![Samuel H Gellman](https://c5.rgstatic.net/m/437738464651637/images/template/default/profile/profile_default_l.jpg)
Samuel H GellmanUniversity of Wisconsin–Madison | UW · Department of Chemistry
Samuel H Gellman
About
490
Publications
32,193
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
41,945
Citations
Publications
Publications (490)
Signal duration and subcellular location are emerging as important facets of G protein-coupled receptor (GPCR) function. The glucagon-like peptide-1 receptor (GLP-1R), a clinically relevant class B1 GPCR, stimulates production of the second messenger cAMP upon activation by the native hormone, GLP-1. cAMP production continues after the hormone-rece...
Liquid-liquid phase separation mediated by proteins and/or nucleic acids is believed to underlie the formation of many distinct condensed phases, or membraneless organelles, within living cells. These condensates have been proposed to orchestrate a variety of important processes. Despite recent advances, the interactions that regulate the dynamics...
Background
Peptide vaccines are a direct way to initiate an immunogenic response to a defined antigen epitope. However, one of the main disadvantages of anti-tumor peptide vaccines have been their instability, as they are rapidly degraded by enzymatic proteolysis. To overcome this, we developed peptides that would have increased stability against p...
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues rep...
Peptide engineering efforts have delivered drugs for diverse human diseases. Side chain alteration is among the most common approaches to designing new peptides for specific applications. The peptide backbone can be modified as well, but this strategy has received relatively little attention. Here we show that new and favorable contacts between a H...
The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/β-peptides, designed to exhibit enhanced membrane permeability...
Class B1 G protein-coupled receptors (GPCRs), collectively, respond to a diverse repertoire of extracellular polypeptide agonists and transmit the encoded messages to cytosolic partners. To fulfill these tasks, these highly mobile receptors must interconvert among conformational states in response to agonists. We recently showed that conformational...
We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide sequences within coronavirus (CoV) spike proteins. Within the fusion peptides of SARS-CoV-2 and MERS-CoV, a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key ro...
The parathyroid hormone type 1 receptor (PTHR1), a Class B GPCR, is activated by long polypeptides, including drugs for osteoporosis and hypoparathyroidism. The PTHR1 engages peptide agonists via a two-step mechanism. Initial contact involves the extracellular domain (ECD), which has been thought to contribute primarily to receptor–peptide binding,...
Polypeptides that activate the parathyroid hormone receptor-1 (PTHR1) are important in human physiology and medicine. Most previous studies of peptide binding to this receptor have involved the displacement of a radiolabeled ligand. We report a new assay format based on bioluminescence resonance energy transfer (BRET). Fusion of a NanoLuc luciferas...
Polypeptides that activate the parathyroid hormone receptor-1 (PTHR1) are important in human physiology and medicine. Most previous studies of peptide binding to this receptor have involved displacement of a radiolabeled ligand. We report a new assay format based on bioluminescence resonance energy transfer (BRET). Fusion of a nanoluciferase (nLuc)...
Liquid-liquid phase separation (LLPS), the spontaneous formation of contiguous liquid phases with distinct compositions, has been long known in chemical systems and more recently recognized as a ubiquitous feature of cell biology. We describe a system involving biologically relevant components, synthetic peptides, and total yeast RNA, that has enab...
Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/β-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present st...
We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide sequences within coronavirus (CoV) spike proteins. Within the fusion peptides of SARS-CoV-2 and MERS-CoV, a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key ro...
Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine...
The parathyroid hormone (PTH) type 1 receptor (PTHR) is a class B G protein–coupled receptor (GPCR) that regulates mineral ion, vitamin D, and bone homeostasis. Activation of the PTHR by PTH induces both transient cell surface and sustained endosomal cAMP production. To address whether the spatial (location) or temporal (duration) dimension of PTHR...
Synthetic, cationic random nylon-3 polymers (β-peptides) show promise as inexpensive antimicrobial agents less susceptible to proteolysis than normal peptides. We have used super-resolution single-cell, time-lapse fluorescence microscopy to compare the effects on live E.coli cells of four such polymers and the natural antimicrobial peptides LL-37 a...
Assemblies of racemic β‐sheet‐forming peptides have attracted attention for biomedical applications because racemic forms of peptides can self‐associate more avidly than do single enantiomers. In 1953, Pauling and Corey proposed “rippled β‐sheet” modes of H‐bond‐mediated interstrand assembly for alternating L‐ and D‐peptide strands; this structural...
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desi...
The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limite...
Membrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membran...
Methods for maintaining membrane proteins in their native state after removal from the lipid bilayer are essential for the study of this important class of biomacromolecules. Common solubilization strategies range from the use of detergents to more complex systems that involve a polypeptide working in concert with lipids or detergents, such as nano...
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastro...
Hydrophobic interactions mediated by nonpolar molecular fragments in water are influenced by local chemical and physical contexts in ways that are not yet fully understood. Here, we use globally amphiphilic (GA) β-peptides (GA-Lys and GA-Arg) with stable conformations to explore if replacement of β3-homolysine (βLys) with β3-homoarginine (βArg) inf...
Recent advances in G protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multi-dimensional signal propagation mediated by these receptors is, in part, dependent on their conformational mobility. However, the relationship between receptor function and static structures determined via crystallography or c...
The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limite...
Amphiphilic nylon-3 polymers have been reported to mimic the biological activities of natural antimicrobial peptides, with high potency against bacteria and minimal toxicity toward eukaryotic cells. Amphiphilic balance, determined by the proportions of hydrophilic and lipophilic subunits, is considered one of the most important features for achievi...
Halting transmission
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein binds to host cells and initiates membrane fusion and cell infection. This stage in the virus life history is currently a target for drug inhibition. De Vries et al. designed highly stable lipoprotein fusion inhibitors complementary to a con...
Synthetic, sequence-random polymers that feature a wide range of backbone and side chain structures have been reported to function as mimics of natural host-defense peptides, inhibiting bacterial growth while exerting little or no toxicity toward eukaryotic cells. The common themes among these materials are net positive charge, which is thought to...
Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and docum...
SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation...
The extraordinary rate accelerations and control of reactivity exhibited by enzymes have long inspired efforts to develop synthetic catalysts. Foldamers, which are oligomers with a strong tendency to adopt a specific conformation, represent unique platforms for efforts to harness principles of enzyme function for catalyst design. Well-defined helic...
Partial replacement of α-amino acid residues with β-amino acid residues has been established as a strategy for preserving target-engagement by helix-forming polypeptides while altering other properties. The impact of β-residue incorporation within polypeptides that adopt less regular conformations, however, has received less attention. The HRC doma...
Aberrant signaling by tumor necrosis factor-α (TNFα) is associated with inflammatory diseases that can be treated with engineered proteins that inhibit binding of this cytokine to cell-surface receptors. Despite these clinical successes, there is considerable interest in the development of smaller antagonists of TNFα-receptor interactions. We descr...
We report a pairing of known catalysts that enables intramolecular conjugate additions of aldehyde-derived enamines to α,β-unsaturated esters. Despite extensive prior exploration of conjugate additions of aldehyde-derived enamines, catalytic conjugate additions to unactivated enoate esters are unprecedented. Achieving enantioselective and diastereo...
Partial replacement of α-amino acid residues with β-amino acid residues has been established as a strategy for preserving target-engagement by helix-forming polypeptides while suppressing susceptibility to proteolysis. The impact of β-residue incorporation within polypeptides that adopt less regular conformations, however, has received less attenti...
cAMP production upon activation of G s by G protein-coupled receptors has classically been considered to be plasma membrane-delimited, but a shift in this paradigm has occurred in recent years with the identification of several receptors that continue to signal from early endosomes after internalization. The molecular mechanisms regulating this asp...
Hydrophobic interactions play a central role in bioinspired strategies for molecular self-assembly in water, yet how these interactions are encoded by chemically heterogeneous interfaces is poorly understood. We report an experimental investigation of the influence of immobilized polar groups (amine) and cations (ammonium and guanidinium) on enthal...
Human parainfluenza virus 3 (HPIV3) and respiratory syncytial virus (RSV) are leading causes of lower respiratory tract infections. There are currently no vaccines or antiviral therapeutics to treat HPIV3 or RSV infections. We recently reported a peptide (VIQKI), derived from the C-terminal heptad repeat (HRC) domain of the HPIV3 fusion (F) glycopr...
β-Homologous amino acids (βhAAs) are a valuable class of building blocks for novel analogues of bioactive peptides. Thus, practical methods to synthesize enantiopure βhAAs are desirable. We report the application of a collective synthesis strategy to prepare protected β2-homologous amino acids with polar side chains. In this approach, a core struct...
Macrocycles made easy
Macrocycles, which are molecules with large rings of 12 or more atoms, are challenging to produce by intramolecular cyclization because floppy ends tend to join up with another molecule rather than fold back on themselves. Girvin et al. identified a foldamer—a short, structured peptide—that can cyclize floppy, dialdehyde subst...
Hydrophobic interactions govern how proteins fold and interact with other molecules, but the impact of nearby polar functionality on the effective hydrophobicity of nonpolar surfaces remains unclear. Here we use a common protein quaternary structure motif, the parallel coiled-coil dimer, to ask whether the identity of basic residues (arginine vs ly...
Human parainfluenza virus 3 (HPIV3) and respiratory syncytial virus (RSV) are leading causes of lower respiratory tract infections. There are currently no vaccines or antiviral therapeutics to treat existing HPIV3 or RSV infections. We recently reported a peptide (VIQKI), derived from the C-terminal heptad repeat (HRC) domain of the HPIV3 fusion (F...
Family B G protein‐coupled receptors play important physiological roles and possess large extracellular domains (ECDs) that aid in binding the long polypeptide hormones that are their natural agonists. We have previously shown that agonist analogues in which subsets of native α‐amino acid residues are replaced with β‐amino acid residues can retain...
The type-1 parathyroid hormone receptor (PTHR1), which regulates calcium homeostasis and tissue development, has two native agonists, parathyroid hormone (PTH) and PTH-related protein (PTHrP). PTH forms a complex with the PTHR1 that is rapidly internalized and induces prolonged cAMP production from endosomes. In contrast, PTHrP induces only transie...
Proteins are composed of α-amino acid residues. This consistency in backbone structure likely serves an important role in the display of an enormous diversity of peptides by class II MHC (MHC-II) products, which make contacts with main chain atoms of their peptide cargo. Peptides that contain residues with an extra carbon in the backbone (derived f...
Synthesis of the C−C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters, N‐hydroxyphthalimide esters and S‐2‐pyridyl thioesters, to form aryl alkyl and dialk...
Human parainfluenza virus 3 (HPIV3) and respiratory syncytial virus (RSV) cause lower respiratory infection in infants and young children. There are no vaccines for these pathogens, and existing treatments have limited or questionable efficacy. Infection by HPIV3 or RSV requires fusion of the viral and cell membranes, a process mediated by a trimer...
Eine decarboxylierende, nicht-symmetrische Kupplung ermöglicht die Umwandlung von Carbonsäuren in Dialkyl- und Arylalkylketone. Hierfür entscheidend waren die Verwendung eines Nickel-Katalysators mit elektronenarmen Bipyridin- oder Terpyridin-Liganden, ein THF/DMA-Lösungsmittelgemisch und die Hinzugabe von ZnCl2, um die Reaktivität des NHP-Esters z...
Racemic crystallography has been used to elucidate the secondary and tertiary structures of peptides and small proteins that are recalcitrant to conventional crystallization. It is unclear, however, whether racemic crystallography can capture native quaternary structure, which could be disrupted by heterochiral associations. We are exploring the us...
Phenol-soluble modulin α3 (PSMα3) is a cytotoxic peptide secreted by virulent strains of Staphylococcus aureus. We used a stereochemical strategy to examine the mechanism of PSMα3-mediated toxicity. One hypothesis is that PSMα3 toxicity requires fibril formation; an alternative is that toxicity is caused by soluble forms of PSMα3, possibly oligomer...
A new strategy for the synthesis of ketones is presented based upon the decarboxylative coupling of N-hydroxyphthalimide (NHP) esters with S-2-pyridyl thioesters. The reactions are selective for the cross-coupled product because NHP esters act as radical donors and the thioesters act as acyl donors. The reaction conditions are general and mild, wit...
The structural principles that govern interactions between l- and d-peptides are not well understood. Among natural proteins, coiled-coil assemblies formed between or among α-helices are the most regular feature of tertiary and quaternary structures. We recently reported the first high-resolution structures for heterochiral coiled-coil dimers, whic...
Significance
G-protein-coupled receptors (GPCRs) mediate diverse physiological processes and are targets of many therapeutic agents. GPCR subfamilies comprise related receptors that can be activated by the same or similar agonists but manifest distinct functions. Subtype-selective agonists are valuable as tools for fundamental research and as drug...
What is the best spatial arrangement of a pair of reactive groups for bifunctional catalysis of a chemical transformation? The conformational versatility of proteins allows reactive group geometry to be explored and optimized via evolutionary selection, but it has been difficult for chemists to identify synthetic scaffolds that allow broad comparat...
Oligomers containing α‐ and β‐amino acid residues ("α/β‐peptides") have been shown to mimic the α‐helical conformation of conventional peptides when the unnatural residues are derived from β³‐amino acids or cyclic β‐amino acids, but the impact of incorporating β² residues has received little attention. We have investigated the effects of β² residue...
Oligomers containing α‐ and β‐amino acid residues ("α/β‐peptides") have been shown to mimic the α‐helical conformation of conventional peptides when the unnatural residues are derived from β³‐amino acids or cyclic β‐amino acids, but the impact of incorporating β² residues has received little attention. We have investigated the effects of β² residue...
A thiol-thioester exchange system has been used to measure the propensities of diverse β-amino acid residues to participate in an α-helix-like conformation. These measurements depend on formation of a parallel coiled-coil tertiary structure when two peptide segments become linked by thioester formation. One peptide segment contains a “guest” site t...
Understanding the dimensions of fungal diversity has major implications for the control of diseases in humans, plants, and animals and in the overall health of ecosystems on the planet. One ancient evolutionary strategy organisms use to manage interactions with microbes, including fungi, is to produce host defense peptides (HDPs). HDPs and their sy...
β-Amino acids have a backbone that is expanded by one carbon atom relative to α-amino acids, and β residues have been widely investigated as subunits in protein-like molecules that adopt discrete and predictable conformations. Two classes of β residue have been widely explored in the context of generating α-helix-like conformations: β3-amino acids,...
We explore how two non-ionic polar groups (primary amine and primary amide) influence hydrophobic interactions of neighboring non-polar domains. We designed stable β-peptide sequences that generated globally amphiphilic (GA) heli-ces, each with a non-polar domain formed by six cyclohexyl side chains arranged along one side of the 14-helix. The othe...
The formation and deposition of amyloids is associated with many diseases. β-Sheet secondary structure is a common feature of amyloids, but the packing of sheets against one another is distinctive relative to soluble proteins. Standard methods that rely on perturbing a polypeptide’s sequence and evaluating impact on folding can be problematic for a...
Antimicrobial peptides (AMPs) are attractive antifungal drug candidates because they kill microbes via membrane disruption and are thus less likely to provoke development of resistance. Low selectivity for fungal vs. human cells and instability in physiological environments have limited the development of AMPs as therapeutics, but peptidomimetic AM...
The parathyroid hormone receptor 1 (PTHR1) is a member of the B-family of GPCRs; these receptors are activated by long polypeptide hormones and constitute targets of drug development efforts. Parathyroid hormone (PTH, 84 residues) and PTH-related protein (PTHrP, 141 residues) are natural agonists of PTHR1, and an N-terminal fragment of PTH, PTH(1–3...
Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens b...
We describe the use of thioester exchange equilibria to measure the propensities of amino acid residues to participate in helical secondary structure at room temperature in the absence of denaturants. Thermally or chemically induced unfolding has previously been employed to measure α-helix propensities among proteinogenic α-amino acid residues, and...
The glucagon-like peptide-1 receptor (GLP-1R) is a cla B G protein-coupled receptor that is a major therapeutic target for the treatment of type 2 diabetes. Activation of this receptor promotes insulin secretion and blood glucose regulation. The GLP-1R can initiate signaling through several intracellular pathways upon activation by GLP-1. GLP-1R li...
Activation of a G protein-coupled receptor (GPCR) causes recruitment of multiple intracellular proteins, each of which can activate distinct signaling pathways. This complexity has engendered interest in agonists that preferentially stimulate subsets among the natural signaling pathways (“biased agonists”). We have examined analogues of glucagon-li...
Inhibition of specific protein-protein interactions is attractive for a range of therapeutic applications, but the large and irregularly shaped contact surfaces involved in many such interactions make it challenging to design synthetic antagonists. Here, we describe the development of backbone-modified peptides containing both α- and β-amino acid r...
Gas-phase single-conformation spectroscopy is used to study Ac-Gln-Gln-NHBn in order to probe the interplay between sidechain hydrogen bonding and backbone conformational preferences. This small, amide-rich peptide offers many possibilities for backbone-backbone, sidechain-backbone, and sidechain-sidechain interactions. The major conformer observed...
Gas-phase single-conformation spectroscopy is used to study Ac-Gln-Gln-NHBn in order to probe the interplay between sidechain hydrogen bonding and backbone conformational preferences. This small, amide-rich peptide offers many possibilities for backbone–backbone, sidechain–backbone, and sidechain–sidechain interactions. The major conformer observed...
A backbone-modified peptide derived from parathyroid hormone (PTH) is shown to function as an inhibitor and inverse agonist of parathyroid hormone receptor-1 (PTHR1) signaling. This receptor acts to regulate calcium and phosphate homeostasis, as well as bone turnover and development. PTH is a natural agonist of PTHR1, and PTH(1-34) displays full ac...
α/γ-Peptide foldamers containing either γ(4)-amino acid residues or ring-constrained γ-amino acid residues have been reported to adopt 12-helical secondary structure in nonpolar solvents and in the solid state. These observations have engendered speculation that the seemingly flexible γ(4) residues have a high intrinsic helical propensity and that...
Efficient hydrolysis of amide bonds has long been a reaction of interest for organic chemists. The rate constants of proteases are unmatched by those of any synthetic catalyst. It has been proposed that a dipeptide containing serine and histidine is an effective catalyst of amide hydrolysis, based on an apparent ability to degrade a protein. The ca...