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Abstract— We present approaches for gesture classification and 

gesture segmentation by using machine learning on the Kinect 

sensor’s data stream. Our work involved three phases. Firstly we 

developed gesture classification from a known vocabulary of 

gestures in an edited data stream. Secondly we extended those 

techniques to detect and classify a gesture in an unedited stream 

which also captures random movements. Thirdly, we apply rules 

to filter out movements that were not intentional gestures and yet 

resembled certain gestures in our vocabulary.  
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I.  INTRODUCTION 

Recognition and classification of human gestures is an 
active area of research since it is an important component of 
human-machine interaction. Most existing approaches use low 
level image processing operators to extract salient features 
from the moving human body in video data, which are then 
used to train machine learning algorithms [1,2]. Such feature 
extraction techniques pose a significant challenge and work 
under certain restrictive assumptions such as lighting 
conditions and even the hardware design of the video capturing 
device [1]. Gesture segmentation also remains a problem with 
multiple approaches described in the literature [2]. The 
Microsoft Kinect offers a hardware and software platform 
which solves some key computer vision problems with high 
levels of accuracy and well understood error characteristics and 
limitations [3]. In this paper we present our approach in solving 
the problem of gesture recognition by using machine learning 
on the Kinect’s data stream of locations of joints on a human 
body, in other words skeletal data. Our approach consists of 
three parts. Firstly we develop gesture classification from a 
known vocabulary of gestures in an edited data stream. 
Secondly we extend those techniques to detect and classify a 
deliberate gesture in an unedited stream which also captures 
random movements. Thirdly, we apply rules to filter out 
movements that were not intentional gestures and yet 
resembled certain gestures in our vocabulary; in other words 
we developed techniques for both the gesture segmentation and 
classification problem in an unedited stream. 

II. THE KINECT JOINT DATA STREAM AND GESTURE 

VOCABULARY 

A. The Kinect Sensor and its Data Streams 

Here we describe in brief the main functions of Kinect 
sensor. We next describe how the Kinect data stream is read 
and how we modify the data organization for processing 
purposes.  

The Kinect sensor can measure depth data (estimates of 
distance from Kinect to pixels in scenery) and it can identify 
and locate human skeleton. This skeleton is identified through 
positions of skeletal joints computed by Kinect from depth 
data. The Kinect processes and sends the skeletal data along 
with the depth data at the rate of 30 frames a second.  It 
provides data streams for skeletal joints of up to two humans. 

The precision of Kinect measurements and distortions was 
extensively studied in [3]. This experimental study reports that 
the random error of depth measurements increases 
quadratically with increasing distance from the sensor and the 
depth resolution also decreases quadratically with increasing 
distance from the sensor. It also measured the error bounds and 
resolutions limits and recommends that for mapping 
applications the data should be acquired within 1–3 m distance 
to the sensor. Our experiments were performed with sufficient 
variations within these limitations. 

The Kinect sensor sends skeletal data to the computer as a 
temporal sequence of X, Y, Z coordinates of all 20 tracked 
joints. The data is grouped into time-stamped frames and the i

th
 

frame can be represented as Ci
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, 
where C is a single coordinate value and the super-script has 
joint number followed by axis letter. When recording a data 
stream that starts at the 0

th
 frame for which n+1 frames have 
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and so on … We can further abbreviate this notation to C0,n
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 where the 
subscript 0, n means the sequence starting at 0 and ending at n. 
We additionally perform a data scaling step as recommended in 
[ref] for each C along the X, Y and Z directions for every joint 
as Cscaled = (Coriginal – min) / (max – min) where max and min 
are the maximum and minimum values of that particular 
feature. For running the machine learning programs described 
next, we consider this sequence as a single feature vector where 
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n is appropriately chosen and some joints maybe deleted from 
the stream based upon necessity.  

B. The Gesture Vocabulary 

The aircraft gestures are based on aircraft marshaling 
gestures used in the military air force [4]. Let us start from the 
liftoff gesture. Both arms start down against the body in a rest 
position as shown in Figure 1A. The arms are swept up on their 
respective sides until they are parallel to the ground and stay 
like that until the corresponding maneuver is executed (Figure 
1B). The land gesture is done in the reverse.  Both arms start 
out to their respective sides of the body (Figure 1C), parallel to 
the ground. Then, the arms sweep downward and stop when 
they reach the side of the body. 

.  

Figure 1. Start of liftoff (A). Ends (B, C) of liftoff and land. 

In the forward gesture both arms start out in front of chest 
parallel to the floor, hands are flat. The hands are brought back 
towards chest while forming a triangle with finger tips forming 
the top vertex. The motion stops when hands contact chest. In 
the left gesture both arms start out to their respective sides, 
parallel to the ground. The right arm bends at the elbow and 
moves pointing to the left hand side of the body while keeping 
parallel to the ground. For the stop gesture both arms start 
down against the body in a rest position (Figure 1A). They are 
swept out to their respective sides, ending over the head where 
the hands meet (much higher than arms in Figure 1B). In the 
tilt left gesture both arms start out to their respective sides, 
parallel to the ground. The waist is bent, causing the upper 
body to tilt to its left side while holding the upper body position 
still. The remaining gestures right and tilt right can be 
described similarly.   

It can be seen from the above description that recognizing 
sequence of gestures in real life situation can poses serious 
challenges for machine learning algorithms.  The preparatory 
movement for the gesture can be mistaken and interpreted as an 
additional gesture that was actually not intended. For example, 
almost any gesture in our vocabulary requires the raising of 
hands to shoulder level, which can be interpreted as liftoff even 
though the intended gesture maybe different. 

Let us first, therefore, solve the problem of a single gesture 
classification.  It should also be noted that we use the following 
abbreviations of gesture names in the tables of this paper – FW 
for forward, LN for land, LF for left, LO for liftoff, RT for 
right, ST for stop, TL for tilt left and TR for tilt right. 

III. EXPERIMENTAL EVALUATION OF MACHINE LEARNING 

ON EDITED JOINT DATA STREAM 

In this section we describe our experimental evaluation of 
three different algorithms for classification of human bodily 
motion into one of the classes in our gesture vocabulary. For 
the data presented in this section, the data stream was edited in 

two ways. Firstly, 7 upper body joints out of the total 20 which 
move during these specific set of gestures were kept. Secondly, 
the starting and ending frames of each gesture were marked by 
a human observer. For this reason, we call this the edited joint 
data stream. Thus in these group of experiments we are testing 
the accuracy of the machine learning algorithms where the 
input data for both training and testing are guaranteed to 
contain one of the known gestures from the vocabulary. In the 
next section we will describe our approach of solving the 
problem for unedited data. 

A. Experimental results on machine learning 

We chose a more contemporary and popular algorithm 
namely Support Vector Machine (SVM) and an earlier one, the 
Decision Tree (DT) as the two machine learning techniques to 
apply and compare. We observed excellent accuracies for both 
SVM and DT classification, with SVM performing better as 
shown in the confusion matrices of Table I and Table II. We 
also investigated the choice of kernel function for SVM by 
comparing the linear kernel with the radial basis function 
(RBF). 

TABLE I.  CONFUSION MATRIX FOR 10-FOLD CROSSVALIDATION,  
SVM WITH LINEAR KERNEL, TOTAL ACCURACY = 99.97% 

 
FW LN LF LO RT ST TL TR 

 

FW 480 0 0 0 0 0 0 0 

 

LN 0 460 0 0 0 0 0 0 

 

LF 0 0 480 0 0 0 0 0 

 

LO 0 0 0 480 0 0 0 0 

 

RT 0 0 0 0 440 0 0 0 

 

ST 0 0 0 1 0 399 0 0 

 

TL 0 0 0 0 0 0 400 0 

 

TR 0 0 0 0 0 0 0 380 

 

TABLE II.  CONFUSION MATRIX FOR 10-FOLD CROSSVALIDATION, 
DECISION TREE, TOTAL ACCURACY = 99.32% 

 
FW LN LF LO RT ST TL TR 

 

FW 479 0 1 0 0 0 0 0 

 

LN 0 459 0 0 0 0 1 0 

 

LF 0 0 477 0 1 0 2 0 

 

LO 0 0 2 475 0 3 0 0 

 

RT 0 0 1 0 437 0 0 2 

 

ST 0 0 0 2 0 398 0 0 

 

TL 1 1 3 1 0 0 394 0 

 

TR 0 0 1 0 2 0 0 377 
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For RBF we performed a grid search over the cost and gamma 
parameters to determine the best pair of values that would give 
the highest accuracy on crossvalidation [5], while in the case of 
the linear kernel the search for the best choice of only the cost 
parameter was executed much faster. After comparison, SVM-
linear had the best accuracy followed by SVM-RBF and then 
DT. We thus choose SVM-linear over SVM-RBF due to two 
reasons – complexity of finding the best parameters and also 
due to general guidelines which state that the accuracy of a 
linear kernel is better than RBF when the data dimension is 
much higher than the sample size [7], as is true in our case. 

B. Comparison with subject-wise crossvalidation 

The choice of human subject generating data can determine 
performance of machine classifier.  There is usually the need 
for analysis to understand the impact of different human 
subjects on machine learning outcomes. The results are best 
captured by subject-wise cross-validation accuracy that for our 
data is shown in Table III for various machine learning 
techniques for three different human subjects.  The human 
subjects are numbered 1, 2, and 3. The table lists in each row 
two human subjects each producing a set of gestures taken as a 
training data set and the remaining human subject producing 
set of gestures taken as a testing data set. Columns two and 
three list various machine learning techniques accuracy for 
such selected learning and training data set.  Let us consider the 
first row where human subjects 1 and 2 each are producing 
training data set and human subject 3 producing testing data 
set. Let us first consider comparison of machine learning 
techniques for classifiers based on SVM (linear kernel) and 
Decision Trees. We see clearly that SVM (linear kernel) is 
practically subject independent whereas Decision Tree was 
very sensitive to the choice of the subjects. The accuracy for 
SVM (linear kernel) was near perfect even though the training 
and testing was done on different subjects. The accuracy for 
Decision Trees decreased dramatically to 36% in the worst 
case, while being in the high 70% for the other cases, when the 
training and testing was done on different subjects. This row 
simple tells us that learning from both 1 and 3 subjects creates 
very specific and accidental learning process where the 
classifier based on Decision Trees tested using subject 3 data 
performed better.  

TABLE III.  ACCURACIES FOR SUBJECT-WISE CROSSVALIDATION 

  SVM DT 

train = 1,2 test = 3 97% 36% 

train = 1,3 test = 2 99% 77% 

train = 3,2 test = 1 99% 79% 

 

IV. EXPERIMENTAL EVALUATION OF MACHINE LEARNING 

ON UNEDITED JOINT DATA STREAM 

We first describe what is meant by an unedited joint data 
stream. Given a stream C0,n

1x 
C0,n

1y
 C0,n

1z
 C0,n

2x
 C0,n

2y
 C0,n

2z
… 

C0,n
20x

 C0,n
20y

 C0,n
20z

 we do not have knowledge of where a 
gesture starts and ends within this stream. We only know that 
there is some i, j where 0 < i and j < n for which a gesture 
found in our training vocabulary starts at i and ends at j. We 

present our approach for detecting this gesture embedded in the 
data stream and also classifying by gesture type. It should be 
noted that the recognition is done offline and for practical 
considerations like storage and processing time the stream is 
cropped to sequences. These sequences are still much larger 
than the length of the gestures and for each instance the person 
performing the gesture was instructed to make random bodily 
movements before the start and after the end of the gesture. As 
a result the data poses an inherent challenge as evidenced by 
work such as [9] which tries to recognize gestures in 
unsegmented video streams. 

A. Cumulative sum of SVM probabilities 

Support Vector Machines were extended to return the 

probability estimates along with classification by [8] which is 

implemented in the LIBSVM library [6]. This work extended 

the pairwise coupling method of multi-class classification that 

combines all comparisons for each pair of classes to generate 

class probabilities. These probability values are an 

improvement over other similar methods like voting. We next 

describe the use of these probability estimates in detecting a 

gesture in an unedited data stream. We created a sliding 

window based on an estimate of time length of gesture and 

passed it over the unedited data stream. This process generates 

one probability estimate per gesture for each position of the 

sliding window. In our case with eight gestures, eight 

probability values are generated at each position. Next we 

compute the cumulative sum of these probability values, and 

decide the predicted gesture as the gesture with maximum 

cumulative sum.  

We executed this procedure on variety of data streams. The 

first group of data streams contained a gesture or a gesture 

sequence with minimum accidental movement of the hands. 

The second group of data streams contained in addition to 

intended gesture or a lot of accidental movement of the hands 

making the data intentionally very “noisy”. The first group 

generally was recognized with very highly accuracy. Let us 

concentrate in this paper on very “noisy” data streams 

examples of which are shown in Figures 2 and 3. The intended 

gestures in very “noisy” data streams was recognized with 

much lower accuracy of 46% as shown in Table IV. 

 

 
 

Figure 2. Probabilities for unedited stream, example 1 
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Figure 3. Probability for unedited stream, example 2 

TABLE IV.  CONFUSION MATRIX FOR UNEDITED DATA STREAM, SVM,  
NO RULE APPLIED, TOTAL ACCURACY = 46% 

 
FW LN LF LO RT ST TL TR 

 

FW 11 0 0 2 0 2 0 0 

 

LN 1 2 0 12 0 0 0 0 

 

LF 0 0 5 10 0 0 0 0 

 

LO 0 0 0 15 0 0 0 0 

 

RT 0 0 0 10 5 0 0 0 

 

ST 0 0 0 11 0 4 0 0 

 

TL 0 0 0 6 0 0 4 0 

 

TR 0 0 0 5 0 0 0 5 

B. Improvement of Gesture Recognition by Applying Rules 

As we discussed before, the main challenge for proper 
gesture recognition by machine is an unintended gesture in the 
data stream especially in very “noisy” data streams. This may 
happen because the person, in order to take the initial pose, 
may have to pass through motions that are similar to a gesture 
existing in the vocabulary (see liftoff gesture discussed in 
Section 2). 

We have developed, therefore, the set of rules to improve 
the automatic recognition of gestures in a data stream. One of 
the rules was that if the liftoff gesture (recognized in the stream 
of data) is followed by any other gesture with comparably high 
cumulative probability value then only the gesture that 
followed the liftoff would be returned as intended. Obviously, 
both the liftoff gesture and the following gesture would need to 
have a high cumulative sum of SVM probabilities. The proper 
threshold needed to be chosen correctly through data analysis 
to minimize the confusion values in the confusion matrix. The 
effect of the rule discussed above is shown in Table V.   

CONCLUSIONS 

In this paper we described techniques of machine learning 
for gesture classification as applied to aircraft marshaling. The 
characteristic features of our research are as follows. We have 
used the Kinect sensor’s joint coordinates data stream as the 

feature describing the moving human body in video data.  We 
used machine learning methods and chose one (SVM, linear 
kernel) that is best in accuracy. Our requirements were not only 
the high classification accuracy, but also high subject-wise 
cross-validation and availability of the probability function 
providing information about how likely the data sub-stream can 
be interpreted as a given gesture. We have also studied various 
techniques to improve gesture sequence analysis to filter out 
unintentional gestures. 

TABLE V.  CONFUSION MATRIX FOR UNEDITED DATA STREAM, SVM, 
WITH APPLICATION OF RULE, TOTAL ACCURACY = 83.33% 

 
FW LN LF LO RT ST TL TR 

 

FW 16 0 0 2 0 2 0 0 

 

LN 1 19 0 0 0 0 0 0 

 

LF 0 0 14 6 0 0 0 0 

 

LO 0 0 0 20 0 0 0 0 

 

RT 0 0 0 5 15 0 0 0 

 

ST 0 0 0 9 0 11 0 0 

 

TL 0 0 0 0 0 0 15 0 

 

TR 0 0 0 0 0 0 0 15 

 
The described advancements in recognition and 

classification of human gestures will contribute to building a 
model for systems supporting human-machine interactions 
based on human gestures and body movement. 
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