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Difference Scheme for Semilinear Reaction-Diffusion
Problems on a Mesh of Bakhvalov Type

Enes Duvnjakovi¢ and Samir Karasuljié

The paper examines a semilinear singular reaction-diffusion problem. Using the collo-
cation method with naturally chosen splines of exponential type, a new difference scheme on
a mesh of Bakhvalov type is constructed. A difference scheme generates the system of non-
linear equations, and the theorem of existence and this system’s solution uniqueness are also
provided. At the end, a numerical example is given as well, which points to the convergence
of the numerical solution to the exact one.
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1 Introduction

We consider the semilinear problem

62y” — f(l', y)a zel= [0, 1] )
y(0) =0, y(1) = 0.

Here € is a positive parameter, f(z,y) € C%(I x R) has bounded partial derivates
and

(1.1)

(1.2) Y 2 fy(z,y) > m >0,

for all (z,y) € I xR. Problem (1.1) under condition (1.2), has a unique solution.

Problems like (1.1) are differential equations that depend on a small
positive parameter €, and whose solution (or their derivates) approach a dis-
continuous limit as € approaches zero. Such problems are said to be singularly
perturbed, where we regard € as the perturbation parameter.
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The solutions of singular perturbation problems typically contain layers.
If any discretization technique is applied to a parameter-dependent problem,
then the behavior of the discretization depends on the parameter. For singularly
perturbed problems, conventional techniques often lead to discretization that are
worthless if the singular perturbation parameter is close to some critical values.
Our paper is devoted to the construction of approximations using the collocation
method with the natural choice exponential splines on Bakhvalov mesh.

Many authors have considered the problem (1.1), under various hypothe-
ses on f(z,y), for example Vulanovié [5], Uzelac and Surla [4]. Bakhvalov [1]
was the first to use the special mesh to solve singularly perturbed problems.

Numerical examples show the convergence of the numerical solution to
the exact one and they also offer better results when compared to previous
difference schemes (i.e. [4]).

2 Construction of the nonlinear difference scheme on
a Bakhvalov mesh

We apply the mesh of Bakhvalov type 0 = 29 < 21 < ... < zxy < 1 on the
interval [0,1]. The interval [0, 1] will be divided to three subintervals, namely
[0, k], [he; 1 — k] and [1 — he, 1] where he = 25 In|e| and my = %"

The subinterval [0, k] is divided by the points z; = —31—‘1 In[1—(1-¢)id],

(i =1,...,7), and the subinterval [he,1 — h¢] is divided by z;11 = z; +ih, (i =
1,...,k), while the last interval [1 — k¢, 1] is divided by

Tjtk+i =1+ %‘;ln M-01Q-¢€)(F—19d], (:=1,..,5), where § = %, j=1% and
k= % — 1 represent the chosen integer so that N = 25+ k+ 1. It can be noticed
that the choice of j, k and N, as well as §, does not depend on the parameter
€. In order to construct a difference scheme, which will later help us to get a
numerical solution of the problem (1.1), the following function is introduced
Y(z,y) = f(z,y) — vy. Now, the problem (1.1) becomes

(2.1) Ley(z) := €y (z) — vy(z) = ¢(z,y(z)) on [0,1].
The following mesh expresses further problems:

Leu,-(z) :=0o0n (:L‘,',.’L','+1) ,ui(a:,') = 1, u,-(zi+1) = 0, (Z = 0, 1, ...,N - 1) N

2.2
(22) Leui(z) := 0on (zi, Tit1) , ui(zi) =0, ui(zit1) =1,(¢=0,1,..., N —1)



Difference Scheme for Semilinear Reaction-Diffusion 501
and

Leyi(x) = Y(z,y;) on (x5, Tiv1) , yi(xi) = y(2:), ¥i(@iv1) = y(Tiv1),

(2.3) (i=1,2,..,N—1).

We denote the solutions of problems (2.2) by u!(z), u/!(z), (i =1,2,...,N —1),
respectively. Using the solution of the above mentioned problems (2.2) and the
Green’s function for the operator L., the solution of the problem (2.3) is

@24) w@ =yl @)ty @+ [ Gz, s)p(s, y(s))ds,

T

where Gj(z,s) is the Green’s function. While y;(z) = y(z) on [z;,x;4+1] and
Y (@) g, = yg_l(w)|w=$i ,(i =1,2,..., N — 1), after the differentiation of the
solution y;_1(z) and y;(z), it can be observed that

aiYi-1 — CiYi + biYiy1 =

@5) | [ s+ [ o) us)ds

y0=07 yN=O, (7’=17277N_1)

Clearly, we cannot generally explicitly compute the integrals in (2.5).
We approximate the function ¥ (z,y(x)) on the interval [z;—1,z;] by

Piy = B(x,y(2)) = ¥ (25, Bt on [z, 4,34),

where 7;, (i =1,2,..., N — 1), are approximation values of the solution y(z) of
the problem (1.1) — (1.2) in the points z;, (i = 1,2,..., N — 1). Finally, from
(2.5) and (2.6) we get the difference scheme

1. i A
aPi_1 — (di + di1)Y; + b1 = ;wi—l(di —a;) + ;¢i(di+l - @iy1),
(i=1,2,...,N —1),

_ A
where a; = m(ﬁéﬁ__ﬁ’ b; = sinh'?ﬂh,»)’ d; = tanh(gh,-_l) and 8 = 3€C, (see [2]).

Theorem 2.1. The difference scheme (2.7), has a unique solution 7,
where § = (Jo,J1,T2s -+ IN-1IN)-

(2.7)
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Proof. We use a technique from [5]. From (2.7), since ¥(z,y) = f(z,y)—
Yy, we get

_ . . l L yz—l + 7
aifi—1 — ¥ + bi¥ip ~ {(tanh(ﬂhi—l) ) [f’ v ]

* (Gt ~) [ g}

To=Un=0, i=1,2,...,.N —1).

Let us denote the left-hand side (2.8) with G%, then (2.8) becomes

(2.8)

Gy =0.

The Fréchet derivate A := G'(¥) is a tridiagonal matrix, and the non-zero ele-
ments of this tridiagonal matrix are

RS ¥ ¥ S CNERE-e 4 Ti1+%i Yioa + W\ _ 7
e I {(taﬂh(ﬂhi—l) a,) [2fy"_' ( 2 72 ) 2]

(2.9) 8 1 Ti + Tiv1 Ui +Tinr 2
+ (tanh(ﬂh,.) _b") [E‘f"‘ ( 2 T 2 * ) B 5]}’

1 B RN E Ti-1+Zi Y1+ Y
a;i—-1=0a4 5 (ta.l’lh(ﬂh,'_1) az) [2fye-1 ( 2 ’ 2 = 5 )

1 B AN Tit+Tiv1 Ui+ Tipr ) _ Y
Qi i+1= =b; — (ta.nh(ﬂh) b‘l) [2fyi( D) ) D) 2|

It can be shown that

aii—1 >0 a;i+1 >0 and a;; <O0.
Hence, A is an L matrix. Let us show that A is an M matrix. Now,
(2.10) @i — Gii—1 — @i—1,0 = —¢ —a; — b; < 0.
Based on (2.10), we have proved that A, is M — matrix. Since A is an M—

matrix, Ae® > me” holds. Now, we obtain that ||[A~!|| < % Now, by the
Hadamard Theorem (5.3.11 from [3]), the statement of our theorem follows. m
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A" | 64 128 256 512 1024
274 | 1.05e —4 | 2.60e — 5 | 6.48¢ — 6 | 1.62e —6 | 4.05e — 7 | En
2.01 1.99 2.00 2.00 Ord
276 1 1.17e —4 | 2.77e — 5 | 6.69¢ — 6 | 1.65e — 6 | 4.06e — 7 | En
2.08 2.05 2.02 2.02 Ord
278 1 1.26e—4 | 3.0le—5|734e —6 | 1.72¢e —6 | 4.22¢ — 7 | En
2.03 2.07 2.09 2.02 Ord
2710 1124 -4 (3.03¢—5|737e—6 | 1.79¢e —6 | 4.30e — 7 | En
2.04 2.04 2.04 2.04 Ord
27121 1,24 —4|3.03¢e—5 | 7.39¢e —6 | 1.80e — 6 | 4.49¢ — 7 | En
2.04 1.99 2.04 2.04 Ord
27151124 —4|3.03e—5[7.39% —6 | 1.80e —6 | 4.49¢ — 7 | En
2.04 1.99 2.04 2.04 Ord
Table 1: Error E and convergence rates Ord for approximate solution
3 The numerical example
Example 3.1. Consider the following problem
(3.1) ey’ =(1+y)1+0+y? on (0,1),
(3-2) y(0) = y(1) = 0.
The exact solution of the problem (3.1)—(3.2) is unknown. The nonlinear system
of equations is solved by Newton’s method with initial guess yg = —1. Because

the exact solution is unknown, we define En in the usual way

(3.3)

FEn = max
o 0<i<N

7 (@) - 7" (@)

)

where 7V (z;) and 72V (z;) are the numerical solutions on a mesh with N and

2N subintervals, respectively.

convergence Ord

(3.4)

Ord

_ In EN - lnE2N
- In2

Also, we define in the usual way the order of
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