S₁-PARACOMPACT SPACES

Khalid Al-Zoubi, Amani Rawashdeh

ABSTRACT. In this paper we introduce a new class of spaces which will be called the class of S_1 -paracompact spaces. We characterize S_1 -paracompact spaces and study their basic properties. The relationships between S_1 -paracompact spaces and other well-known spaces are investigated.

2000 Mathematics Subject Classification: 54D20, 54C10, 54A10, 54G05.

1. INTRODUCTION AND PRELIMINARIES

In 1963, Levine [8] introduced and studied the concept of semi-open sets in topological spaces. In [1], Al-Zoubi used semi-open sets to defined the class of s-expandable spaces. A space (X, T) is said to be s-expandable space if for every s-locally finite collection $\mathcal{F} = \{F_{\alpha} : \alpha \in I\}$ of subsets of X there exists a locally finite collection $\mathcal{G} = \{G_{\alpha} : \alpha \in I\}$ of open subsets of X such that $F_{\alpha} \subseteq G_{\alpha}$ for each $\alpha \in I$. In [1], Theorem 3.4, a space (X, T) is s-expandable if every semi-open cover of X has a locally finite open refinement.

In section 2 of this work we introduce and study a new class of spaces, namely S_1 -paracompact spaces, and we provide several characterizations of S_1 -paracompact spaces and investigate the relaionship between S_1 -paracompact spaces and other well-known spaces such as paracompact spaces, s-expandable spaces, nearly paracompact spaces and semi-compac spaces. Finally, in section 3, we deal with some basic properties of S_1 -paracompact spaces , i.e. subspaces, sum, inverse image and product. Throughout this work a space will always mean a topological space on which no separation axioms are assumed unless explicitly stated. Let (X, T) be a space and A be a subset of X. The closure of A, the interior of A and the relative topology on A will be denoted by cl(A), int(A) and T_A respectively. A is called semi-open subset of (X, T) ([8]) if there exists an open set U of X such that $U \subseteq A \subseteq cl(U)$. The complement of a semi-open set is called a semi-closed set ([2]). The semiclosure of A ([2]), denoted by scl(A), is the smallest semi-closed set that contains A.

A is called regular open if A = int(cl(A)). The family of all semi-open (resp. regular open) subsets of (X, T) is denoted by SO(X, T) (resp. RO(X, T)).

Definition 1.1. A collection $\mathcal{F} = \{F_{\alpha} : \alpha \in I\}$ of subsets of a space (X,T) is said to be locally finite(resp. s-locally finite[1]), if for each $x \in X$, there exists $U \in T$ (resp. $U \in SO(X,T)$) containing x and U intersects at most finitely many members of \mathcal{F} .

Definition 1.2. A space (X,T) is said to be:

(a) semi-compact[3] if every semi-open cover of X has a finite subcover.

(b) semi-regular [4] if for each semi-closed set F and each point $x \notin F$, there exist disjoint semi-open sets U and V such that $x \in U$ and $F \subseteq V$. This is equivalent to, for each $U \in SO(X,T)$ and for each $x \in U$, there exists $V \in SO(X,T)$ such that $x \in V \subseteq scl(V) \subseteq U$.

(c) extremally disconnected (briefly e.d.) if the closure of every open set in (X, T) is open.

Lemma 1.3 [10]. If (X,T) is e.d., then scl(U) = cl(U) for $each U \in SO(X,T)$. **Proposition 1.4.** Let (X,T) be an e.d. semi-regular space. Then:

(a) SO(X,T) = T.

(b) (X,T) is regular.

Proof. (a) Let $U \in SO(X,T)$ and $x \in U$. Since (X,T) is semi-regular, there exists $V \in SO(X,T)$ such that $x \in V \subseteq scl(V) \subseteq U$. Now, choose $W \in T$ such that $W \subseteq V \subseteq cl(W)$. But (X,T) is e.d., therefore, by Lemma 1.3, cl(W) = cl(V) = scl(V) is an open set containing x such that $cl(W) \subseteq U$. Thus $U \in T$.

(c) Follows from part (a) and Lemma 1.3.

Lemma 1.5.([2]). If A is an open set in (X,T) and $B \in SO(X,T)$ then $A \cap B \in SO(X,T)$.

2. S_1 -Paracompact Spaces

Definition 2.1. A space (X,T) is said to be S_1 -paracompact space if every semiopen cover of X has a locally finite open refinement.

Every S_1 -paracompact space is s-expandable (Theorem 3.4 of [1])but the converse is not true as may be seen from the following example.

Example 2.2. Let $X = \{1, 2, 3\}$ and $T = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$. Then (X, T) is s-expandable (every finite space is s-expandable) but not S₁-paracompact since $\{\{1, 2\}, \{2, 3\}\}$ is a semi-open cover of X which admits no locally finite open refinement. For any space (X, T), we have $RO(X, T) \subseteq T \subseteq SO(X, T)$. Therefore the following implications are obvious. S₁-paracompact \Rightarrow paracompact \Rightarrow nearly paracompact. Where a space (X, T) is said to be nearly paracompact if every reguler open cover of X has a locally finite open refinement. Moreover we have the following theorem. **Theorem 2.3.** Let (X,T) be an e.d. semi-regular space. Then the following are equivalent:

- (a) (X,T) is nearly paracompact.
- (b) (X,T) is paracompact.

(c) (X,T) is S_1 -paracompact.

Proof. $(a) \to (b)$: Follows from Proposition 1.4 and the fact that if a space (X, T) is regular then $T \subseteq RO(X, T)$.

 $(b) \rightarrow (c)$: Follows from Proposition 1.4 (a).

The following examples show that the conduitions "e.d. and semi-regular" on the space (X, T) in the above Theorem are essential.

Example 2.4. (a) Let X = R be the set of the real numbers with the topology $T = \{\emptyset, X, \{1\}\}$. Then (X, T) is an e.d. paracompact space but not S₁-paracompact since $\{\{1, x\} : x \in X\}$ is a semi-open cover of X which admits no locally finite open refinement.

(b) Consider the space (X, T) where X = R and

$$T = \{U \subseteq R : 0 \notin U\} \bigcup \{U \subseteq R : 0 \in U \text{ and } R - U \text{ is finite}\}.$$

Then (X, T) is semi-regular and paracompact but not S₁-paracompact since it is not s-expandable (Example 3.3,[1]).

(c) Let X = R with the topology $T = \{U \subseteq R : 0 \in U\} \bigcup \{\emptyset\}$. Then (X, T) is an e.d. nearly paracompact space $(RO(X, T) = \{X, \emptyset\})$ but not paracompact since $\{\{0, x\} : x \in X\}$ is an open cover of X which admits no locally finite open refinement.

Theorem 2.5. If (X,T) is an S_1 -paracompact T_1 -space, then $T = SO(X,T) = T^{\alpha}$.

Proof. Let U be a semi-open in (X,T). For each $y \notin U$, we choose an open set V_y containing y and $x \notin V_y$. Therefore the collection $\mathcal{V} = \{V_y : y \notin U\} \cup \{U\}$ is a semi-open cover of (X,T) and so it has a locally finite open refinement \mathcal{W} . Put $V = \bigcup \{W \in \mathcal{W} : x \in W\}$. Then V is an open set containing x and $V \subseteq U$. Thus U is open in (X,T).

Corollary 2.6. Let (X,T) be an S_1 –paracompact space.

(a) If (X,T) is T_1 then it is e.d.

(b) If (X,T) is T_2 then it is semi-regular.

Proof. (a) Let $U \in T$. Then $cl(U) \in SO(X,T)$ and so $cl(U) \in T$ by Theorem 2.5.

(b) (X, T) is a paracompact T_2 -space. Therefore by Lemma 5.1.4 of ([6]), (X, T) is reguler. Now let $U \in SO(X, T)$ and $x \in U$. By Theorem 2.5, $U \in T$ and so there exists an open set $V \in T$ such that $x \in V \subset cl(V) \subset U$. Thus $x \in V \subset scl(V) \subset$

 $cl(V) \subset U$. It follows that (X,T) is semi-reguler. Note that R with the cofinite topology is S_1 –paracompact but not semi-reguler. Recall that a space (X,T) is called semi-compact ([3]), if every semi-open cover of X has a finite subcover. We note that S_1 –paracompactness and semi-compactness are independent, since in Example 2.2, (X,T) is semi-compact (X is finite) but it is not S_1 –paracompact On

the other hand, the space (X, T_{dis}) where X is an infinite set is S₁ –paracompact but it is not semi-compact.

Theorem 2.7. Let (X,T) be a T_2 -space. Then the following are equivalent:

(a) (X, T) is semi-compact.

(b) (X,T) is S_1 -paracompact and compact.

Proof. (a) \rightarrow (b): Suppose that (X,T) is semi-compact. Then by Theorem 2.4 of ([3]), X is finite and so T is the discrete topology. Therefore (X,T) is S_1 -paracompact.

(b) \rightarrow (a) : As (X, T) is compact T_2 -space, every locally finite family of open sets is finite.

For a space (X, T), we denote by $T_{\Psi}([3])$ the topology on X which has SO(X, T) as a subbase.

It is clear that if a space (X, T) is e.d., then $T_{\Psi} = SO(X, T)$.

Note that in Example 2.4 part (a), the space (X, T) is paracompact and e.d while (X, T_{Ψ}) is not paracompact since $T_{\Psi} = \{U : 1 \in U\} \cup \{\phi\}.$

Proposition 2.8. Let (X,T) be an e.d. space.

(a) If (X,T) is S_1 -paracompact then (X,T_{Ψ}) is S_1 -paracompact.

(b) (X, T_{Ψ}) is S_1 -paracompact if and only if (X, T_{Ψ}) is paracompact.

Proof. (a) Follows from the fact that for any space $(X,T), T \subseteq T_{\Psi}$ and $SO(X,T_{\Psi}) \subseteq SO(X,T)$.

(b) Since (X,T) is e.d. then by Lemma 3.7 of ([1]), $SO(X,T_{\Psi}) = SO(X,T)$ and thus $T_{\Psi} = SO(X,T_{\Psi})$,

Example 2.9. The converse of part (a) of Proposition 2.8 is not true in general. To see that, consider $X = \{1, 2, 3\}$ with $T = \{\phi, X, \{1\}\}$, then it is easy to see that (X, T) is e.d. and (X, T_{Ψ}) is S_1 -paracompact but (X, T) is not.

Corollary 2.10. Let (X,T) be an e.d. semi-regular space. Then (X,T) is S_1 -paracompact if and only if (X,T_{Ψ}) is paracompact.

Proof. Necessity follows from Proposition 2.8. For sufficiently, $\operatorname{since}(X,T)$ e.d. then $SO(X,T) = SO(X,T_{\Psi})$ and so by Proposition 1.4 part (a), $T_{\Psi} = SO(X,T) = SO(X,T_{\Psi}) = T$. Recall that a subset A of a space (X,T) is said to be α -set if $A \subset int(cl(int(A)))$. The family of all α -sets of a space (X,T), denote by T^{α} , forms a topology on X, finer than T.

Lemma 2.11. (a) For any space (X,T), $SO(X,T^{\alpha}) = SO(X,T)([9])$.

(b) For a space (X, T), if (X, T^{α}) is normal, then $T = T^{\alpha}([5])$.

Theorem 2.12. Let (X,T) be a T_2 -space. Then (X,T) is S_1 -paracompact space if and only if (X,T^{α}) is S_1 -paracompact space.

Proof. Necessity, follows from Lemma 2.11 and the fact that $T \subset T^{\alpha}$. For sufficiency, suppose that (X, T^{α}) is S_1 -paracompact. Then (X, T^{α}) is a paracompact T_2 -space and so it is normal ([6]). Therefore, by Lemma 2.11, $T = T^{\alpha}$. On the other hand $SO(X, T^{\alpha}) = SO(X, T)$ (Lemma 2.11) and so (X, T) is S_1 -paracompact. Note that, in Example 2.9, the space (X, T) is not S_1 -paracompact. However, (X, T^{α}) is S_1 -paracompact. Therefore the condition (X, T) is T_2 in Theorem 2.12, can not be dropped.

Theorem 2.13. If each semi-open cover of a space (X,T) has an open σ -locally finite refinement, then each semi-open cover of X has a locally finite refinement.

Proof. Let \mathcal{U} be a semi-open cover of X. Let $\mathcal{V} = \bigcup_{n \in N} \mathcal{V}_n$ be an open σ -locally finite refinement of \mathcal{U} , where \mathcal{V}_n is locally finite. For each $n \in N$ and each $V \in \mathcal{V}_n$, let $V'_n = V - \bigcup_{k < n} \mathcal{V}_k^*$ where $\mathcal{V}_k^* = \bigcup \{V : V \in \mathcal{V}_k\}$ and put $\mathcal{V}_n = \{V'_n : V \in \mathcal{V}_n\}$. Now, put $\mathcal{W} = \{V'_n : n \in N, V \in \mathcal{V}_n\} = \bigcup \{\mathcal{V}_n' : n \in N\}$. We show \mathcal{W} is a locally finite refinement of \mathcal{U} . Let $x \in X$ and let n be the first positive integer such that $x \in \mathcal{V}_n^*$. Therefore $x \in V/$ for some $V' \in \mathcal{V}_n'$. Thus \mathcal{W} is a cover of X. To show \mathcal{W} is locally finite, let $x \in X$ and n be the first positive integer such that $x \in \mathcal{V}_n^*$. Then $x \in V$ for some $V \in \mathcal{V}_n$. Now, $V \cap V' = \phi$ for each $V' \in \mathcal{V}_k$ and for each k > n. Therfore, V can intersect at most the elements of \mathcal{V}_k' for $k \leq n$. Since \mathcal{V}_k' is locally finite for each $k \leq n$, so we choose an open set $O_{x(k)}$ containing x such that $O_{x(k)}$ meets at most finitely many members of \mathcal{V}_k' . Finally, put $O_x = V \cap (\bigcap_{k=1}^n O_{x(k)})$. Then O_x is an open set containing x such that O_x meets at most finitely many members of \mathcal{W} . **Theorem 2.14.** Let(X, T) be a semi-reguler space. If each semi-open cover of a space X has a locally finite refinement, then each semi-open cover of X has a locally finite semi-closed refinement.

Proof. Let \mathcal{U} be a semi-open cover of X. For each $x \in X$, pick $U_x \in U$ such that $x \in U_x$. Since (X,T) is semi-reguler, then there exists $V_x \in SO(X,T)$ such that $x \in V_x \subset scl(V_x) \subset U_x$. The family $\mathcal{V} = \{V_x : x \in X\}$ is a semi-open cover of X and so, by asumption, has a locally finite refinement $\mathcal{W} = \{W_\alpha : \alpha \in I\}$. The collection $scl(\mathcal{W}) = \{scl(W_\alpha) : \alpha \in I\}$ is locally finite such that for each $\alpha \in I$, if $W_\alpha \subset V_x$, then $scl(W_\alpha) \subset U$ for some $U \in \mathcal{U}$. Thus $scl(\mathcal{W})$ is a semi-closed locally finite refinement of \mathcal{U} . For the next theorem we will use the statements:

(a) (X,T) S₁ –paracompact.

- (b) Each semi-open cover of X has a σ -locally finite open refinement.
- (c) Each semi-open cover of X has a locally finite refinement.

(d) Each semi-open cover of X has a locally finite semi-closed refinement. **Theorem 2.15.** If (X, T) is a semi-regular space then $(a) \to (b) \to (c) \to (d)$. *Proof.* $(a) \rightarrow (b)$ is obvious.

 $(b) \rightarrow (c)$ Follows from Theorem 2.13.

 $(c) \rightarrow (d)$ Follows from Theorem 2.14.

In Example 2.2, (X,T) is a semi- regular in which $\{1\}$, $\{2\}$ and $\{3\}$ are semiclosed sets. Therefore, (X,T) satisfies statement (d) of Theorem 2.15, but it is not S_1 –paracompact.

Note that if (X, T) is also e.d. in Theorem 2.15, then $(d) \rightarrow (a)$.

3-Properties of S_1 -paracompact Spaces

In this section we study some basic properties of S_1 -paracompact spaces such as subspaces, sums, products, images and inverse images under some types of functions. **Theorem 3.1.** Every reguler open subspace of an S_1 -paracompact space is S_1 -paracompact.

Proof. Let (X,T) be an S_1 -paracompact space and A be a regular open subspace of (X,T). Let $\mathcal{U} = \{U_\alpha : \alpha \in I\}$ be a semi-open cover of A such that $U_\alpha \in SO(A, T_A)$ for each $\alpha \in I$. Since A is an open subset of X then $U_\alpha \in SO(X,T)$ for each $\alpha \in I$. Therefore the family $\mathcal{V} = \{U_\alpha : \alpha \in I\} \cup \{X - A\}$ is a semi-open cover of X. Let $\mathcal{W} = \{W_\beta : \beta \in B\}$ be a locally finite open refinement of \mathcal{U} in (X,T). Then the family $\{W_\beta \cap A : \beta \in B\}$ is a locally finite open refinement of A in (A, T_A) , Thus (A, T_A) is S_1 -paracompact.

Corollary 3.2. Every clopen subspace of an S_1 -paracompact space is S_1 -paracompact.

Definition 3.3.[6] Let $\{(X_{\alpha}, T_{\alpha}) : \alpha \in I\}$ be a collection of topological spaces such that $X_{\alpha} \bigcap X_{\beta} = \emptyset$ for each $\alpha \neq \beta$. Let $X = \bigcup_{\alpha \in I} X_{\alpha}$ be topologized by

 $T = \{G \subseteq X : G \cap X_{\alpha} \in T_{\alpha} , \alpha \in I\}. \text{ Then } (X,T) \text{ is called the sum of the spaces } \{(X_{\alpha},T_{\alpha}) : \alpha \in I\} \text{ and we write } X = \bigoplus_{\alpha \in I} X_{\alpha}.$

Theorem 3.4. The topological sum $\bigoplus_{\alpha \in I} X_{\alpha}$ is S_1 -paracompact if and only if the space (X_{α}, T_{α}) is S_1 -paracompact for each $\alpha \in I$.

Proof. Necessity follows from Corollary 3.2, since (X_{α}, T_{α}) is a clopen subspace of the space $\bigoplus_{\alpha \in I} X_{\alpha}$, for each $\alpha \in I$. To prove sufficiency, let \mathcal{U} be a semi- open cover of $\bigoplus_{\alpha \in I} X_{\alpha}$. For each $\alpha \in I$ the family $\mathcal{U}_{\alpha} = \{U \cap X_{\alpha} : U \in \mathcal{U}\}$ is a semi- open cover of the S₁-paracompact space (X_{α}, T_{α}) . Therefore \mathcal{U}_{α} has a locally finite open refinement \mathcal{V}_{α} in (X_{α}, T_{α}) . Put $\mathcal{V} = \bigcup_{\alpha \in I} \mathcal{V}_{\alpha}$. It is clear that \mathcal{V} is a locally finite open refinement of \mathcal{U} . Thus $\bigoplus_{\alpha \in I} X_{\alpha}$ is S₁-paracompact.

Recall that a function $f : (X,T) \to (Y,M)$ is said to be irresolute ([2]), if $f^{-1}(U) \in SO(X,T)$ for every $U \in SO(Y,M)$. It is well known that every continuous open surjective function is irresolute (Theorem 1.8 of [2]).

Theorem 3.5. Let $f: (X,T) \to (Y,M)$ be a continuous, open, and closed surjective

function such $f^{-1}(y)$ is compact for each $y \in Y$. If (X,T) is S_1 -paracompact, then so is (Y, M).

Proof. Let $\mathcal{V} = \{V_{\alpha} : \alpha \in I\}$ be a semi-open cover of (Y, M). Since f is irresolute, the collection $\mathcal{U} = f^{-1}(\mathcal{V}) = \{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a semi-open cover of the S_1 -paracompact (X, T) space and so it has a locally finite open refinement, say \mathcal{W} . The collection $f(\mathcal{W})$ is a locally finite open refinement of \mathcal{V} in (Y, M).

Definition 3.6. A function $f : (X,T) \to (Y,M)$ is said to be semi-closed ([10]) if $f(A) \in SC(Y,M)$ for every closed subset A of X.

Proposition 3.7. [1] A function $f : (X,T) \to (Y,M)$ is semi-closed if and only if for every $y \in Y$ and every open set U in (X,T) which contains $f^{-1}(y)$, there exists $V \in SO(Y,M)$ such that $y \in V$ and $f^{-1}(V) \subseteq U$.

Theorem 3.8. Let $f : (X,T) \to (Y,M)$ be a continuous semi-closed surjection $andf^{-1}(y)$ is compact for each $y \in Y$. If (Y,M) is S_1 -paracompact space then (X,T) is paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha}, \alpha \in I\}$ be an open cover of *X*. For each $y \in Y$ and for each $x \in f^{-1}(y)$ choose $\alpha(x) \in I$ such that $x \in U_{\alpha(x)}$. Therefore the collection $\{U_{\alpha(x)} : x \in f^{-1}(y)\}$ is an open cover of $f^{-1}(y)$ and so there exists a finite subset I(y) of *I* such that $f^{-1}(y) \subset \cup_{\alpha(x) \in I(y)} U_{\alpha(x)} = U_y$. But *f* is semi-closed so there exists a semi-open set V_y containing *y* and $f^{-1}(V_y) \subset U_y$. Thus $\mathcal{V} = \{V_y : y \in Y\}$ is a semi-open cover of *Y* and so it has a locally finite open refinement say $\mathcal{W} = \{W_\beta : \beta \in B\}$. Since *f* is continuous, then the family $\{f^{-1}(W_\beta) : \beta \in B\}$ is an open locally finite cover of *X* such that for each $\beta \in B$, $f^{-1}(W_\beta) \subset U_y$ for some $y \in Y$. Now, the family $\{f^{-1}(W_\beta)\Lambda U_y : \beta \in B, y \in \mathcal{V}\}$ is a locally finite open refinement of \mathcal{U} , where $f^{-1}(W_\beta)\Lambda U_y = \{f^{-1}(W_\beta) \cap U_y : \beta \in B, \alpha(x) \in I(y)\}$. Therefore (X, T) is paracompact. We finally study products of S₁ –paracompact spaces. Note that the space (X, T) where $X = \{1, 2\}$ and $T = \{\phi, X, \{1\}\}$ is an e.d. S₁ –paracompact (compact) space while $(X, T) \times (X, T)$ is not S₁ –paracompact since $\{\{(1,1), (2,2)\}, \{(1,1), (1,2), (2,1)\}\}$ is a semi-open cover of $X \times X$ which admits no locally finite open refinement.

Corollary 3.9. If (X,T) is compact, (Y,M) is S_1 –paracompact and

 $(X,T) \times (Y,M)$ is e.d. semi-regular, then $(X,T) \times (Y,M)$ is S₁ -paracompact.

Proof. Since (Y, M) is paracompact then $(X, T) \times (Y, M)$ is paracompact (see[6]). Therefore $(X, T) \times (Y, M)$ is S_1 - paracompact by Theorem 2.3. In the above paragraph $(X, T) \times (X, T)$ is e.d. but not semi-reguler. Therefore the condition " semireguler" on $(X, T) \times (Y, M)$ in the above Corollary can not be dropped. On the other hand $(R, T) \times (R, T_{dis})$ (where (R, T) as in Example 2.4, part (b)) is semi-reguler but not S_1 -paracompact since it is not s-expandable (Example 3.14,[1]).

References

[1] K. Y. Al-Zoubi, *S-expandable spaces*, Acta Math. Hungar., 102 (2004), 203-212

[2] S. G. Crossley and S. K. Hilderbrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.

[3] C. Dorsett, Semi-compact R_1 and product spaces, Bull. Malaysian Math., Soc. (2) 3 (1980), 15-19.

[4] C.Dorsett, Semi-regular spaces, Soochow J. Math., 8(1982), 45-53.

[5] J. Dontchev, An answer to a question of Mrsevic and Reilly, Q and A in Gen. Topology 12 (1994), no. 2, 205-207.

[6] R. Engelking, *General Topology*, Helderman Verlag, (1989).

[7] D. S. Jankovc, A note on mappings of extremally disconnected spaces, Acta Math. Hung. 46(1985), 83-92.

[8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[9] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

[10] T. Noiri, *Properties of S-closed spaces*, Acta Math. Hungar., **35** (1980), 431-436.

[11] D. Sivaraj, Semihomeomophism, Acta Math. Hungar., 48(1986), 139-145.

[12] M.K. Singal and S. P. Arya, On nearly paracompact spaces, Mat., Vesnik., 6 (21)(1969), 3-16.

Khalid Al-Zoubi

Department of Mathematics Faculty of science, Yarmouk University Irbid-Jordan E-mail: *Khalidz@yu.edu.jo.*

Amani Rawashdeh

Department of Mathematics, Faculty of science, Yarmouk University Irbid-Jordan E-mail: a_rawashdeh85@yahoo.com.