
Sandra M DuránUniversity of Minnesota
Sandra M Durán
PhD University of Alberta
About
36
Publications
44,251
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,078
Citations
Introduction
Additional affiliations
September 2009 - July 2015
September 2007 - August 2009
Publications
Publications (36)
Aim: Andean forests are a global biodiversity hotspot. They harbour many species living within narrow climate ranges and a high functional diversity of trees. It remains still unclear how such hotspots respond to climatic changes over time. We investigated whether Andean forests are changing their functional composition over time along an elevation...
Foliar traits such as specific leaf area (SLA), leaf nitrogen (N) and phosphorus (P) concentrations play an important role in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations.Here, we intercompare such global...
(Background/Question/Methods):
We are living in a time of unprecedented rapid urbanization and climate change. To prepare cities for a warmer future, we should create better urban forest management plans to select tree species capable of tolerating or acclimating to warmer conditions. Here, we study how urban heat islands (UHI) affect species per...
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristi...
Assessing the impacts of anthropogenic degradation and climate change on global carbon cycling is hindered by a lack of clear, flexible and easy‐to‐use productivity models along with scarce trait and productivity data for parameterizing and testing those models. We provide a simple solution: a mechanistic framework (RS‐CFM) that combines remotely‐s...
Resilient secondary tropical forests?
Although deforestation is rampant across the tropics, forest has a strong capacity to regrow on abandoned lands. These “secondary” forests may increasingly play important roles in biodiversity conservation, climate change mitigation, and landscape restoration. Poorter et al . analyzed the patterns of recovery i...
It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operatio...
Significance
Tropical forests disappear rapidly through deforestation but also have the potential to regrow naturally through a process called secondary succession. To advance successional theory, it is essential to understand how these secondary forests and their assembly vary across broad spatial scales. We do so by synthesizing continental-scale...
Tropical dry forests (TDFs) have experienced pronounced droughts and increased temperatures for the last century. To assess whether these climatic shifts have influenced dry forest vegetation and ecosystem functioning, we integrated ground observations from a Costa Rican long‐term forest dynamics monitoring plot with remotely sensed measures of for...
A core goal of the National Ecological Observatory Network (NEON) is to measure changes in biodiversity across the 30‐yr horizon of the network. In contrast to NEON’s extensive use of automated instruments to collect environmental data, NEON’s biodiversity surveys are almost entirely conducted using traditional human‐centric field methods. We belie...
Tropical dry forests (TDFs) worldwide have an environment-sensitive phenological signal, which easily marks their response to the changing climatic conditions, especially precipitation and temperature. Using TDF phenological characteristics as a proxy, this study aims to evaluate their current continental response to climate change across the Ameri...
We analyze here how much carbon is being accumulated annually by secondary tropical dry forests (TDFs) and how structure, composition, time since abandonment, and climate can influence the dynamics of forest carbon accumulation. The study was carried out in Santa Rosa National Park in Guanacaste province, Costa Rica and Mata Seca State Park in Mina...
Forests are integral to global carbon cycling but are threatened by anthropogenic degradation and climate change. Assessing this global threat has been hindered by a lack of clear, flexible, and easy-to-use productivity models along with a lack of functional trait and productivity data for parameterizing and testing those models. Current productivi...
Spatially continuous data on functional diversity will improve our ability to predict global change impacts on ecosystem properties. We applied methods that combine imaging spectroscopy and foliar traits to estimate remotely sensed functional diversity in tropical forests across an Amazon-to-Andes elevation gradient (215 to 3537 m). We evaluated th...
Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking....
Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturba...
Much ecological research aims to explain how climate impacts biodiversity and ecosystem-level processes through functional traits that link environment with individual performance. However, the specific climatic drivers of functional diversity across space and time remain unclear due largely to limitations in the availability of paired trait and cl...
The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of...
There is an urgent need for large‐scale botanical data to improve our understanding of community assembly, coexistence, biogeography, evolution, and many other fundamental biological processes. Understanding these processes is critical for predicting and handling human‐biodiversity interactions and global change dynamics such as food and energy sec...
Tropical dry forests (TDFs) are ecosystems with long drought periods, a mean temperature of 25 °C, a mean annual precipitation that ranges from 900 to 2000 mm, and that possess a high abundance of deciduous species (trees and lianas). What remains of the original extent of TDFs in the Americas remains highly fragmented and at different levels of ec...
Although tropical dry forests (TDFs) cover roughly 42% of all tropical ecosystems, extensive deforestation and habitat fragmentation pose important limitations for their conservation and restoration worldwide. In order to develop conservation policies for this endangered ecosystem, it is necessary to quantify their provision of ecosystems services...
Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland secon...
Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land...
Wildfire activity is predicted to increase with global climate change, resulting in longer fire seasons and larger areas burned. The emissions from fires are highly variable owing to differences in fuel, burning conditions and other external environmental factors. The smoke that is generated can impact human populations spread over vast geographica...
AimTo develop an integrative framework to evaluate variation in aboveground carbon storage (AGC). A model that can be applied to understand and predict how global-change drivers influence tropical carbon sinks.LocationOld-growth tropical forests world-wide.Methods
Using structural equation modelling (SEM), we propose an a priori model to evaluate t...
Lianas are a key structural component of tropical forests, where they represent approximately 25 % of woody plant species. Lianas reduce tree growth, inhibit tree regeneration and increase tree mortality. Thus, lianas are able to reduce carbon stored as tree biomass. Infestation rates on trees by lianas are stronger in shade-tolerant species with h...
Tropical forests are experiencing structural changes that may reduce carbon storage potential. The recent increase in liana abundance and biomass is one such potential change. Lianas account for approximately 25 per cent of woody stems and may have a strong impact on tree dynamics because severe liana infestation reduces tree growth and increases t...
Root climbers constitute a distinctive group within climbing plants and some evidence suggests that they are associated with high precipitation and low light availability at local scales, which is in contrast with general patterns of liana distribution in the tropics. The influence of precipitation and seasonality on the occurrence of root climbers...
The spatial distribution and abundance of animals are in part determined by the distribution and abundance of their resource base. In the Central Andes of Colombia, monospecific tree plantations have been used to recover vegetative cover in watershed protection programs, but these plantations differ from natural forests in structure, composition, a...
We indirectly evaluated the selective pressures on dispersal and establishment of Campsiandra angustifolia, a common water-dispersed tree from the Peruvian Amazon, analyzing the variation in the relationship between the volume occupied by dispersal and establishment structures in a total of 535 seeds from 13 trees located at three different habitat...