About
72
Publications
9,895
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,827
Citations
Introduction
Skills and Expertise
Additional affiliations
May 2014 - present
August 2009 - January 2014
January 2008 - June 2009
Publications
Publications (72)
We report the synthesis of catechol-functionalized symmetric triblock polymers comprising densely functionalized catechol endblocks using anionic ring-opening polymerization (AROP) and thiol-ene click chemistry. The simplicity and modularity of our approach...
We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve challenges with the three-dimensional (3D) printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs to solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self-assembly of the bPEs, l...
We demonstrate facile fabrication of highly filled, lightweight organic–inorganic composites comprising polyurethanes covalently linked with naturally occurring clinoptilolite microparticles. These polyurethane/clinoptilolite (PUC) composites are shown to mitigate particle aggregation usually observed in composites with high particle loadings and p...
We generate self-assembled biocompatible scaffolds with excellent structural integrity based on complex-forming block polyelectrolytes that enable extrusion-based 3D bioprinting of large constructs from low-viscosity bioinks. Despite remarkable progress of biofabrication techniques in tissue engineering, the development of extrudable bioinks that p...
Dynamic light scattering (DLS) is a commonly used analytical tool for characterizing the size distribution of colloids in a dispersion or a solution. Typically, the intensity of a scattering produced from the sample at a fixed angle from an incident laser beam is recorded as a function of time and converted into time autocorrelation data, which can...
Portlandite (calcium hydroxide: CH: Ca(OH)2) suspensions aggregate spontaneously and form percolated fractal aggregate networks when dispersed in water. Consequently, the viscosity and yield stress of portlandite suspensions diverge at low particle loadings, adversely affecting their processability. Even though polycarboxylate ether (PCE)-based com...
We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve longstanding challenges with the three-dimensional printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs into solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self- assembly of...
We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve longstanding challenges with the three-dimensional printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs into solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self- assembly of...
We generate self-assembled biocompatible scaffolds with excellent structural integrity based on complex-forming block polyelectrolytes that enable extrusion-based 3D bioprinting of large constructs from low-viscosity bioinks. Despite remarkable progress of biofabrication techniques in tissue engineering, the development of extrudable bioinks that p...
Machine learning (ML) accelerates the exploration of material properties and their links to the structure of the underlying molecules. In previous work [Shi et al. ACS Applied Materials & Interfaces 2022, 14, 37161-37169.], ML models were applied to predict the adhesive free energy of polymer-surface interactions with high accuracy from the knowled...
Dynamic light scattering (DLS) is a commonly used analytical tool for characterizing the size distribution of colloids in a dispersion or a solution. Typically, the intensity of a scattering produced from the sample at a fixed angle from an incident laser beam is recorded as a function of time and converted into time autocorrelation data, which can...
Machine learning (ML) accelerates the exploration of material properties and their links to the structure of the underlying molecules. In previous work [J. Shi, M. J. Quevillon, P. H. A. Valen\c{c}a, and J. K. Whitmer, \textit{ACS Appl. Mater. Interfaces.}, 2022, 14, 32, 37161--37169], ML models were applied to predict the adhesive free energy of p...
Photocrosslinkable precursors (small molecules or polymers) undergo rapid crosslinking upon photoirradiation, forming covalently crosslinked hydrogels. The spatiotemporally controlled crosslinking, which can be achieved in situ, encourages the utility of photocrosslinked...
Metal cation identity determines the zeolite topology. Framework topology determines the total zeolite cationic content. Potassium predominantly counterbalances Al anions; sodium and calcium are predominantly structure-directing agents.
Drainage via stratification in micellar foam films formulated with ionic surfactants shows dramatic changes on salt addition: both the step size and the number of steps in their stepwise thinning diminish. As the stratification process is governed by supramolecular oscillatory structural forces that arise due to confinement-induced structuring of m...
Complex coacervate microdroplets are membraneless compartments that selectively sequester biological molecules from their surroundings and enhance bioreactions. Yet, their use as protocell models and bioreactors has been limited owing to a lack of feasible strategies to prevent their uncontrolled coalescence. Herein, we introduce an approach to mit...
Extrusion-based 3D printing with rapidly hardening polymeric materials is capable of building almost any conceivable structure. However, concrete, one of the most widely used materials for large-scale structural components, is generally based on inorganic binder materials like Portland cement. Unlike polymeric materials, a lack of precise control o...
Polyelectrolyte complex (PEC) hydrogels possess a rich microstructural diversity and tunability of shear response, self-healing attributes, and pH- and salt-responsiveness. Yet, their utility in biotechnology and biomedicine has been limited, owing to their weak mechanical strength and uncontrolled swelling. Here, we introduce a strategy to overcom...
Complex coacervate microdroplets are membraneless compartments that selectively sequester biological molecules from their surroundings and enhance bioreactions. Yet, their use as protocell models and bioreactors has been limited owing to a lack of feasible strategies to prevent their uncontrolled coalescence. Herein, we introduce an approach to mit...
The addition of monovalent salts to polyelectrolyte complexes (PECs) comprising oppositely charged polyelectrolytes results in diminishing propensity for complexation, leading to complexes with higher water contents and lower moduli. However, the corresponding influence of multivalent ions on polyelectrolyte complexation has not yet been explored b...
We present structural and turbidimetric characterizations of aqueous dispersions of oppositely charged nanoparticles and polyelectrolytes that undergo complexation and flocculation to form particle‐rich agglomerates over a wide range of polyelectrolyte and nanoparticle concentrations with varying polyelectrolyte sizes and persistence lengths. Compa...
Significance
Quantitative characterization of intermicellar distances and interactions requires the use of bespoke, expensive techniques like small angle X-ray or neutron scattering, surface force apparatus, and atomic force microscopy. Here, we utilize Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols to characterize nanoscopic t...
Polyelectrolyte complexation is driven by associative interactions between oppositely charged polyelectrolytes, resulting in formation of a macroscopic polymer dense phase and a polymer dilute phase with applications in coatings, adhesives, and purification membranes. Beyond macroscale phase separation, precision polymer synthesis has enabled furth...
The role of polyelectrolyte−solvent interactions, among other non-Coulomb interactions, in dictating the thermodynamics and kinetics of polyelectrolyte complexation is prominent yet sparingly studied. In this article, we present systematic comparisons of the binodal phase behavior of polyelectrolyte complexes (PECs) comprising polyelectrolytes with...
Polyelectrolyte complexes (PECs) offer enormous material tunability and desirable functionalities, and consequently have found broad utility in biomedical and material industries. While poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are a commonly used pairing, various aspects of the phase behavior of PAA-PAH complexes have not b...
Temperature is well-known to affect the aggregation behavior of colloidal suspensions. This paper elucidates the temperature dependence of the rheology of portlandite (calcium hydroxide: Ca(OH)2) suspensions that feature a high ionic strength and a pH close to the particle’s isoelectric point (IEP). In contrast to the viscosity of the suspending me...
Addition of salt speeds up chain relaxation dynamics in polyelectrolyte complexes (PECs), and time-salt superposition (TSS) approaches to describe the linear viscoelastic response of PECs are well-established. However, TSS is carried out at fixed initial polyelectrolyte concentrations, and varying the initial polyelectrolyte concentration results i...
div>
The role of polyelectrolyte-solvent interactions, among other non-Coulomb interactions, in dictating the thermodynamics and kinetics of polyelectrolyte complexation is prominent, yet sparingly studied. In this article, we present systematic comparisons of the binodal phase behavior of polyelectrolyte complexes (PECs) comprising polyelectroly...
div>
Polyelectrolyte complexes (PECs) offer enormous material tunability and desirable functionalities, and consequently have found broad utility in biomedical and materials industries. Poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are one of the most commonly used pairings to form PECs. However, various aspects of the phase b...
In spite of their high surface charge (zeta potential ζ = + 34 mV), aqueous suspensions of portlandite (calcium hydroxide: Ca(OH)2) exhibit a strong tendency to aggregate, and thereby present unstable suspensions. While a variety of commercial dispersants seek to modify the suspension stability and rheology (e.g., yield stress, viscosity), it remai...
In this review, we highlight the recent progress in our understanding of the structure, properties and applications of protein–polyelectrolyte complexes in both bulk and micellar assemblies. Protein–polyelectrolyte complexes form the basis of the genetic code, enable facile protein purification, and have emerged as enterprising candidates for simul...
Triblock polyelectrolyte gels were characterized by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The oppositely charged end blocks self-assemble into polyelectrolyte complex cores, while the neutral poly(ethylene oxide) middle block bridges adjacent cores. The size of the polyelectrolyte complex core does not change wit...
Harnessing molecular design principles toward functional applications of ion-containing macromolecules relies on diversifying experimental data sets of well-understood materials. Here, we report a simple, tunable framework for preparing styrenic polyelectrolytes, using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization i...
Polyelectrolyte complexes are omnipresent both in nature and in the technological world, including nucleotide condensates, biological marine adhesives, food stabilizers, encapsulants, and carriers for gene therapy. However, the true phase behavior of complexes, resulting from associative phase separation of oppositely charged polyelectrolytes, rema...
Biomolecules exist and function in cellular microenvironments that control their spatial organization, local concentration, and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate, and control the local physico-chemical properties is of gre...
Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides – (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain...
Harnessing new molecular design principles toward functional applications of ion-containing macromolecules relies on diversifying experimental datasets of well-understood materials. We report a simple, tunable framework for preparing styrenic polyelectrolytes, using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization in a...
Harnessing new molecular design principles toward functional applications of ion-containing macromolecules relies on diversifying experimental datasets of well-understood materials. We report a simple, tunable framework for preparing styrenic polyelectrolytes, using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization in a...
Proteins and their interactions in and out of cells must be well-orchestrated for the healthy functioning and regulation of the body. Even the slightest disharmony can cause diseases. Therapeutic peptides are short amino acid sequences (generally considered <50 amino acids) that can naturally mimic the binding interfaces between proteins and thus,...
Biomolecules exist and function in cellular micro-environments that control their spatial organization, local concentration and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate and control the local physicochemical properties is of great...
Addition of particulate fillers to polymers is a well-practiced method for augmenting properties of polymers. If at least one dimension of the filler is below 100 nm, large enhancements in properties are observed at particle concentrations well below the percolation threshold for micron sized fillers. For fundamental reasons, physical mixtures of n...
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase...
Supplementary Figures, Supplementary Methods and Supplementary References
This chapter reviews the theoretical and experimental description of complexes and complex-based hybrid self-assemblies composed of flexible polyelectrolytes, with a special emphasis on thermodynamics, equilibrium structure, and properties of liquid complex coacervates. It discusses the theoretical frameworks that have been employed to describe com...
Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review art...
Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size ae, are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein...
Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and nonequilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in model soft materials comprised of single-component polymer-tethered nanoparticles, which exhibit a readily access...
Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which sphe...
Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of these self-suspended hairy nanoparticles is that the particles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smalle...
We investigate the static structure factor S(q) of solvent-free nanoparticle--organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tet...
Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their cons...
Anomalous trends in nanoparticle correlation and motion are reported in soft nanoparticle suspensions using static and dynamic x-ray scattering measurements. Contrary to normal expectations, we find that particle-particle correlations decrease and particle dynamics become faster as volume fraction rises above a critical particle loading associated...
Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in...
We show that it is possible to achieve higher energy density lithium–oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical...
Structure and rheology of oligomer-tethered nanoparticles suspended in low molecular weight polymeric host are investigated at various particle sizes and loadings. Strong curvature effects introduced by the small size of the nanoparticle cores are found to be important for understanding both the phase stability and rheology of the materials. Small...
We report a novel class of silica ionogels created by dispersing silica nanoparticles densely grafted with the ionic liquid (IL) 1-trimethoxysilyl propyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide (SpmImTSFI) in a 1-butyl-3-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) imide (BmpyrTFSI) IL host. We find that over the entire range o...
Phase behavior of poly(ethylene glycol) (PEG) tethered silica nanoparticles dispersed in PEG hosts is investigated using small-angle X-ray scattering. Phase separation in dispersions of densely grafted nanoparticles is found to display strikingly different small-angle X-ray scattering signatures in comparison to phase-separated composites comprised...
We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findi...
There has been a lot of interest recently in using colloids as model systems to understand glass transition; however the effect of temperature on the rheology of colloidal glasses is not clearly understood. We have investigated the effect of temperature on the dynamics of soft colloids. The model system we study is a new class of organic inorganic...
Electric-field-induced interfacial instabilities and pattern formation in a pair of interacting thin films are analyzed on the basis of linear stability analysis and long-wave nonlinear simulations. The films are coated onto two parallel plate electrodes and separated by an air gap between them. A linear stability analysis (LSA) is carried out for...
We study by nonlinear simulations the electric field induced pattern formation in a thin viscous film resting on a topographically or chemically patterned substrate. The thin film microstructures can be aligned to the substrate patterns within a window of parameters where the spinodal length scale of the field induced instability is close to the su...