Samira Ebrahimi Kahou

Samira Ebrahimi Kahou
  • Doctor of Engineering
  • Professor at University of Calgary

About

71
Publications
36,741
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,128
Citations
Current institution
University of Calgary
Current position
  • Professor

Publications

Publications (71)
Preprint
Full-text available
Explaining the decisions made by reinforcement learning (RL) agents is critical for building trust and ensuring reliability in real-world applications. Traditional approaches to explainability often rely on saliency analysis, which can be limited in providing actionable insights. Recently, there has been growing interest in attributing RL decisions...
Article
Full-text available
The scrap-based electric arc furnace process is expected to capture a significant share of the steel market in the future due to its potential for reducing environmental impacts through steel recycling. However, managing impurities, particularly phosphorus, remains a challenge. This study aims to develop a machine learning model to estimate steel p...
Preprint
Full-text available
Diffusion Generative Models (DGM) have rapidly surfaced as emerging topics in the field of computer vision, garnering significant interest across a wide array of deep learning applications. Despite their high computational demand, these models are extensively utilized for their superior sample quality and robust mode coverage. While research in dif...
Preprint
Full-text available
Neural networks can learn spurious correlations in the data, often leading to performance disparity for underrepresented subgroups. Studies have demonstrated that the disparity is amplified when knowledge is distilled from a complex teacher model to a relatively "simple" student model. Prior work has shown that ensemble deep learning methods can im...
Preprint
Full-text available
Large language models (LLMs) have demonstrated remarkable performance across various downstream tasks. However, the high computational and memory requirements of LLMs are a major bottleneck. To address this, parameter-efficient fine-tuning (PEFT) methods such as low-rank adaptation (LoRA) have been proposed to reduce computational costs while ensur...
Preprint
Full-text available
The scrap-based electric arc furnace process is expected to capture a significant share of the steel market in the future due to its potential for reducing environmental impacts through steel recycling. However, managing impurities, particularly phosphorus, remains a challenge. This study aims to develop a machine learning model to estimate the ste...
Article
Full-text available
Most existing works on fairness assume the model has full access to demographic information. However, there exist scenarios where demographic information is partially available because a record was not maintained throughout data collection or for privacy reasons. This setting is known as demographic scarce regime. Prior research has shown that trai...
Preprint
Full-text available
Robotics can help address the growing worker shortage challenge of the manufacturing industry. As such, machine tending is a task collaborative robots can tackle that can also highly boost productivity. Nevertheless, existing robotics systems deployed in that sector rely on a fixed single-arm setup, whereas mobile robots can provide more flexibilit...
Preprint
Full-text available
Offline reinforcement learning has shown promise for solving tasks in safety-critical settings, such as clinical decision support. Its application, however, has been limited by the lack of interpretability and interactivity for clinicians. To address these challenges, we propose the medical decision transformer (MeDT), a novel and versatile framewo...
Preprint
Full-text available
Protein sequence design, determined by amino acid sequences, are essential to protein engineering problems in drug discovery. Prior approaches have resorted to evolutionary strategies or Monte-Carlo methods for protein design, but often fail to exploit the structure of the combinatorial search space, to generalize to unseen sequences. In the contex...
Article
Full-text available
The issue of bias in Machine Learning (ML) models is a significant challenge for the machine learning community. Real-world biases can be embedded in the data used to train models, and prior studies have shown that ML models can learn and even amplify these biases. This can result in unfair treatment of individuals based on their inherent character...
Preprint
Full-text available
Model-based reinforcement learning agents utilizing transformers have shown improved sample efficiency due to their ability to model extended context, resulting in more accurate world models. However, for complex reasoning and planning tasks, these methods primarily rely on continuous representations. This complicates modeling of discrete propertie...
Preprint
Full-text available
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples. Recent studies show that cross-modal learning can improve representations for few-shot classification. More specifically, language is a rich modality that can be used to guide visual learning. In this work, we experiment with a multi-modal...
Chapter
Medical image segmentation is one of the most classic applications of machine learning in healthcare. A variety of Deep Learning approaches, mostly based on Convolutional Neural Networks (CNNs), have been proposed to this end. In particular, U-Shaped Network (UNet) have emerged to exhibit superior performance for medical image segmentation. However...
Preprint
Full-text available
Most existing works on fairness assume the model has full access to demographic information. However, there exist scenarios where demographic information is partially available because a record was not maintained throughout data collection or due to privacy reasons. This setting is known as demographic scarce regime. Prior research have shown that...
Preprint
Full-text available
Transformers have significantly impacted domains like natural language processing, computer vision, and robotics, where they improve performance compared to other neural networks. This survey explores how transformers are used in reinforcement learning (RL), where they are seen as a promising solution for addressing challenges such as unstable trai...
Preprint
Full-text available
Before taking actions in an environment with more than one intelligent agent, an autonomous agent may benefit from reasoning about the other agents and utilizing a notion of a guarantee or confidence about the behavior of the system. In this article, we propose a novel multi-agent reinforcement learning (MARL) algorithm CAMMARL, which involves mode...
Preprint
Full-text available
Deep Reinforcement Learning has shown significant progress in extracting useful representations from high-dimensional inputs albeit using hand-crafted auxiliary tasks and pseudo rewards. Automatically learning such representations in an object-centric manner geared towards control and fast adaptation remains an open research problem. In this paper,...
Preprint
Full-text available
While neural networks are capable of achieving human-like performance in many tasks such as image classification, the impressive performance of each model is limited to its own dataset. Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data, thus, increasing data pri...
Preprint
Full-text available
Reinforcement learning (RL) has shown great promise with algorithms learning in environments with large state and action spaces purely from scalar reward signals. A crucial challenge for current deep RL algorithms is that they require a tremendous amount of environment interactions for learning. This can be infeasible in situations where such inter...
Preprint
Full-text available
Humans have perfected the art of learning from multiple modalities through sensory organs. Despite their impressive predictive performance on a single modality, neural networks cannot reach human level accuracy with respect to multiple modalities. This is a particularly challenging task due to variations in the structure of respective modalities. C...
Preprint
Full-text available
Training novice users to operate an excavator for learning different skills requires the presence of expert teachers. Considering the complexity of the problem, it is comparatively expensive to find skilled experts as the process is time-consuming and requires precise focus. Moreover, since humans tend to be biased, the evaluation process is noisy...
Preprint
Current pre-trained language models rely on large datasets for achieving state-of-the-art performance. However, past research has shown that not all examples in a dataset are equally important during training. In fact, it is sometimes possible to prune a considerable fraction of the training set while maintaining the test performance. Established o...
Preprint
Full-text available
Causal learning has long concerned itself with the accurate recovery of underlying causal mechanisms. Such causal modelling enables better explanations of out-of-distribution data. Prior works on causal learning assume that the high-level causal variables are given. However, in machine learning tasks, one often operates on low-level data like image...
Preprint
Full-text available
Learning world models from their sensory inputs enables agents to plan for actions by imagining their future outcomes. World models have previously been shown to improve sample-efficiency in simulated environments with few objects, but have not yet been applied successfully to environments with many objects. In environments with many objects, often...
Preprint
Full-text available
The success of Reinforcement Learning (RL) heavily relies on the ability to learn robust representations from the observations of the environment. In most cases, the representations learned purely by the reinforcement learning loss can differ vastly across states depending on how the value functions change. However, the representations learned need...
Article
Full-text available
The microservices architecture (MSA) style has been gaining interest in recent years because of its high scalability, ability to be deployed in the cloud, and suitability for DevOps practices. While new applications can adopt MSA from their inception, many legacy monolithic systems must be migrated to an MSA to benefit from the advantages of this a...
Preprint
Full-text available
Most reinforcement learning algorithms take advantage of an experience replay buffer to repeatedly train on samples the agent has observed in the past. This prevents catastrophic forgetting, however simply assigning equal importance to each of the samples is a naive strategy. In this paper, we propose a method to prioritize samples based on how muc...
Preprint
Full-text available
Learning predictors that do not rely on spurious correlations involves building causal representations. However, learning such a representation is very challenging. We, therefore, formulate the problem of learning a causal representation from high dimensional data and study causal recovery with synthetic data. This work introduces a latent variable...
Preprint
Full-text available
Few-shot learning has recently attracted wide interest in image classification, but almost all the current public benchmarks are focused on natural images. The few-shot paradigm is highly relevant in medical-imaging applications due to the scarcity of labeled data, as annotations are expensive and require specialized expertise. However, in medical...
Preprint
Despite having been studied to a great extent, the task of conditional generation of sequences of frames, or videos, remains extremely challenging. It is a common belief that a key step towards solving this task resides in modelling accurately both spatial and temporal information in video signals. A promising direction to do so has been to learn l...
Chapter
Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e. pixel‐level classification) have remained challenging problems in the weather and climate scienc...
Preprint
Full-text available
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the learning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusi...
Preprint
Full-text available
Humans have the innate ability to attend to the most relevant actors in their vicinity and can forecast how they may behave in the future. This ability will be crucial for the deployment of safety-critical agents such as robots or vehicles which interact with humans. We propose a theoretical framework for this problem setting based on autoregressiv...
Preprint
Locust infestation of some regions in the world, including Africa, Asia and Middle East has become a concerning issue that can affect the health and the lives of millions of people. In this respect, there have been attempts to resolve or reduce the severity of this problem via detection and monitoring of locust breeding areas using satellites and s...
Preprint
Full-text available
Generative deep learning has sparked a new wave of Super-Resolution (SR) algorithms that enhance single images with impressive aesthetic results, albeit with imaginary details. Multi-frame Super-Resolution (MFSR) offers a more grounded approach to the ill-posed problem, by conditioning on multiple low-resolution views. This is important for satelli...
Preprint
Millions of blind and visually-impaired (BVI) people navigate urban environments every day, using smartphones for high-level path-planning and white canes or guide dogs for local information. However, many BVI people still struggle to travel to new places. In our endeavor to create a navigation assistant for the BVI, we found that existing Reinforc...
Preprint
Full-text available
Generative deep learning has sparked a new wave of Super-Resolution (SR) algorithms that enhance single images with impressive aesthetic results, albeit with imaginary details. Multi-frame Super-Resolution (MFSR) offers a more grounded approach to the ill-posed problem, by conditioning on multiple low-resolution views. This is important for satelli...
Preprint
Full-text available
Conditional text-to-image generation is an active area of research, with many possible applications. Existing research has primarily focused on generating a single image from available conditioning information in one step. One practical extension beyond one-step generation is a system that generates an image iteratively, conditioned on ongoing ling...
Preprint
Batch normalization has been widely used to improve optimization in deep neural networks. While the uncertainty in batch statistics can act as a regularizer, using these dataset statistics specific to the training set impairs generalization in certain tasks. Recently, alternative methods for normalizing feature activations in neural networks have b...
Article
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due to the fact that gradients vanish during training, as the sequence length increases. Gradients can be attenuated by transition operators and are attenuated or dropped by activation functions. Canonical architectures like LSTM alleviate this issue by...
Conference Paper
Many interesting applications of reinforcement learning (RL) involve MDPs that include numerous “dead-end" states. Upon reaching a dead-end state, the agent continues to interact with the environment in a dead-end trajectory before reaching an undesired terminal state, regardless of whatever actions are chosen. The situation is even worse when exis...
Preprint
Full-text available
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due to the fact that gradients vanish during training, as the sequence length increases. Gradients can be attenuated by transition operators and are attenuated or dropped by activation functions. Canonical architectures like LSTM alleviate this issue by...
Preprint
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat....
Preprint
Full-text available
Conditional text-to-image generation approaches commonly focus on generating a single image in a single step. One practical extension beyond one-step generation is an interactive system that generates an image iteratively, conditioned on ongoing linguistic input / feedback. This is significantly more challenging as such a system must understand and...
Article
Synthesizing realistic images from text descriptions on a dataset like Microsoft Common Objects in Context (MS COCO), where each image can contain several objects, is a challenging task. Prior work has used text captions to generate images. However, captions might not be informative enough to capture the entire image and insufficient for the model...
Preprint
Synthesizing realistic images from text descriptions on a dataset like Microsoft Common Objects in Context (COCO), where each image can contain several objects , is a challenging task. Prior work has used text captions to generate images. However, captions might not be informative enough to capture the entire image and insufficient for the model to...
Article
We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; q...
Article
Full-text available
Neural networks trained on datasets such as ImageNet have led to major advances in visual object classification. One obstacle that prevents networks from reasoning more deeply about complex scenes and situations, and from integrating visual knowledge with natural language, like humans do, is their lack of common sense knowledge about the physical w...
Article
Full-text available
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being...
Article
Yes, apparently they do. Previous research demonstrated that shallow feed-forward nets sometimes can learn the complex functions previously learned by deep nets while using a similar number of parameters as the deep models they mimic. In this paper we investigate if shallow models can learn to mimic the functions learned by deep convolutional model...
Conference Paper
Full-text available
Yes, apparently they do. Previous research demonstrated that shallow feed-forward nets sometimes can learn the complex functions previously learned by deep nets while using a similar number of parameters as the deep models they mimic. In this paper we investigate if shallow models can learn to mimic the functions learned by deep convolutional model...
Conference Paper
While depth tends to improve network performances, it also makes gradient-based training more difficult since deeper networks tend to be more non-linear. The recently proposed knowledge distillation approach is aimed at obtaining small and fast-to-execute models, and it has shown that a student network could imitate the soft output of a larger teac...
Conference Paper
Deep learning based approaches to facial analysis and video analysis have recently demonstrated high performance on a variety of key tasks such as face recognition, emotion recognition and activity recognition. In the case of video, information often must be aggregated across a variable length sequence of frames to produce a classification result....
Article
Full-text available
This work presents an attention based approach to tracking objects in video. A recurrent neural network is trained to predict the position of an object in the video at time t+1 given a series of selective glimpses at times 1 to t. Glimpses are selected based on a differentiable (soft-)attention mechanism, which makes it possible to train the model...
Conference Paper
High dimensional engineered features have yielded high performance results on a variety of visual recognition tasks and attracted significant recent attention. Here, we examine the problem of expression recognition in static facial images. We first present a technique to build high dimensional, ∼60k features composed of dense Census transformed vec...
Article
Full-text available
The task of the emotion recognition in the wild (EmotiW) Challenge is to assign one of seven emotions to short video clips extracted from Hollywood style movies. The videos depict acted-out emotions under realistic conditions with a large degree of variation in attributes such as pose and illumination, making it worthwhile to explore approaches whi...
Conference Paper
The task of the emotion recognition in the wild (EmotiW) Challenge is to assign one of seven emotions to short video clips extracted from Hollywood style movies. The videos depict acted-out emotions under realistic conditions with a large degree of variation in attributes such as pose and illumination, making it worthwhile to explore approaches whi...
Article
Full-text available
While depth tends to improve network performances, it also makes gradient-based training more difficult since deeper networks tend to be more non-linear. The recently proposed knowledge distillation approach is aimed at obtaining small and fast-to-execute models, and it has shown that a student network could imitate the soft output of a larger teac...
Conference Paper
In this paper we present the techniques used for the University of Montréal's team submissions to the 2013 Emotion Recognition in the Wild Challenge. The challenge is to classify the emotions expressed by the primary human subject in short video clips extracted from feature length movies. This involves the analysis of video clips of acted scenes la...
Conference Paper
Full-text available
The basic algorithms for both lossless and lossy compression of images are discussed in the paper. The criteria of the contrastive analysis of compression algorithms are chosen. The classes of images are discussed. The results of algorithms realization and testing in MATLAB environment are shown in the diagrams and discussed. The recommendations on...
Conference Paper
Full-text available
The central focus of this paper concerns tasks of image processing. In particular it deals with the problem of image classification based on both first-order and second-order statistics. Statistical data obtained in the MATLAB environment are shown in the diagrams and discussed. The principles of image classification are formulated in this paper. T...

Network

Cited By