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Securing the Internet of Things:
A Standardization Perspective
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Abstract—The Internet-of-Things (IoT) is the next wave of innovation that promises to improve and optimize our daily life based on
intelligent sensors and smart objects working together. Through IP connectivity, devices can now be connected to the Internet, thus
allowing them to be read, controlled and managed at any time and any place. Security is an important aspect for IoT deployments.
However, proprietary security solutions do not help in formulating a coherent security vision to enable IoT devices to securely
communicate with each other in an interoperable manner. This paper gives an overview of the efforts in the Internet Engineering Task
Force (IETF) to standardize security solutions for the IoT ecosystem. We first provide an in-depth review of the communication security
solutions for IoT, specifically the standard security protocols to be used in conjunction with the Constrained Application Protocol (CoAP),
an application protocol specifically tailored to the needs of adapting to the constraints of IoT devices. Since Datagram Transport Layer
Security (DTLS) has been chosen as the channel security underneath CoAP, this paper also discusses the latest standardization efforts
to adapt and enhance the DTLS for IoT applications. This includes the use of (i) raw public key in DTLS, (ii) extending DTLS Record
Layer to protect group (multicast) communication, and (iii) profiling of DTLS for reducing the size and complexity of implementations
on embedded devices. We also provide an extensive review of compression schemes that are being proposed in IETF to mitigate
message fragmentation issues in DTLS.

Index Terms—Internet of Things, Communication Security, Standardization, Machine-to-Machine Communication, Compression
Scheme, End-to-End Security
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1 INTRODUCTION

The notion of Internet of Things (IoT) has been rec-
ognized by industrial leaders and media as the next
wave of innovation, and pervading into our daily life [9],
[12]. Sensors around us are increasingly becoming more
pervasive and attempt to fulfill end users’ needs, thus
providing ease of usability in our everyday activities.
Devices deployed in households, industrial automation,
and smart city infrastructure are now interconnected
with the Internet. This interconnection provides a whole
range of data (environmental context, device status, en-
ergy usage, etc) that can be collected, aggregated and
then shared in an efficient, secure, and privacy-aware
manner. As these devices are connected to the Internet,
they can be reached, and managed at anytime and any
place.

The current landscape of IoT is filled with a very
diverse range of wireless communication technologies,
such as IEEE 802.15.4 [1], Wifi, Bluetooth Low Energy
(BLE) [34], and various other cellular communication
technologies. Quite naturally, devices using different
physical and link layers are not interoperable with
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each other. Through an IP router, these devices are,
however, able to communicate with the Internet. When
the differences in the protocol stack extend beyond the
physical and link layer, protocol translation needs to be
performed by a gateway device. This harms the deploy-
ment of IoT devices because the deployment becomes
more complex and expensive with multiple middleboxes
along the end-to-end communication path. In order to
ensure seamless connectivity between different devices
deployed in the market, a convergence towards an all
IP-based communication stack is necessary.

Already years ago the Internet Engineering Task Force
(IETF) has standardized IPv6 over Low-Power Wire-
less Personal Area Networks (6LoWPAN) [32], Rout-
ing Over Low-power and Lossy-networks (ROLL) [52]
and Constrained Application Protocol (CoAP) [51], to
equip constrained devices with low memory footprint
and computational capabilities to run IPv6 over low-
power wireless networks. The ZigBee IP standard [5],
which primarily targets the smart energy domain, builds
on top of the 6LoWPAN stack [37], [20], [50]. IEEE
802.15.4-based devices used in other industry domains
are expected to adopt the 6LoWPAN concept as well
since it provides the basis for running IPv6 over low
power radios via an adaptation layer, profiling of the
IPv6 neighbor discovery mechanism, and compression
schemes. Similar adaptations are provided to Bluetooth
low energy [39] and DECT Ultra Low Energy [41], two
other short-range radio technologies. Meanwhile many
IoT devices are using WiFi and are already running the
full IP protocol stack. IP protocol can be regarded as
the glue to interconnect these heterogeneous wireless
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networks together.
The pervasive device connectivity to the Internet also

poses hidden security risks, namely eavesdropping on
the wireless communication channel, unauthorized ac-
cess to devices, tampering with devices, and privacy
risks. The inherent nature of constrained devices means
that the state-of-the-art cryptographic algorithms and
protocols are not easy to deploy on such devices and
even more difficult to keep the software up-to-date. The
ability to connect, manage and control a device from
anywhere and at anytime requires appropriate authenti-
cation and authorization measures. Security experts have
emphasized the importance of security in IoT deploy-
ments and have warned about the insecurity of current
deployments [49], [48].

Security for IoT encompasses a wide range of tasks,
including embedding keying material during the manu-
facturing process of the device, provisioning of new key-
ing material during operation, establishing access control
policies for access to networks and services, processes for
secure software development, use of hardware security
modules to protect keys against tampering, software up-
date management, development and selection of efficient
cryptographic primitives, etc. Custom security solutions
offered by the IoT research community offer mostly point
solutions, but this rarely helps to understand the big
picture for securing IoT devices.

This papers provides a state-of-the-art snapshot of the
standardization efforts for securing IoT in the IETF. We
believe that these standardization activities play a crucial
role in securing the IoT eco-system, both in terms of
improving interoperability of IoT devices in general and
to pave the road towards wider industry adoption of
security solutions.

The rest of the paper is organized as follows: Section 2
motivates the importance of security standards. Section
3 reviews the various security standardization activities
in IETF, and highlights the significance of re-using exist-
ing Internet security protocols. Section 4 presents some
performance evaluation results and analysis. Section 5
discusses challenges ahead. Finally, Section 6 concludes
the paper.

2 INTER-OPERABLE SECURITY FOR IOT
The success of the World Wide Web benefited from a
solid foundation built on a standardized protocol stack
consisting of the Internet Protocol (IP), the Transmission
Control Protocol (TCP), the Transport Layer Security
(TLS) protocol, the Hypertext Transfer Protocol (HTTP),
and the Hypertext Markup Language (HTML). When
Personal Digital Assistants (PDAs) were introduced they
were not able to run the full Web stack. Therefore, the
Wireless Application Protocol (WAP) [3] was developed
to allow interworking with the Web infrastructure. The
deployment of WAP was, however, a disappointment
overall as it never got anywhere close to the success of
the plain HTTP/HTML. Proxying between the different

protocols lead to slower innovation since new features
deployed on the Web were only available to mobile
devices once the gateways were updated. Once mobile
devices were capable of supporting the full Web stack,
the limited deployment of WAP quickly vanished.

In terms of security, the Wireless Transport Layer Se-
curity (WTLS) [4] protocol was standardized to provide
communication security for WAP as a TLS counterpart.
However, it did not mandate the use of cryptographic
and key generation algorithms, thus leading to many
insecure algorithms such as 12-round RC5 being imple-
mented and deployed. Although a standardized security
protocol was used, the fact that WTLS did not ensure
end-to-end security is a problem since the WAP gateway
was essentially a man-in-the-middle that had access to
the data being transmitted over the Internet. On one
hand, it is important that standardization ensures inter-
operability. On the other hand, it is crucial that the
correct (adaptation of) security protocol and security
algorithms are also standardized to counter the the
Internet threat model [44] and its changes over time [15].

There are many standards for Internet security proto-
cols developed in different standardization bodies, such
as IEEE (link layer), IETF (network, transport, and ap-
plication layer), and W3C (web application layer). These
different security protocols offer different protection at
different layers and complement each other in fulfilling
different security goals. The use of these standardized
security protocols is at the discretion of the system
architects, who are required to analyze the threats and
to decide on how to mitigate them. The security con-
siderations sections found in IETF specifications provide
helpful guidance for system architects to make a good
judgment. For example, IPsec [25] is not mandatory
to be used at the network layer, and TLS is only en-
abled for applications requiring channel security with
authentication, integrity and confidentiality. The OAuth
2.0 protocol [17] is only relevant for applications that
require delegated authorization to protected resources.
This flexibility has been desired because traditionally
Internet devices accomplish interoperability by imple-
menting several of these protocols which can typically
be updated fairly easily. Therefore, interoperability is
often by devices implementing a wide range of security
protocols and cryptographic algorithms.

However, it is infeasible to require resource con-
strained IoT devices to implement all security protocols
at all layers. Consequently, it is important to ascertain
the threats and risks posed in IoT, and subsequently
determine the security protection required that should be
deployed across the layers. By mandating such a security
protocol implementation for IoT devices, some level of
security interoperability can be guaranteed. While one-
size fits all may not serve all IoT use cases, security pro-
files (i.e., a subset of security protocol functionalities and
options) can be specified to address the requirements of
different IoT applications.

Ideally, a single security protocol suite that provides a
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full security suite, namely authentication, authorization,
integrity and confidentiality protection, should be stan-
dardized. In fact, various such security protocols have
already been standardized and adapting them to cater
for the required security functionalities for use in IoT
would be beneficial. In terms of security, most of the
standardized protocols have been through a thorough
security analysis. Furthermore, such a standardized pro-
tocol when deployed on IoT devices, they can interop-
erate more easily with existing Internet infrastructure
and services. Conversely, designing a completely new
security protocol for IoT seems like re-inventing the
wheel, and it might be difficult to get market traction
whereby a critical mass of devices needs to be achieved
in order to have an interoperable IoT.

3 STATUS QUO OF IOT SECURITY STANDARD-
IZATION IN IETF
This section discusses the current IoT security standard-
ization efforts in IETF. We first introduce the Constrained
Application Protocol (CoAP) [51], followed by standard-
ization efforts to adapt the current communication secu-
rity for use with CoAP. It is noteworthy that a significant
amount of effort has been dedicated to optimize DTLS
in order to provide transport layer security for CoAP in
a style similar to HTTPS. In addition, a standard way
of granting permissions and authorizing IoT devices to
access each other’s resources is being investigated in
IETF, by tapping on the experience obtained with the
development of OAuth 2.0 [17].

3.1 Constrained Application Protocol (CoAP)

The Constrained RESTful Environments (CoRE) Working
Group [21] within the IETF focuses on developing a
resource-oriented application framework for constrained
IP networks. Resource-oriented means that an applica-
tion model is offered in which, similar to HTTP on the
Internet, data in the form of resources can be stored,
retrieved and manipulated via a client-server protocol.
The main result of the working group is the development
of CoAP [51]. In CoAP, as with HTTP, the Universal
Resource Identifier (URI) is used to access the resources
on a given host. CoAP is a relatively simple request and
response protocol providing both reliable and unreliable
forms of communication. For the CoAP protocol, the
”coap” URI scheme will be used. A CoAP-enabled de-
vice may be acting in a client role, a server role, or both,
or sending non-confirmable messages without response.

The reasons that a new protocol is defined for con-
strained IP networks, instead of simply re-using HTTP
is to greatly reduce overhead in implementation com-
plexity (code size) and to reduce the bandwidth require-
ments. Such data reduction also helps to increase relia-
bility (by reducing link layer fragmentation) and reduce
latency in typical low-power lossy wireless networks,
such as IEEE 802.15.4 or BTLE.

The CoAP protocol runs on top of UDP. Contrary
to HTTP-over-TCP, which supports only unicast, CoAP-
over-UDP offers both unicast and multicast (i.e., group
communication).

3.2 Communication Security
Since HTTP is protected using TLS [11], it is thus natural
to use DTLS [45] to protect CoAP. In this way, end-to-
end communication security can be guaranteed between
two communicating devices in an IoT environment. The
handshake phase is used for authentication and for
establishing keying material for channel security.

6LoWPAN 

Network

DTLS Handshake

(Authentication)

IP/6LoWPAN 

Router

IP/6LoWPAN 

Router

IP Device

Fig. 1. Using DTLS for Network Access Authentication.

3.2.1 Datagram Transport Layer Security (DTLS)
DTLS is arguably the most suited single security protocol
for providing channel security [16], [26], mainly because
it is a rather complete security protocol that can perform
authentication, key exchange and protecting application
data with the negotiated keying material and algorithms.

It is assumed that CoAP-based IoT devices are pro-
vided with the necessary long-term keying material
during device manufacturing or dynamically during the
lifetime of the device via configuration. Based on the
configuration, an IoT device will be in one of the four
security modes:

• NoSec: There is no protocol level security and DTLS
is disabled. However, it is recommended that the
IP network layer security is provided, e.g., using
IPsec. In this mode, the CoAP device simply sends
the packets over normal UDP over IP without any
transport layer security protection.

• PreSharedKey: DTLS is enabled and Pre-Shared
Key (PSK)-based authentication is used. The device
will be provisioned with a list of keys and each key
includes a list of nodes for which this key can be
used. In the best security scenario, the CoAP device
shares a unique key with each communication part-
ner.

• RawPublicKey: DTLS is enabled and the device has
an asymmetric key pair, but the public key is not
embedded within an X.509 certificate. The device
also has a list of nodes it can communicate with.

• Certificate: DTLS is enabled and the device has
an asymmetric key pair. The X.509 certificate binds
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Fig. 2. Using DTLS for End-to-End Channel Security.

the public key to an identifier and is signed by a
certification authority. The device also has a list of
trust anchors so that path validation of certificates
received from other entities can be performed.

By using DTLS as the sole security suite for IoT, the
following security protection can be achieved:

Network Access – A 6LoWPAN network is typically
protected using a link-layer MAC (L2) key, so that only
authorized devices that possess this key can communi-
cate within the network, and data packets that cannot
be authenticated using the L2 key will be dropped at
the first hop. The 6LoWPAN Border Router (6LBR), a
device similar to a network access server in regular WiFi
deployments, is ideally responsible for authenticating
and authorizing devices prior to authorizing them to join
the network.

As shown in Figure 1, DTLS as an authentication pro-
tocol can be used to authenticate new devices joining the
network either by using the Pre-Shared Key (PSK) mode,
raw public-key, or public-key certificate. The result of
a successful DTLS handshake creates a secure channel
between the new device and the authorizing entity (for
example the 6LBR). This secure channel enables the
authorizing entity to distribute the L2 key securely to
the joining device based on rules which have been
configured by the network owner.

If the new device and the authorizing entity are one-
hop at the MAC layer, then the DTLS handshake mes-
sages are not dropped by the MAC layer. However if
new device and the authorizing entity are multi-hop at
the MAC layer, the DTLS messages are dropped at the
MAC layer since they are not yet protected with the L2
key, leading to a chicken-and-egg situation. Therefore
techniques to enable forwarding of these multi-hop net-
work access DTLS handshake messages without being
dropped at the MAC layer are required, for example,
using the DTLS relaying [30].

Note, however, that network access authentication for
Ethernet and Wifi uses the Extensible Authentication
Protocol (EAP) with an EAP method encapsulated
inside, which performs the actual authentication and
key exchange protocol run. Various EAP methods have
been standardized in the IETF. Re-using a TLS-based

IP Device

IP/6LoWPAN 

Router

IP/6LoWPAN 

Router
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6LoWPAN 

Network

Fig. 3. Using DTLS to facilitate key update and key
management

EAP method for network access authentication ensures
that code can be re-used by the constraint device. The
direct use of DTLS for network access, as proposed
in [30], is currently at an early discussion stage.

Secure Communication Channel – Although commu-
nication within a multi-hop 6LoWPAN network may be
protected hop-by-hop at the link layer it does not pro-
vide end-to-end security required by many applications.
For example, devices in the 6LoWPAN may interact
with Internet services or devices located at different
networks. This requires an end-to-end security solution
so that application messages that leave the 6LoWPAN
through the 6LBR continue to experience communication
security.

As shown in Figure 2, a DTLS end-to-end session can
be established between two communicating devices,
one inside the 6LoWPAN and the other outside, to
securely transport application data (CoAP messages).
The application data is protected by the DTLS Record
Layer, i.e., authenticated and encrypted with a fresh,
and unique session key.

Key Management – As DTLS has the capability of
renewing session keys, this mechanism can be utilized
to support key management in a 6LoWPAN network.
During the Network Access phase, the 6LBR distributes
a L2 key during the network access authentication
procedure. It is thus possible to re-use the same channel
to facilitate key management, enabling the L2 key to
be updated by the 6LBR when necessary. Figure 3
shows the use of DTLS to facilitate key management
by using individual DTLS sessions with each device in
the network. This key distribution capabilities can be
re-used in the design of the group key management
solution.

3.2.2 IPsec
IPsec provides channel security at the IP layer, making
it possible to ensure end-to-end security between pairs
of communicating devices. As IPSec operates at the net-
work layer, it has the advantage of protecting all higher-
layer protocols. Therefore, many researchers [42], [47],
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[46] consider IPsec a desirable security solution for IoT.
The Authentication Header (AH) and Encapsulating Se-
curity Payload (ESP) are responsible for providing secu-
rity services for protecting data traffic. The AH protocol
provides integrity and data origin authentication for IP
datagrams and protects against replay. The ESP protocol
provides authenticity, integrity and confidentiality to the
IP packets. In order for AH or ESP to function, it requires
a Security Association (SA), i.e., keying material and
various other parameters. These SAs can be established
dynamically using the Internet Key Exchange (IKEv2)
protocol.

An IPsec AH and ESP implementation [42] is available
for Contiki OS. For AH, HMAC-SHA1-96 and AES-
XCBC-MAC-96 have been implemented. For ESP, the
AES-CBC is used for encryption and HMAC-SHA1-96
is used for authentication.

3.2.3 Minimal Internet Key Exchange (IKEv2)

For a dynamic establishment of IPsec Security Asso-
ciations, IKEv2 is used and [29] proposes a minimal
IKEv2 for use with resource constrained devices. Several
optional features of IKEv2, such as NAT traversal, IKE
SA rekey, child SA rekey, multiple child SAs, deleting
child/IKE SAs, configuration payloads, EAP authentica-
tion and cookies are omitted from the profile resulting
in a more lightweight implementation.

The minimal IKEv2 only uses the first two message
exchanges called IKE SA INIT and IKE AUTH to create
IKE SA and the first child SA. An IoT device, which sup-
ports minimal IKEv2, can initiate the message exchange,
but will not able to respond to any other requests. It is
most likely that the minimal IKEv2 only supports exactly
one set of cryptographic algorithms, and authentication
is based on shared secrets. Authentication based on X.509
public-key certificates is not supported in the minimal
IKEv2 specification.

3.2.4 Host Identity Protocol (HIP)

HIP [14] introduces a shim layer between the IP and
transport layer in the form of a cryptographic namespace
called host identities (HIs). The HIP Base EXchange (BEX)
uses the cryptographic HIs in a mutual authenticated
Diffie-Hellman (DH) key exchange to establish a sym-
metric secret between the Initiator and Responder. It
relies heavily on public-key cryptography.

The HIP Diet EXchange (DEX) [38] defines a
lightweight alternative to the BEX that aims to remove
the more expensive cryptographic primitives, such as
signatures, hash functions, or the use of the ephemeral
DH. HIP-DEX thus sacrifices some security properties,
such as perfect forward secrecy and the choice of crypto
suites. With lower bandwidth requirements, it can deal
with higher packet loss due to an aggressive retrans-
mission scheme. HIP-DEX still provides DoS protection
by means of a puzzle mechanism and also allows for
password-based authentication.

3.2.5 Fragmentation

All the communication security protocols explicitly re-
quire the communicating parties to exchange identifiers,
random numbers, keying materials, or even certificates
in order to establish a secure communication session.
With an IEEE 802.15.4 radio, for example, the MAC
datagram packet size is only 127 bytes. The MAC frame
header size alone consumes 25 bytes with no security
and up to 46 bytes with AES-CCM-128 security. Thus,
only 102 bytes (or with the best security enabled only 81
bytes) are left for an IP packet. This is exacerbated by
the need to provision another 48 bytes for the IPv6 and
UDP headers, leaving only approximately 64 bytes for
application data and the necessary security protections.
It is inevitable that certain messages in DTLS, IPsec,
and IKEv2 would not fit into a single packet and must
be fragmented into multiple packets for delivery. Frag-
mentation of packets causes problems because fragments
may be lost, arrive out-of-order, or they need to be re-
transmitted, and at the receiving end these fragments
must be reassembled.

In DTLS, when the ClientHello message encapsulates
the full size Random field and Cookies in the protocol,
it would not fit into an IEEE 802.15.4 packet and has
to be fragmented into two fragments. In IPsec, when
AH and ESP are used, they would consume 54 bytes
of the packet. In fact, it is not possible to fit them
into one packet, and similarly causing fragmentation.
One approach to solve this problem is to avoid
fragmentation altogether by employing compression
techniques to reduce the message size [18], [43], [42].
There is a standard 6LowPAN header compression [20]
that defines the encoding format, LOWPAN IPHC, to
compress Unique Local, Global, and multicast IPv6
Addresses based on shared state within contexts, as
well as LOWPAN NHC for encoding of the next
header compression. These header compression scheme
effectively removes header fields that are implicitly
known to all nodes in the 6LoWPAN network. The
idea is to apply these encoding techniques and derive a
general header compression scheme that can be used to
compress DTLS headers and IPsec headers as well.

DTLS Header Compression [43], [18] – The Record
Layer header adds 13 bytes to every application
message that is transmitted, while the Handshake
header adds 12 bytes to each handshake message. The
6LoWPAN NHC for DTLS can reduce the Record and
Handshake headers to 5 and 3 bytes respectively [43].
This scheme only works on fresh DTLS handshakes, as
successive re-handshakes encrypt the handshake header
using the existing negotiated ciphersuites.

Figure 4 shows the 6LoWPAN NHC encodings for
various DTLS headers. Figure 4(a) denotes the encod-
ings for the Record and Handshake headers (LoW-
PAN NHC RHS), and encodings for the Record header
only (LoWPAN NHC R). The DTLS version (V), Epoch
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Fig. 4. LOWPAN NHC encodings for different DTLS headers and Handshake messages [43].

(EC), Sequence Number (SN) and Fragments (F) can be
compressed. Typically, the EC value is either 0 or 1, hence
only a 8-bit Epoch is used most of the time. The 2-bit
representation of SN in the LOWPAN NHC R encoding
allows for 16-bit, 24-bit, 32-bit or 48-bit Sequence Number
to be used. As for F, when it is set to 0, the handshake
message is not fragmented and the fields fragment offset
and fragment length are omitted. If set to 1, the fields
fragment offset and fragment length are carried inline.

Figure 4(b) shows the encoding of the ClientHello
message (LOWPAN NHC CH). The Random field in the
ClientHello is always carried inline, whereas the Version
field is always omitted. With this compression scheme,
essentially only the Random field needs to be transmitted
and all other fields can be omitted. This is because
the Session ID field is 0 when a new handshake is
initiated, and cookie is an optional field. The Ciphersuite
and Compression Method can be pre-configured to have
their respective default values and hence do not need
to be negotiated. Figure 4(c) shows the encodings of the
ServerHello message (LOWPAN NHC SH). It is very
similar to LOWPAN NHC CH. All other handshake
messages in DTLS cannot be compressed and must be
carried inline.

3.3 Enhancement and Adaptation to DTLS

Although the general consensus in the community is to
re-use the existing Internet security to protect the IoT
ecosystem, none of them can be used without adaptation
and further enhancements to the devices with severe
constraints. Currently, the DTLS protocol receives the
most attention from the IoT community.

A new IETF working group called “DTLS In Con-
strained Environment (DICE)” [22] was approved in
August 2013 to:

• Define a DTLS profile that is suitable for IoT appli-
cations and is reasonably implementable on many
constrained devices.

• Define how DTLS Record Layer can be used to
protect multicast messages, assuming that devices
in a multicast group are provisioned a group key a
priori, though the DTLS handshake may be changed
to support distribution of group keys in the future.

Prior to DICE, there have been numerous research on
enhancing DTLS for use in IoT environments, this section
discusses some notable works on securing the IoT using
DTLS in IETF.

3.3.1 Raw Public-Key Support

The Pre-Shared Key (PSK) mode of operation in DTLS
only supports partial inter-operability between IoT de-
vices because device manufacturers would need to pre-
share some keying materials with each other in order
to allow for their devices to securely communicate with
each other. To establish such a trust in a multi-vendor
environment can be difficult. The other end of the
spectrum is the X.509-based Public-Key Infrastructure
(PKIX) to enable IoT devices to authenticate each other.
However, given that most of the IoT devices are resource
constrained and the network bandwidth is limited, to
support PKIX in an IoT ecosystem is challenging even
though it seems to be the preferred choice in many smart
metering deployments.

Although many research studies have shown that
Elliptic Curve Cryptography (ECC) [33] can be imple-
mented on a resource constrained device, they often do
not take into consideration that there are other essen-
tial software components and protocol implementations,
such as the IPv6 protocol stack, the 6LoWPAN shim
layer, DNS-related functionality, DTLS, and the actual
application code. Furthermore, the use of certificates
would surely result in fragmentation of DTLS Hand-
shake messages if they need to carry a certificate chain
to exchange credentials between devices.

The use of raw public keys with DTLS [53] has been
standardized to alleviate the burden of IoT devices from
storing and transmitting X.509 certificates when per-
forming the DTLS handshake protocol. This allows the
devices to be pre-configured (during the manufacturing
time) with public keys of dedicated servers that the
device needs to communicate with, as well as a public
key for the device itself. The binding of the public-key
with a server would need to be validated out-of-band
by the manufacturers during the device configuration
time, therefore allowing the devices to authenticate the
servers by exchanging raw public-keys instead of X.509
certificates. Other forms of out-of-band validation, such
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as QR codes, also exist. The most suitable validation
technique depends on the deployment.

When devices execute the DTLS handshake protocol
using raw public keys, the newly defined TLS extensions
of client certificate type and server certificate type must
be used. The raw public keys are encapsulated in a
SubjectPublicKeyInfo structure [10], that only contains
the raw keys and an algorithm identifier.

[53] proposed a DTLS Handshake protocol using
raw public keys. The IoT device acting as the DTLS
Client initiates the DTLS Handshake protocol, indicat-
ing that it is capable of processing raw public-keys
when sending the ClientHello message with the Raw-
PublicKey extension. The server fulfills the client’s re-
quest, indicates this via the RawPublicKey value in the
server certificate type payload, and provides a raw public
key into the Certificate payload back to the client. In case
that client authentication is required, the Server can send
a CertificateRequest message to the client, demanding
the client to send its raw public key for authentication.
The Client, who has a raw public-key pre-provisioned,
returns it in the Certificate payload to the Server.

3.3.2 Group Communication Security

Group communication can be used to convey messages
to a group of devices without requiring the sender
to perform time- and energy-consuming multiple uni-
cast transmissions to reach group members. Although
there have been a lot of efforts in IETF to standardize
mechanisms to secure group communication, they are
not necessarily suitable for the IoT environment. For
example, the MIKEY Architecture [6] is mainly designed
to facilitate multimedia distribution, while TESLA [40]
is proposed as a protocol for broadcast authentication of
the source and not for protecting the confidentiality of
multicast messages.

Assuming that DTLS is the default mandatory must-
implement security protocol for securing IoT, it is con-
ceivable that DTLS can be extended to facilitate CoAP-
based group communication [27]. Reusing DTLS for dif-
ferent purposes while guaranteeing the required security
properties. This avoids the need to implement multiple
security protocols and this is especially beneficial when
the target deployment consists of resource-constrained
embedded devices. [27] proposes an extension to the
DTLS Record Layer to encrypt and integrity protect mul-
ticast messages assuming that all devices in the group
already have a Group Security Association (GSA) pre-
configured. The GSA consists of keying material (e.g.,
group key), security policies, and security parameters to
use. When sending a group message, the DTLS Record
Layer is used so that multicast messages are encrypted
with the group key and protected using a Message Au-
thentication Code (MAC) according to the chosen cipher-
suite. The authenticated encrypted message is passed
down to the lower layer of the IP protocol stack for
transmission to the multicast address.

It is likely that there are multiple senders in a multicast
group, and it is important to enable all senders in the
group to securely send information using a common
group key, while preserving the freshness and integrity
of the messages. Each sender can derive a SenderID
based on the device’s IPv6 or MAC address, or even
randomly. The SenderID must be unique for all senders
within the specific multicast group. The existing DTLS
Record Layer header is adapted [27] such that the 6-byte
sequence number field is split into a 1-byte SenderID
field and a 5-byte truncated sequence number field. Each
sender in the group uses its own unique SenderID in
the DTLS record layer header when sending a multicast
message to the group. It also manages its own epoch
and truncated sequence number in the “server write”
connection state, hence they do not need to synchronize
them with other senders in the group. The main reason
to partition the sequence number space according to the
sender is to avoid sequence number re-use. In the AES-
CCM mode of operation, the sequence number is used
as part of the nonce, thus it is crucial to ensure that a
particular sequence number is not re-used. If multiple
senders use the same sequence number or nonce, and
the same group key to encrypt different messages, then
the message confidentiality cannot be guaranteed.

Listeners in a multicast group, need to store multiple
“client read” connection states for the different senders
linked to the SenderIDs. The keying material is the same
for all senders however the epoch and the truncated
sequence number of the last received packets need to be
kept differently for different senders. The listeners first
perform a “server write” key lookup by using the mul-
ticast IP destination address of the packet. By knowing
the keys, the listeners decrypt and check the MAC of the
message. This guarantees that no one has spoofed the
SenderID, as it is protected by the MAC. Subsequently,
by authenticating the SenderID field, the listeners re-
trieve the “client read” connection state which contains
the last stored epoch and truncated sequence number
of the sender, which is used to check the freshness of
the message received. The listeners must ensure that the
epoch is the same and truncated sequence number in
the message received is higher than the stored value,
otherwise the message is discarded. As each sender
manages its own epoch and sequence number, listeners
are confident that these values are reliable. Once the
authenticity and freshness of the message have been
checked, the listeners can pass the message to the higher
layer protocols. The epoch and the sequence number
in the corresponding “client read” connection state are
updated as well.

3.3.3 DTLS Profile for IoT
The Lightweight Implementation Guidance (LWIG)
Working Group [23] in IETF has been chartered to
collect experiences from implementors of IP stack in
constrained devices, in particular, techniques for re-
ducing complexity, memory footprint, or power usage.
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[31] looks at the security part of the communication
protocol stack and offers input for implementers and
system architects to illustrate the costs and benefits of
various TLS/DTLS features for use in IoT. The findings
of this document serve as an important input to the
DICE Working Group [22] to define a DTLS profile for
IoT, thus removing complex functionalities that are not
required and retaining only those that are applicable to
the IoT ecosystem. In addition to that, there are various
assumptions and design decisions [31] that could affect
the definition of a DTLS profile for IoT:

• Data confidentiality – Many TLS ciphersuites provide
a variant for NULL encryption [13]. If confidential-
ity protection is not required, a carefully chosen set
of algorithms may have a positive impact on the
code size. Re-use of crypto-libraries (within TLS but
also among the entire protocol stack) will also help
to reduce the overall code size.

• Hardware support – Certain hardware platforms offer
support for a random number generator as well as
cryptographic algorithms (e.g., AES). These func-
tions can be re-used and the amount of required
code can thus be reduced. Using hardware support
not only reduces the computation time but can also
save energy due to the optimized implementation.

• (D)TLS features – (D)TLS is a very flexible protocol
that can be extended in various ways, for exam-
ple through ciphersuites. Already the base protocol
offers sophisticated functionality for improving the
performance, for example by using session resump-
tion. Depending on the application requirements,
some of these features may not be needed, and
hence reducing the code size of the implementa-
tion. In the case of DTLS, generic fragmentation
and reordering requires large buffers to reassemble
the messages, which might be too heavy for some
devices.

• Credentials – (D)TLS supports Pre-Shared Keys
(PSK), Certificates, and Raw Public Keys. As high-
lighted in Section 3.2.5, the use of X.509 certificates
would lead to message fragmentation. If deploy-
ments of IoT does not involve such credentials, then
the ASN.1 library as well as the certificate parsing
and processing can be omitted. Similarly, if only
PSKs are used, then the big integer implementation
can be omitted.

• Server Centric – Resource-constrained sensor nodes
running CoAPS might be server only, allowing
for devices status to be probed and queried.
The constrained side will most likely be only
implementing a single ciphersuite. Flexibility is
given to a more powerful counterpart that supports
many different ciphersuites for various connected
devices.

[28] and [19] made the first attempt to define a
DTLS profile for IoT, based on the design decisions

described above. This Internet-draft aims to ensure that
a compact “IoT profile” should allow for a compact
implementation (in terms of code size and RAM) and
simplified DTLS handshake between IoT devices.

Ciphersuites – Most constrained IoT devices cannot
support multiple cipher implementations due to code
space requirements. It can be beneficial to choose a
few ciphersuite profiles that could cover the security
requirements of most IoT applications. In choosing these
ciphersuite profiles, reuse of the same crypto primitives
to achieve different security functionality can further
reduce implementation code space.

For symmetric cipher, confidentiality and authentica-
tion functionality can be achieved by using the AES in
CCM mode of operation. Further, the AES-CCM oper-
ation is built-in on many 802.15.4 hardware chips, thus
further reducing the need in code and also accelerating
the computation. [35] indicates different ciphersuites
based on AES-CCM for TLS.

For public key based handshake, ECC is very suitable
for constrained devices. However, there are multiple
options in terms of field types and curves that can
be chosen for a ciphersuite [36], [8]. Additionally, for
certificate based ciphersuites, choosing the certificate
signing algorithm to be also ECC based avoids the need
for an additional crypto primitive implementation on
the constrained devices. Selecting a default field, curve
and algorithm as a public key based IoT ciphersuite
would ensure security of IoT applications and can
substantially reduce the negotiation required in the
handshake phase.

DTLS Extensions – Further improvements to DTLS in
constrained environments can be made by choosing
some of the TLS extensions [2] that are always supported
by the end-points. Some of these extensions have been
designed for constrained networks which can be used
to define the DTLS IoT profile.

The “Maximum Fragment Length Negotiation” exten-
sion enables a smaller fragment sizes that would reduce
the amount of fragmentation at the lower layers. “Client
Certificate URLs” extension reduces the need for sending
the certificates in the handshake message, thus reducing
bandwidth requirements and fragmentation due to large
certificates. Other extensions that may be useful are
the “Trusted CA Indication”, “Truncated HMAC” and
“Certificate Status Request”.

By choosing a mandatory set of extensions as part of
the DTLS IoT profile will make DTLS more efficient in
constrained environments.

Fine-tuning DTLS functionality – Savings can also
be done by choosing not to implement certain DTLS
functional logic that is not expected to be used in
most IoT applications. The RESUME protocol is useful
for IoT applications. On one hand, it simplifies the
Handshake protocol if devices need to re-use the



IEEE INTERNET OF THINGS JOURNAL 9

previous security parameters, on the other hand it
increases the complexity of the DTLS Handshake state
machine. It is very likely that the DTLS sessions in
IoT application are meant to be long-lived, and re-
handshake or resumption of previous session could be
avoided if possible. Additionally, reducing the number
of error handling logic as part of the Alert protocol is
advocated. These reduced functionalities should not in
any way affect the security of the DTLS but only reduce
the flexibility that was designed into DTLS as a web
protocol but may not be required in IoT applications.

Furthermore, timer values for retransmission can be
adjusted to prevent unnecessary congestion due to the
underlying lossy network which can be aggravated due
to large flight messages being resent at short intervals.

To conclude this section, the DTLS IoT profile can
be a combination of ciphersuites, DTLS extensions and
fine-tuning functionality that makes it suitable for con-
strained devices and networks.

4 PERFORMANCE EVALUATION AND ANALY-
SIS

This section summarizes the performance measurements
available from various implementations presented in the
IETF. in order to support the claims in this paper.

4.1 DTLS for IoT Security
Most the prototype implementations on embedded sys-
tem platform such as Contiki OS, only support the PSK
mode of operation. One notable DTLS implementation
is based on Redbee Econotag hardware which features
a 32-bit CPU, 128 KB of ROM and 96 KB of RAM and
an IEEE 802.15.4 enabled radio with an AES hardware
co-processor [26], [16]. It is observed that it is feasible
to use DTLS to provide authentication and end-to-end
security in IoT. The developed prototype was based on
TinyDTLS [7] library and included most of the extensions
and the adaptation as follows:

• The cookie mechanism was disabled in order to fit
messages to the available packet sizes and hence
reducing the total number of messages when per-
forming the DTLS handshake.

• Separate delivery was used instead of flight group-
ing of messages and redesigned the retransmission
mechanism accordingly.

• The “TinyDTLS” AES-CCM module was modified
to use the AES hardware coprocessor.

Table 1 presents the codesize and memory consump-
tion of the prototype differentiating (i) the state ma-
chine for the handshake, (ii) the cryptographic primi-
tives, and (iii) the DTLS record layer mechanism. The
use of DTLS appears to incur large memory footprint
both in ROM and RAM for two reasons. First, DTLS
handshake defines many message types and this adds
more complexity to its corresponding state machine. The
logic for message re-ordering and retransmission also

TABLE 1
Memory requirements for DTLS in KB [26]

DTLS
ROM RAM

State Machine 8.15 1.9
Cryptography 3.3 1.5

Key Management 1.0 0
DTLS record layer 3.7 0.5

Total 16.15 3.9

contributes to the complexity of the DTLS state machine.
Second, DTLS uses SHA2-based crypto suites which is
not available from the hardware crypto co-processor.

The DTLS protocol implementation was further exam-
ined and evaluated by tuning the packet loss ratio as
some UDP packets are bound to get lost due to network
congestion and limited network bandwidth with IEEE
802.15.4. In particular, the impact of packet loss on
message delay, success rate and number of messages
exchanged in the handshake were examined. According
to [16], in a network with packet losses, DTLS performs
badly because the security handshake might have failed
due to the lost messages. Consequently, this had in-
creases the delays. [16] shows the different outcomes for
the percentage of successful handshakes as a function
of timeouts and packet loss ratios. As expected, a higher
packet loss ratio and smaller timeout (15s timeout) result
in a failure probability of completing the DTLS hand-
shake.

Delays in network access and communication are in-
tolerable since they lead to higher resource consumption.
As the solution relied on PSK, the handshake protocol
only incurred a short delay of a few milliseconds when
there was no packet loss. However, as the packet loss
ratio increased, the delay in completing the handshake
became significant because loss packets must be retrans-
mitted. Finally, another important criterion is the number
of messages exchanged in the presence of packet loss.
A successful handshake could incur up to 35 or more
messages to be transmitted when the packet loss ratio
reaches 0.5. This is mainly because the DTLS retransmis-
sion is complex and often requires re-sending multiple
messages even when only a single message has been lost.

An 802.15.4 IoT network would typically have a
packet loss ratio between 0.2 and 0.3, which implies
that using DTLS handshake to provide network access
authentication and key management would be feasible.
Furthermore, in most deployment scenarios, the DTLS
handshake is performed only once to establish a security
channel to distribute keying materials and later on to
renew the session key. Consequently, deploying DTLS
in IoT as the sole security protocol suite is a viable
approach.

4.2 Avoiding Fragmentation through Compression

Experiments and analysis had been conducted by [43] to
investigate whether header compression schemes can be
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used to avoid packet fragmentation in DTLS handshake
protocol altogether in an IoT network.

The aim is to avoid packet fragmentation because
when a DTLS handshake message needs to be frag-
mented, it increases the protocol complexity as all
fragments must be retransmitted (if lost), re-ordered
(if arrived out of order), and finally re-assembled to
construct the DTLS handshake message. Consequently,
there is an extra effort of retransmission, re-ordering
and re-assembly for each fragmented DTLS handshake
message. However, if each DTLS handshake message
together with the relevant UDP, IP, and 802.15.4 headers
can fit into an 802.15.4 packet, only the lost message
needs to be retransmitted and the receiver only needs
to re-order the messages received.

According to the results in [43], using 6LoWPAN-
NHC compression mechanism can significantly reduce
the length of DTLS headers. Reducing the header bits
also results in the reduction of radio transmission time.
Table 2 shows the number of bits reduced and the total
space saving for DTLS headers and messages.

TABLE 2
Number of Bits sent and Space Saving for DTLS [43]

DTLS headers Without With Space
Comp. [Bit] Comp. [Bit] Saving

Record 104 401 62%
Handshake 96 241 75%
Client Hello 3362 2642 23%
Server Hello 304 2643 14%

Certificate Request 40 0 100%
1An extra byte was used to encode both the Record and Handshake headers.
2Some fields have variable length, only bits that are always sent were
considered.
3Did not compromise on security and sent full size random number. All other
fields were omitted.

The Record header was compressed by 64 bits (8
bytes), thus a saving of 62% of space for each mes-
sage. For the Handshake header, a 75% of saving was
achieved, where it only required 24 bits (3 bytes). With
this, the combined DTLS Record and Handshake headers
only constitutes 8 bytes. This means that approximately
56 bytes of payload can be encoded. As a result, for
PSK-mode of operation, all DTLS handshake messages
can fit into a 802.15.4 packet without requiring frag-
mentation. For example, the compressed Client Hello and
Server Hello messages cost 33 bytes each. By adding the
8 bytes header to each message, it only consumes 41
bytes, which is less than the maximum size allowed,
i.e., 64 bytes. Furthermore, by avoiding fragmentation
altogether when performing DTLS handshake, it also
reduces the communication overhead in the network.

Analysis also revealed that the overhead incurred
through in-node computation for compression and de-
compression of DTLS headers is almost negligible [43].
Based on the Contiki’s energy estimation module, on
average 4.2 µJ of energy is consumed for compres-
sion [43]. In fact, when DTLS handshake messages are
not fragmented, it results in less packet transmission.

TABLE 3
Average Energy Consumption for DTLS Packet

Transmission [43]

Compression Client side [µJ] Server side [µJ] Total [µJ]
Without 1756.66 1311.65 3068.31

With 1467.54 1143.47 2611.01

Interestingly, when compression is applied, on average
15% less energy is used to transmit (and receive) com-
pressed packets. This is due to smaller packet sizes
achieved through compression. Table 3 shows the aver-
age energy consumption for packet transmission during
DTLS handshake.

5 FUTURE WORK

5.1 DTLS Profile and TLS Version 1.3

It is rather clear that the security community in IETF
is relying on DTLS as the standard security protocol
for IoT, although a lot more needs to be done to better
adapt the protocol (which was initially designed for the
Web) for deployment on embedded devices. The DICE
WG [22] will define a profile which includes only a
subset of the DTLS functions.

In order to keep up with the latest attacks and devel-
opment of cryptographic algorithms, security protocols
are constantly being updated and upgraded. Ideally, the
DTLS profile defined in DICE WG should not be the
end product for IoT security. It is the intention to use
the DTLS profile as one of the inputs to the design
and requirements of (D)TLS version 1.3, so that the new
(D)TLS version can be used to protect the application
layer messages of the Internet, the Web and IoT.

5.2 Software and Key Provisioning

Provisioning IoT devices with software and keys is an
important but complex process. Providing a possibility
to update software components and the entire firmware
image is important to ensure that the devices are always
running the latest software versions. This update cannot,
like on the PC environment, happen with the support
of end users but has to be performed unattended. Part
of this software provisioning process is also the abil-
ity to provision keying material to devices. This is an
extremely sensitive step since as adversary that can
compromise the process can take control of the device.
With the increase in the number of devices, it means that
more cryptographic keys need to be managed.

5.3 Authorization and Centralized Device Manage-
ment

End users and system administrators are keen on man-
aging devices and their access rights in a seamless way
that allows the integration with already existing infras-
tructure. A smart home, for example, requires a user
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to install various devices in the home and to manage
their access rights properly. Developing standards for
such an authentication and authorization infrastructure,
by re-using and tailoring trusted third party identity
and access control infrastructure, is currently discussed
on the ACE mailing list [24] with the goal to form a
new working group in the IETF. This work is seen as
important to ensure seamless user experience.

5.4 Hardware Improvements

According to Moore’s Law, the capabilities (processing
speed, memory capacity, sensors) of devices are improv-
ing at roughly exponential rate. The IoT community is
currently facing interesting challenges: devices that offer
more memory and substantial processing power come
at higher hardware cost and software development for
those devices is much easier since many of the off-
the-shelf tools and programming languages can be re-
used. Unfortunately, they consume more energy and the
low power radio technologies always cause challenges
due to their limited bandwidth. For devices with lower
processing capabilities, less memory, and low power
consumption, it still remains a challenge to run complete
Internet protocol stacks on them.

In the last decade, the mobile phones vendors had
been working hard to adapt network protocols, security
suites, and to simplify applications protocols, so that
they could run on PDAs and mobile devices. However,
ever since the iOS and Android based smart phones
were released, these adapted protocols and security
suites have become obsolete, mainly because these smart
devices are capable of running the full IP communication
stack that conforms to the current Internet standards.
Given time, the computational capabilities of embedded
systems will increase tremendously and be able to runn
the full IP protocol stack. The challenge remains to
see if history repeats in that the transition we saw in
the mobile industry will also happen to IoT world,
and whether CoAP/6LoWPAN/DTLS profiles are just
interim solutions for the IoT ecosystem.

6 CONCLUSIONS

A standardized security protocol is indispensable for
the success of Internet-of-Things (IoT). When every ob-
ject in our daily life is connected to the Internet, they
must speak the same (security) protocol to ensure inter-
operability. The standardization efforts in IETF is there-
fore a very important effort to make IoT a reality.

Replicating the success of TLS in the Internet in the
context of IoT is a challenging process, primarily because
DTLS was not designed for constrained environment.
However, the community is working towards a single
security suite that is based on DTLS to provide security
functionalities to the IoT devices. Previous research has
revealed that DTLS optimization is required in order to
reduce the complexity of its state machine and several

optional functional logics could be omitted for IoT de-
ployment.

Standardizing the communication security for IoT is
the first step towards an inter-operable IoT. There are
concerns about device bootstrapping, key management,
authorization, privacy and message fragmentation issues
in the IoT as well. However, not all solutions for these
security problems need to be standardized, some of them
could remain as proprietary solutions targeted to specific
application domains. We advocate that device bootstrap-
ping and key management should be standardized soon
in the future to provide a common management interface
to facilitate secure device commissioning and configura-
tion. This would allow for large scale deployment of IoT
to be feasible.

Finally, the DICE WG has been tasked to define the
adaptation and enhancements to DTLS. Together with
the TLS, CoRE and LWIG working groups in IETF, it is
expected that a standardized security framework for the
IoT that is inter-operable with the existing Internet can
be a reality in the near future.
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