expect only one integer parameter. This parameter is added, subtracted,
etc. to the Value RP, and the LastOp RP is changed to ADDITION, SUBTRACTION,
PRODUCT or DIVISION accordingly. Also, the operations do not return anything.
Suppose that a client or other service requests the division operation to MathService,
then the feature model will be as shown in Fig. 1. Feature structure tree notation [23]
is used to represent feature model of MathService.

Based on this MathService feature model, we can see it would be much better if we
knew something more about the Grid service, e.g., that division operation does not
accept zero value as input or that all operations cannot accept float data type as input
values. We also could use this representation to define quality criteria at design level
of workflow creation, such as service performance, result accuracy, data
confidentiality, time, cost, fidelity, reliability and so on. All these non-functional
requirements can be defined into the XML Schema used to produce and validate an
extension of WSDL document of Grid services, as it will be seen in the next section.

3.2 GContractDL XML Schema

Figure 2 graphically represents the XML Schema of GContractDL. The root element
is called <contract> which type is contractType (Fig. 2a), this element contains
several occurrences of the elements <operation> and optionally several
occurrences of invariant elements. The operation element describes each
service operation defined on WSDL specification. Inside the operation element
we can specify information about parameters, pre-condition and post-condition
assertions. Invariant elements could be used to state non-functional aspects of
Grid service, which must be satisfied before and during Grid service and workflow
execution.

70 N. Trejo, S. Casas, and K. Hallar

Fig. 2. Graphical representation of XML schema for GContractDL

The parameter element (Fig. 2b) describes operation parameters and return
values, as well as constants that a service supports. For each parameter it is possible to
specify ID, direction, and whether the parameter is required or optional. For each
parameter element it is possible to define name, type, restriction and initialization.
Pre-conditions, post-conditions and invariants share the same

structure (Fig. 2c). Pre-conditions are linked to operations and determine
obligations of a client or service requester. An operation is guaranteed to work
correctly if and only if pre-condition is satisfied. Post-condition describes what
an operation guarantees, if pre-condition holds. Invariants are properties that
must hold before, during and after Grid service execution. The child elements
describing pre-conditions, invariants and post-conditions are related to non-functional
attributes, such as performance, cost, minimum storage, and so on.
Params element allows for specification of conditions for parameters, be it pre-
conditions for input parameters or guarantees (post-conditions) for output parameters
(results).

Using GContractDL we can extend WSDL specification by defining pre/post-
condition assertion related to each Grid service operation and invariant assertion for
each Grid service and which allows defining the whole workflow.

GContractDL can be applied at different levels of granularity. For each operation
offered by Grid service, requirements to accomplish correct Grid service execution
can be defined. Also, Grid developers are able to define results that service operation
guarantees when these requirements are met. Moreover, during service composition,
global conditions can be provided to the execution of each service through the
invariants. In this way, DbC will ensure QoS of the entire Grid application.

 A Feature-Oriented WSDL Extension for Describing Grid Services 71

4 Conclusion and Future Work

Grid services capabilities, as an extension of Web service, are expressed in XML by
using WSDL. Unfortunately, a WSDL description only addresses the functional
aspects of a Web/Grid service without containing any useful description of non-
functional or QoS characteristics.

This paper has proposed a novel approach to combine FOSD and Grid computing
in Grid service representation. We have used the first two FOSD phases to describe
Grid service. Grid service functionality and non-functional attributes have been
represented by a set of features. WSDL specification has been extended to support
DbC elements in order to describe the behavior offered and required for a Grid
service and include non-functional requirements. This is accomplished by means of
XML-based language for Grid services contracts.

FOSD has several open issues related to their phases. Particularly, in the phase of
domain design and specification, there has not been much work. Feature interaction
occurs when the integration of two features modifies the behavior of one or both
features in an undesirable way. Feature Interaction Problem (FIP) is still an open and
hard research challenge [19] and is an issue wherever independently developed
software components are required to work together. Furthermore, Calder et al. [24]
suggests the needs are semantic specifications besides interface specifications because
these are insufficient and hence feature interactions would be an issue between Web
services and also between Grid services. Grid service specification must be improved
to add more behavioral information and test algorithms to detect FIP among Grid
services based on pre/post-conditions and invariant elements of DbC.

As future work we plan to define a feature interaction taxonomy, which would
allow detecting undesirable interaction when Grid services are composed. Also we
will design a prototype of a notation to specify Grid workflow on the basis of feature-
based WSDL extension and that allows feature interaction detection at design-level.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual
organizations. International Journal of High Performance Computing Applications 15(3),
200–222 (2001)

2. Menascé, D.: QoS issues in web services. IEEE Internet Computing 6, 72–75 (2002)
3. W3C Consortium: QoS for Web Services: Requirements and Possible Approaches (2003),

http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
4. Kaestner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., Apel, S.:

FeatureIDE: A tool framework for feature-oriented software development. In: 31st
International Conference on Software Engineering, pp. 611–614. IEEE Computer Society,
Washington, DC (2009)

5. Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Aksit, M.,
Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer, Heidelberg
(1997)

6. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)

72 N. Trejo, S. Casas, and K. Hallar

7. Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B.,
Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., Reich, J.: The Open Grid
Services Architecture, Version 1.0,
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf

8. Globus Alliance: Globus Toolkit, http://www.globus.org/toolkit/
9. Almond, J., Snelling, D.: UNICORE: uniform access to supercomputing as an element of

electronic commerce. Future Generation Computer Systems 15, 539–548 (1999)
10. EGEE Project: gLite, http://glite.web.cern.ch/glite/
11. OASIS: Web Services Resource Framework (WSRF) 1.2, http://docs.oasis-

open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
12. Yu, J., Buyya, R.: A taxonomy of workflow management systems for Grid computing.

Grid Computing 3(3-4), 171–200 (2005)
13. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.: Quality driven web services

composition. In: 12th International Conference on World Wide Web, pp. 411–421. ACM,
New York (2003)

14. D’Ambrogio, A.: A model-driven WSDL extension for describing the QoS of Web
services. In: IEEE International Conference on Web Services, pp. 789–796. IEEE
Computer Society, Washington, DC (2006)

15. Rajendran, T., Balasubramanie, P.: Analysis on the Study of QoS-Aware Web Services
Discovery. Journal of Computing 1(1), 119–130 (2009)

16. Ranaldo, N., Zimeo, E.: A framework for QoS-based resource brokering in grid
computing. In: WEWST (2008)

17. Acher, M., Collet, P., Lahire, P., Montagnat, J.: Imaging services on the grid as a product
line: Requirements and architecture. In: 12th International Conference, pp. 137–142. Lero
Int. Science Centre, University of Limerick, Ireland (2008)

18. Acher, M., Collet, P., Lahire, P., France, R.: Managing Variability in Workflow with
Feature Model Composition Operators. In: Baudry, B., Wohlstadter, E. (eds.) SC 2010.
LNCS, vol. 6144, pp. 17–33. Springer, Heidelberg (2010)

19. Apel, S., Kaestner, C.: An overview of feature-oriented software development. Journal of
Object Technology 8(4), 1–3 (2009)

20. Weiss, D., Lai, C.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison-Wesley (1999)

21. Apel, S., Kaestner, C., Lengauer, C.: Research challenges in the tension between features
and services. In: 2nd International Workshop on Systems Development in SOA
Environments, pp. 53–58. ACM, NY (2008)

22. Robak, S., Franczyk, B.: Modeling Web Services Variability with Feature Diagrams. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS,
vol. 2593, pp. 120–128. Springer, Heidelberg (2003)

23. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis
(FODA). Feasibility Study. Tech. Rep. CMU/SEI-90-TR-21, ESD-90-TR-222, Software
Engineering Institute, Carnegie Mellon University (1990)

24. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a critical
review and considered forecast. Computer Networks: The International Journal of
Computer and Telecommunications Networking 41(1), 115–141 (2003)

