• Home
  • Sandra Beauvarlet
Sandra Beauvarlet

Sandra Beauvarlet
  • PostDoc Position at University of Connecticut / Stanford Pulse Institute

Work on ultrafast AMO using electron and ion spectroscopy. Interests in attosecond science and chirality

About

19
Publications
4,820
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
247
Citations
Introduction
Current institution
University of Connecticut / Stanford Pulse Institute
Current position
  • PostDoc Position

Publications

Publications (19)
Article
Full-text available
The detailed understanding of electronic coherence in quantum systems requires measurements on the attosecond timescale. Attosecond x-ray pulses enable the study of electronic coherence in core-excited molecular systems. Here we report on the coherent motion of electrons in the 1,1-difluoroethylene ion following ionization of the K shell of the two...
Preprint
Full-text available
In molecular systems, the ultrafast motion of electrons initiates the process of chemical change. Tracking this electronic motion across molecules requires coupling attosecond time resolution to atomic-scale spatial sensitivity. In this work, we employ a pair of attosecond x-ray pulses from an x-ray free-electron laser to follow electron motion res...
Article
Full-text available
We report the measurement of impulsive stimulated x-ray Raman scattering in neutral liquid water. An attosecond pulse drives the excitations of an electronic wavepacket in water molecules. The process comprises two steps: a transition to core-excited states near the oxygen atoms accompanied by transition to valence-excited states. Thus, the wavepac...
Article
Full-text available
Pump–probe experiments with subfemtosecond resolution are the key to understanding electronic dynamics in quantum systems. Here we demonstrate the generation and control of subfemtosecond pulse pairs from a two-colour X-ray free-electron laser. By measuring the delay between the two pulses with an angular streaking diagnostic, we characterize the g...
Article
Full-text available
Strong laser pulses enable probing molecules with their own electrons. The oscillating electric field tears electrons off a molecule, accelerates them, and drives them back toward their parent ion within a few femtoseconds. The electrons are then diffracted by the molecular potential, encoding its structure and dynamics with angstrom and attosecond...
Article
Full-text available
Chirality is widespread in nature, playing a fundamental role in biochemical processes and in the origin of life itself. The observation of dynamics in chiral molecules is crucial for the understanding and control of the chiral activity of photoexcited states. One of the most promising techniques for the study of photoexcited chiral systems is time...
Preprint
Full-text available
Chiral molecules are widespread in nature, playing a fundamental role in bio-chemical processes and in the origin of life itself. The observation of dynamics in chiral molecules is crucial for the understanding and control of the chiral activity of photo-excited states. One of the most promising techniques for the study of photo-excited chiral syst...
Article
The resonance-enhanced multiphoton ionization of chiral molecules by elliptically polarized laser pulses produces photoelectron angular distributions that are forward/backward asymmetric with respect to the light propagation axis. We investigate this photoelectron elliptical dichroism in the (2 + 1)-photon ionization of fenchone molecules, using wa...
Thesis
La chiralité moléculaire est une propriété d’importance critique dans bien des domaines tels que la biologie, la chimie, la pharmacologie. Les molécules chirales sont l’ensemble des molécules non superposables à leur image par un miroir et existent donc en deux versions miroirs appelées énantiomères, qui sont généralement très difficiles à distingu...
Article
Full-text available
Light-matter interaction based on strong laser fields enables probing the structure and dynamics of atomic and molecular systems with unprecedented resolutions, through high-order harmonic spectroscopy, laser-induced electron diffraction, and holography. All strong-field processes rely on a primary ionization mechanism where electrons tunnel throug...
Article
Full-text available
We present an efficient and robust scheme to produce energetic sub-15 fs pulses centered at 515 nm with a peak power exceeding 3 GW. Combining efficient second-harmonic generation of a 135 fs, 50 W Yb-doped fiber amplifier with a low-loss capillary-based visible pulse compression stage, we reach an overall efficiency higher than ${\gt}{{20}}\%$ . T...
Article
Full-text available
After decades of supremacy of the Titanium:Sapphire technology, Ytterbium-based high-order harmonic sources are emerging as an interesting alternative for experiments requiring high flux of ultrashort extreme ultraviolet (XUV) radiation. In this article we describe a versatile experimental setup delivering XUV photons in the 10-50 eV range. The use...
Preprint
Full-text available
After decades of supremacy of the Titanium:Sapphire technology, Ytterbium-based high-order harmonic sources are emerging as an interesting alternative for experiments requiring high flux of ultrashort extreme ultraviolet (XUV) radiation. In this article we describe a versatile experimental setup delivering XUV photons in the 10-50 eV range. The use...
Article
Full-text available
Synopsis Photoionization of chiral molecules by circularly polarized light produces characteristic photoelectron angular distributions, showing a strong forward/backward asymmetry with respect to the light propagation axis. Up to now, this process, referred to as Photoelectron Circular Dichroism, has been studied using electric fields with constant...
Conference Paper
We demonstrate high XUV photon fluxes by producing high-order harmonics from a turnkey femtosecond Yb-doped amplifier. We thus show efficient XUV generation with 1.9 mW average power at 18 eV.
Conference Paper
We measured the chiral relaxation of photoexcited Fenchone at the Carbon K-edge. Our results demonstrate that ultrafast chiral dynamics can be probed using core level spectroscopy with circularly polarized free-electron laser pulses.
Article
Full-text available
Recent progresses in femtosecond ytterbium-doped fiber laser technology are opening new perspectives in strong field physics and attosecond science. High-order harmonic generation from these systems is particularly interesting because it provides high flux beams of ultrashort extreme ultraviolet radiation. A great deal of effort has been devoted to...
Article
Full-text available
Controlling the polarization state of electromagnetic radiation enables the investigation of fundamental symmetry properties of matter through chiroptical processes. Over the past decades, many strategies have been developed to reveal structural or dynamical information about chiral molecules with high sensitivity, from the microwave to the extreme...
Preprint
Full-text available
Controlling the polarization state of electromagnetic radiation enables the investigation of fundamental symmetry properties of matter through chiroptical processes. Many strategies have been developed to reveal structural or dynamical information about chiral molecules, from the microwave to the extreme ultraviolet range. Most schemes employ circu...

Network

Cited By