Samuel Mañas-Valero

Samuel Mañas-Valero
University of Valencia | UV · Institute for Molecular Science (ICMol)

Doctor of Philosophy

About

89
Publications
14,653
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,436
Citations
Citations since 2017
79 Research Items
1415 Citations
20172018201920202021202220230100200300
20172018201920202021202220230100200300
20172018201920202021202220230100200300
20172018201920202021202220230100200300

Publications

Publications (89)
Preprint
Full-text available
Nanomechanical resonances of two-dimensional (2D) materials are sensitive probes for condensed-matter physics, offering new insights into magnetic and electronic phase transitions. Despite extensive research, the influence of the spin dynamics near a second-order phase transition on the non-linear dynamics of 2D membranes has remained largely unexp...
Article
Recent advancements in two‐dimensional (2D) materials have revealed the potential of van der Waals magnets, and specifically of their magnetic anisotropy that allows applications down to the two‐dimensional limit. Among these materials, CrSBr has emerged as a promising candidate, because its intriguing magnetic and electronic properties have appeal...
Preprint
Van der Waals (vdW) heterostructures composed of two-dimensional (2D) transition metal dichalcogenides (TMD) and vdW magnetic materials offer an intriguing platform to functionalize valley and excitonic properties in non-magnetic TMDs. Here, we report magneto-photoluminescence (PL) investigations of monolayer (ML) MoSe 2 on the layered A-type antif...
Article
Full-text available
Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic order, which is difficult to achieve with external magnets, especially w...
Article
The van der Waals semiconductor metamagnet CrSBr offers an ideal platform for studying the interplay between optical and magnetic properties in the two-dimensional limit. Here, we carried out an exhaustive optical characterization of this material by means of temperature- and magnetic-field-dependent photoluminescence (PL) on flakes of different th...
Preprint
Full-text available
Magnetic imaging using nitrogen-vacancy (NV) spins in diamonds is a powerful technique for acquiring quantitative information about sub-micron scale magnetic order. A major challenge for its application in the research on two-dimensional (2D) magnets is the positioning of the NV centers at a well-defined, nanoscale distance to the target material r...
Article
Full-text available
CoPS 3 stands out in the family of the van der Waals antiferromagnets XPS 3 (X = Mn, Ni, Fe, and Co) due to the unquenched orbital momentum of the magnetic Co 2+ ions, which is known to facilitate the coupling of spins to both electromagnetic waves and lattice vibrations. Here, using a time-resolved magneto-optical pump-probe technique, we experime...
Preprint
Full-text available
The Van der Waals semiconductor metamagnet CrSBr offers an ideal platform for studying the interplay between optical and magnetic properties in the two-dimensional limit. Here, we carried out an exhaustive optical characterization of this material by means of temperature and magnetic field dependent photoluminescence (PL) on flakes of different thi...
Article
Full-text available
Nanomechanical spectroscopy (NMS) is a recently developed approach to determine optical absorption spectra of nanoscale materials via mechanical measurements. It is based on measuring changes in the resonance frequency of a membrane resonator vs. the photon energy of incoming light. This method is a direct measurement of absorption, which has pract...
Article
Full-text available
A quantum spin liquid (QSL) is an elusive state of matter characterized by the absence of long-range magnetic order, even at zero temperature, and by the presence of exotic quasiparticle excitations. In spite of their relevance for quantum communication, topological quantum computation and the understanding of strongly correlated systems, like high...
Preprint
Full-text available
The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, we show that its temperature dependence in AF MPS$_{3}$ (M(II) = Fe, Co...
Article
Full-text available
LF- µ SR studies have previously been used to study the diffusive 1D motion of solitons and polarons in conducting polymers. This type of study was also applied to investigating the diffusive motion of spinons in spin-1/2 antiferromagnetic chains. Recently the method has been extended to examples of 2D layered triangular spin lattices which can sup...
Preprint
Full-text available
CoPS3 stands out in the family of the van der Waals antiferromagnets XPS3 (X=Mn, Ni, Fe, Co) due to the unquenched orbital momentum of the magnetic Co2+ ions which is known to facilitate the coupling of spins to both electromagnetic waves and lattice vibrations. Here, using a time-resolved magneto-optical pump-probe technique we experimentally stud...
Article
Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with or...
Preprint
Full-text available
Nanomechanical spectroscopy (NMS) is a recently developed approach to determine optical absorption spectra of nanoscale materials via mechanical measurements. It is based on measuring changes in the resonance frequency of a membrane resonator vs. the photon energy of incoming light. This method is a direct measurement of absorption, which has pract...
Preprint
Full-text available
The advent of twisting-engineering in two-dimensional (2D) crystals enables the design of van der Waals (vdW) heterostructures exhibiting emergent properties. In the case of magnets, this approach can afford artificial magnets with tailored spin arrangements that do not exist in nature. Here, we fabricate an artificial magnet by twisting 90 degrees...
Article
Full-text available
Coherent THz optical lattice and hybridized phonon‐magnon modes are triggered by femtosecond laser pulses in the antiferromagnetic van der Waals semiconductor FePS3. We investigate the laser‐driven lattice and spin dynamics in a bulk crystal as well as in a 380 nm‐thick exfoliated flake as a function of the excitation photon energy, sample temperat...
Article
Full-text available
Peri‐thiaxanthenothiaxanthene, an S‐doped analog of peri‐xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S‐atoms. Chemical oxidation of peri‐thiaxanthenothiaxanthene with H2O2 led to the relevant sulfoxide and sulfone congeners, wherea...
Article
Full-text available
Two‐dimensional (2D) magnetic materials offer unprecedented opportunities for fundamental physics and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, this emerging field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layere...
Article
Full-text available
Single-layer semiconducting transition metal dichalcogenides (2H-TMDs) display robust excitonic photoluminescence emission, which can be improved by controlled changes to the environment and the chemical potential of the material. However, a drastic emission quench has been generally observed when TMDs are stacked in van der Waals heterostructures,...
Article
Full-text available
Two-dimensional magnetic materials with strong magnetostriction are attractive systems for realizing strain-tuning of the magnetization in spintronic and nanomagnetic devices. This requires an understanding of the magneto-mechanical coupling in these materials. In this work, we suspend thin Cr2Ge2Te6 layers and their heterostructures, creating ferr...
Preprint
Full-text available
A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few \AA. Often, the tunneling current between tip and sample is maintained constant by modifying the distance between the tip apex an...
Preprint
Full-text available
Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with or...
Preprint
Full-text available
Two-dimensional (2D) magnetic materials offer unprecedented opportunities both in terms of fundamental concepts and applied devices with special relevance in the fields of spintronics and magnonics. Beyond the pioneering studies on CrI3 and Cr2Ge2Te6, the family of 2D magnets has expanded to layered antiferromagnets with different spin anisotropies...
Article
Full-text available
Van der Waals heterostructures (vdWHs) provide the possibility of engineering new materials with emergent functionalities that are not accessible in another way. These heterostructures are formed by assembling layers of different materials used as building blocks. Beyond inorganic two-dimensional (2D) crystals, layered molecular materials remain st...
Article
Herein we show the versatility of coordination chemistry to design and expand a family of 2D materials by incorporating F groups at the surface of the layers. Through the use of a prefuntionalized organic linker with F groups, it is possible to achieve a layered magnetic material based on Fe(II) centers that are chemically stable in open air, contr...
Article
Full-text available
Coupled nanomechanical resonators made of two-dimensional materials are promising for processing information with mechanical modes. However, the challenge for these systems is to control the coupling. Here, we demonstrate strong coupling of motion between two suspended membranes of the magnetic 2D material FePS3. We describe a tunable electromechan...
Article
Full-text available
Van der Waals materials with narrow energy gaps and efficient response over a broadband optical spectral range are key to widen the energy window of nanoscale optoelectronic devices. Here, we characterize FePS 3 as an appealing narrow-gap p-type semiconductor with an efficient broadband photo-response, a high refractive index, and a remarkable resi...
Article
Full-text available
Collective electronic states such as the charge density wave (CDW) order and superconductivity (SC) respond sensitively to external perturbations. Such sensitivity is dramatically enhanced in two dimensions (2D), where 2D materials hosting such electronic states are largely exposed to the environment. In this regard, the ineludible presence of supp...
Preprint
Full-text available
Herein we show the versatility of coordination chemistry to design and expand a family of 2D materials by incorporating F groups at the surface of the layers. Through of use of a prefuntionalized organic linker with F groups, it is possible to achieve a layered magnetic material based on Fe(II) centers that are chemically stable in open air, contra...
Preprint
Herein we show the versatility of coordination chemistry to design and expand a family of 2D materials by incorporating F groups at the surface of the layers. Through of use of a prefuntionalized organic linker with F groups, it is possible to achieve a layered magnetic material based on Fe(II) centers that are chemically stable in open air, contra...
Article
Transition metal chalcogenophosphates of general formula MPX3 have attracted recent interest in the field of 2D materials due to the possibility of tuning their properties upon reaching the 2D limit. Several works address this challenge by dry mechanical exfoliation. However, only a few of them use a scalable approach. In this work, we apply a gene...
Preprint
A coherent THz optical lattice mode is triggered by femtosecond laser pulses in the antiferromagnetic van der Waals semiconductor FePS$_3$. The 380 nm thick exfoliated flake was placed on a substrate and laser-driven lattice and spin dynamics were investigated as a function of the excitation photon energy and sample temperature. The pump-probe spec...
Article
Full-text available
Through rational chemical design, and thanks to the hybrid nature of metal–organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning...
Preprint
Full-text available
Van der Waals heterostructures (vdWHs) combine different layered materials with properties of interest,1 such as two-dimensional (2D) semimetals, semiconductors, magnets or superconductors. These heterostructures provide the possibility of engineering new materials with emergent functionalities that are not accessible in another way. Beyond inorgan...
Article
A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few Å. Often, the tunneling current between the tip and the sample is maintained constant by modifying the distance between the tip a...
Preprint
Full-text available
Transition metal chalcogenophosphates of general formula MPX3 have attracted recent interest in the field of 2D materials due to the possibility of tuning their properties when reaching the 2D limit. Several works address this challenge by dry mechanical exfoliation. However, only a few of them use a scalable approach. In this work, we apply a gene...
Preprint
Transition metal chalcogenophosphates of general formula MPX3 have attracted recent interest in the field of 2D materials due to the possibility of tuning their properties when reaching the 2D limit. Several works address this challenge by dry mechanical exfoliation. However, only a few of them use a scalable approach. In this work, we apply a gene...
Article
Full-text available
Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confi...
Preprint
Full-text available
Through rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning...
Preprint
Coupled nanomechanical resonators made of two-dimensional materials are promising for processing information with mechanical modes. However, the challenge for these types of systems is to control the coupling. Here, we demonstrate strong coupling of motion between two suspended membranes of the magnetic 2D material FePS$_3$. We describe a tunable e...
Article
Full-text available
Quantum materials exhibiting magnetic frustration are connected to diverse phenomena, including high Tc superconductivity, topological order, and quantum spin liquids (QSLs). A QSL is a quantum phase (QP) related to a quantum-entangled fluid-like state of matter. Previous experiments on QSL candidate materials are usually interpreted in terms of a...
Article
Full-text available
Van der Waals magnets provide an ideal playground to explore the fundamentals of low-dimensional magnetism and open opportunities for ultrathin spin-processing devices. The Mermin-Wagner theorem dictates that as in reduced dimensions isotropic spin interactions cannot retain long-range correlations, the long-range spin order is stabilized by magnet...
Article
Full-text available
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, TCDW. However, it is often difficult to use conventional methods to study the phase transition in these systems due to their small size and sensitivity to degradation. Degr...
Preprint
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, $T_{CDW}$. However, it is often difficult to use conventional methods to study the phase transition in these systems due to their small size and sensitivity to degradation....
Article
Full-text available
Van der Waals heterostructures (vdWHs) allow the assembly of high‐crystalline 2D materials in order to explore dimensionality effects in strongly correlated systems and the emergence of potential new physical scenarios. In this work, the feasibility of integrating 2D materials in‐between 2D superconductors is illustrated. In particular, the fabrica...
Preprint
Two-dimensional (2D) magnetic materials with strong magnetostriction, like Cr$_2$Ge$_2$Te$_6$ (CGT), provide opportunities for tuning their magnetic state with potential applications in spintronic and magneto-mechanical devices. However, realizing this potential requires understanding their mechanical properties, such as the Young's modulus, and th...
Preprint
Full-text available
Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confi...
Article
Full-text available
Recent developments in attosecond technology led to table-top x-ray spectroscopy in the soft x-ray range, thus uniting the element- and state-specificity of core-level x-ray absorption spectroscopy with the time resolution to follow electronic dynamics in real-time. We describe recent work in attosecond technology and investigations into materials...
Preprint
Full-text available
Van der Waals heterostructures (vdWHs) allow the assembly of high-crystalline two-dimensional (2D) materials in order to explore dimensionality effects in strongly correlated systems and the emergence of potential new physical scenarios. In this work, it is illustrated the feasibility to integrate 2D materials in-between 2D superconductors. Particu...
Preprint
Full-text available
Magnetic van der Waals materials provide an ideal playground for exploring the fundamentals of low-dimensional magnetism and open new opportunities for ultrathin spin processing devices. The Mermin-Wagner theorem dictates that as in reduced dimensions isotropic spin interactions cannot retain long-range correlations; the order is stabilized by magn...
Preprint
Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS2, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density waves (CDW) configu...
Preprint
Full-text available
Quantum materials exhibiting magnetic frustration are strongly connected to diverse exotic physical phenomena, including high-Tc superconductivity, topological order and quantum spin liquids (QSLs). A particular feature of a QSL is that magnetic order is destabilized by quantum fluctuations of the spins, yielding a quantum-entangled fluidlike state...
Article
Full-text available
The reduced dimensionality of two-dimensional (2D) materials results in characteristic types of magnetically and electronically ordered phases. However, only few methods are available to study this order, in particular in ultrathin insulating antiferromagnets that couple weakly to magnetic and electronic probes. Here, we demonstrate that phase tran...
Article
Full-text available
The superconducting transition leads to a sharp resistance drop in a temperature interval that can be a small fraction of the critical temperature Tc. A superconductor exactly at Tc is thus very sensitive to all kinds of thermal perturbation, including the heat dissipated by the measurement current. We show that the interaction between electrical a...
Article
Full-text available
Herein we report an efficient synthesis to prepare O‐doped nanographenes, which derive from the longitudinally and latitudinally p‐extension of pyrene. The derivatives are highly fluorescent and feature low‐oxidation potentials. Exploiting electrooxidation, crystals of cationic mixed valence (MV) complexes were grown in which the organic salts orga...
Article
Full-text available
Herein we report an efficient synthesis to prepare O‐doped nanographenes, which derive from the longitudinally and latitudinally p‐extension of pyrene. The derivatives are highly fluorescent and feature low‐oxidation potentials. Exploiting electrooxidation, crystals of cationic mixed valence (MV) complexes were grown in which the organic salts orga...
Preprint
Full-text available
Two-dimensional (2D) materials enable new types of magnetic and electronic phases mediated by their reduced dimensionality like magic-angle induced phase transitions, 2D Ising antiferromagnets and ferromagnetism in 2D atomic layers and heterostructures. However, only a few methods are available to study these phase transitions, which for example is...
Preprint
Full-text available
The superconducting transition leads to a sharp resistance drop in a temperature interval that can be a small fraction of the critical temperature T$_c$. A superconductor exactly at T$_c$ is thus very sensitive to all kinds of thermal perturbations, including the heat dissipated by the measurement current. Here we show that the interaction between...