
Samuel D. EscribanoWeizmann Institute of Science | weizmann · Department of Physics of Condensed Matter
Samuel D. Escribano
Doctor of Philosophy
Working on the theory of low-dimensional semiconductors and semiconductor-superconductor heterostructures
About
11
Publications
743
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
121
Citations
Citations since 2017
Introduction
My research interests include the theoretical study of low-dimensional materials, particularly superconductor-semiconductor heterostructures. I focus on the impact of the electrostatic environment on their basic properties (spin-orbit coupling, band-aligment, orbital effects...) as well as on their possible topological properties (Majorana modes). To this end, I perform detailed numerical simulations of realistic experimental devices.
Additional affiliations
April 2018 - present
December 2017 - March 2018
Education
September 2016 - July 2017
September 2012 - July 2016
Publications
Publications (11)
Hybrid structures of semiconducting (SM) nanowires, epitaxially grown superconductors (SC), and ferromagnetic-insulator (FI) layers have been explored experimentally and theoretically as alternative platforms for topological superconductivity at zero magnetic field. Here, we analyze a tripartite SM/FI/SC heterostructure but realized in a planar sta...
Hybrid structures of semiconducting (SM) nanowires, epitaxially grown superconductors (SC), and ferromagnetic-insulator (FI) layers have been explored experimentally and theoretically as alternative platforms for topological superconductivity at zero magnetic field. Here, we analyze a tripartite SM/FI/SC heterostructure but realized in a planar sta...
We analyze the subgap excitations and phase diagram of a quantum dot (QD) coupled to a semiconducting nanowire fully wrapped by a superconducting (S) shell. We take into account how a Little-Parks (LP) pairing fluxoid (a winding in the S phase around the shell) influences the proximity effect on the dot. We find that under axially symmetric QD-S co...
We analyze the subgap excitations and phase diagram of a quantum dot (QD) coupled to a semiconducting nanowire fully wrapped by a superconducting (S) shell. We take into account how a Little-Parks (LP) pairing vortex in the shell influences the proximity effect on the dot. We find that under axially symmetric QD-S coupling, shell vortices cause the...
Hybrid semiconducting nanowire devices combining epitaxial superconductor and ferromagnetic insulator layers have been recently explored experimentally as an alternative platform for topological superconductivity at zero applied magnetic field. In this proof-of-principle work we show that the topological regime can be reached in actual devices depe...
Hybrid semiconducting nanowire devices combining epitaxial superconductor and ferromagnetic insulator layers have been recently explored experimentally as an alternative platform for topological superconductivity at zero applied magnetic field. In this proof-of-principle work we show that the topological regime can be reached in actual devices depe...
Semiconductor Rashba nanowires are quasi-one-dimensional systems that have large spin-orbit (SO) coupling arising from a broken inversion symmetry due to an external electric field. There exist parametrized multiband models that can describe accurately this effect. However, simplified single band models are highly desirable to study geometries of r...
Semiconductor Rashba nanowires are quasi-one dimensional materials that have large spin-orbit (SO) coupling arising from a broken crystal potential symmetry due to an external electric field. There exist parametrized multiband models that can describe accurately this effect. However, simplified single band models are highly desirable to study geome...
Finding ways of creating, measuring, and manipulating Majorana bound states (MBSs) in superconducting-semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed that a periodic covering of the semiconducting nanowire with superconductor fingers would allow both gating and tuning the system into a topolog...
Finding ways of creating, measuring and manipulating Majorana bound states (MBSs) in superconducting-semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed that a periodic covering of the semiconducting nanowire with superconductor fingers would allow both gating and tuning the system into a topologi...
Majorana modes emerge in non-trivial topological phases at the edges of some specific materials, like proximitized semiconducting nanowires under a external magnetic field. Ideally, they are non-local states that are charge neutral superpositions of electrons and holes. However, in nanowires of realistic length their wave functions overlap and acqu...