
Salvador Dura-BernalState University of New York Downstate Medical Center | SUNY · Department of Physiology and Pharmacology
Salvador Dura-Bernal
PhD in Computational Neuroscience
About
67
Publications
21,518
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,216
Citations
Citations since 2017
Introduction
Experienced Research Assistant Professor in computational neuroscience with over 20 peer-reviewed publications, and PI/co-PI in 3 research grants. Recipient of the 2019 Furchgott Scholar Award for Excellence in Research. Developed Bayesian inference and convolutional network models for visual and auditory perception. Implemented software tool for modeling brain circuits used in 15+ labs. Employed Google Cloud supercomputers to run large-scale simulations to investigate neural coding and function in brain cortical microcircuits – gave talks at Google Next’18 SF and London.
Additional affiliations
December 2012 - present
January 2011 - March 2012
Publications
Publications (67)
Biomimetic simulation permits neuroscientists to better understand the complex neuronal dynamics of the brain. Embedding a biomimetic simulation in a closed-loop neuroprosthesis, which can read and write signals from the brain, will permit applications for amelioration of motor, psychiatric, and memory-related brain disorders. Biomimetic neuroprost...
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implemen...
New & noteworthy:
We developed models of motor cortex corticospinal neurons that replicate in vitro dynamics, including hyperpolarization-induced sag and realistic firing patterns. Models demonstrated resonance in response to synaptic stimulation, with resonance frequency increasing in apical dendrites with increasing distance from soma, matching...
Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an i...
Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical...
The relationship between technology and the law is traditionally known to be a complex one-especially when it comes to neurotechnology. Neurotechnology is the science and technology that can read and modify the brain, which is the organ responsible for our thoughts, perceptions, agency and identity. Therefore, it is unquestionable that the regulato...
Phase amplitude coupling (PAC) between slow and fast oscillations is found throughout the brain and plays important functional roles. Its neural origin remains unclear. Experimental findings are often puzzling and sometimes contradictory. Most computational models rely on pairs of pacemaker neurons or neural populations tuned at different frequenci...
The primary somatosensory cortex (S1) of mammals is critically important in the perception of touch and related sensorimotor behaviors. In 2015, the Blue Brain Project (BBP) developed a groundbreaking rat S1 microcircuit simulation with over 31,000 neurons with 207 morphoelectrical neuron types, and 37 million synapses, incorporating anatomical and...
Electrophysiological oscillations in the brain have been shown to occur as multicycle events, with onset and offset dependent on behavioral and cognitive state. To provide a baseline for state-related and task-related events, we quantified oscillation features in resting-state recordings. We developed an open-source wavelet-based tool to detect and...
The need for reproducible, credible, multiscale biological modeling has led to the development of standardized simulation platforms, such as the widely-used NEURON environment for computational neuroscience. Developing and maintaining NEURON over several decades has required attention to the competing needs of backwards compatibility, evolving comp...
Recent models of spiking neuronal networks have been trained to perform behaviors in static environments using a variety of learning rules, with varying degrees of biological realism. Most of these models have not been tested in dynamic visual environments where models must make predictions on future states and adjust their behavior accordingly. Th...
A bstract
The need for reproducible, credible, multiscale biological modeling has led to the development of standardized simulation platforms, such as the widely-used NEURON environment for computational neuroscience. Developing and maintaining NEURON over several decades has required attention to the competing needs of backwards compatibility, evo...
Pain-related sensory input is processed in the spinal dorsal horn (SDH) before being relayed to the brain. That processing profoundly influences whether stimuli are correctly or incorrectly perceived as painful. Significant advances have been made in identifying the types of excitatory and inhibitory neurons that comprise the SDH, and there is some...
We developed a biophysically-detailed model of the macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB) and thalamic reticular nuclei (TRN), using the NEURON simulator and NetPyNE multiscale modeling tool. We simulated A1 as a cortical column with a depth of 2000 μm and 200 μm diameter, con...
Understanding cortical function requires studying its multiple scales: molecular, cellular, circuit and behavior. We developed a biophysically detailed multiscale model of mouse primary motor cortex (M1) with over 10,000 neurons, 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity and dendriti...
The primary somatosensory cortex (S1) of mammals is critically important in the perception of touch and related sensorimotor behaviors. In 2015 the Blue Brain Project developed a groundbreaking rat S1 microcircuit simulation with over 31,000 neurons with 207 morpho-electrical neuron types, and 37 million synapses, incorporating anatomical and physi...
Recent models of spiking neuronal networks have been trained to perform behaviors in static environments using a variety of learning rules, with varying degrees of biological realism. Most of these models have not been tested in dynamic visual environments where models must make predictions on future states and adjust their behavior accordingly. Th...
Pain-related sensory input is processed in the spinal dorsal horn (SDH) before being relayed to the brain. That processing profoundly influences whether stimuli are correctly or incorrectly perceived as painful. Significant advances have been made in identifying the types of excitatory and inhibitory neurons that comprise the SDH, and there is some...
The Potjans-Diesmann cortical microcircuit model is a widely used model originally implemented in NEST. Here, we reimplemented the model using NetPyNE, a high-level Python interface to the NEURON simulator, and reproduced the findings of the original publication. We also implemented a method for scaling the network size that preserves first- and se...
Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to sy...
Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to sy...
Dendritic spikes in thin dendritic branches (basal and oblique dendrites) are traditionally inferred from spikelets measured in the cell body. Here, we used laser-spot voltage-sensitive dye imaging in cortical pyramidal neurons (rat brain slices) to investigate the voltage waveforms of dendritic potentials occurring in response to spatially-restric...
Biophysically detailed modeling provides an unmatched method to integrate data from many disparate experimental studies, and manipulate and explore with high precision the resultin brain circuit simulation. We developed a detailed model of the brain motor cortex circuits, simulating over 10,000 biophysically detailed neurons and 30 million synaptic...
The Potjans-Diesmann cortical microcircuit model is a widely used model originallyimplemented in NEST. Here, we re-implemented the model using NetPyNE, a high-level Python interface to the NEURON simulator, and reproduced the findings of theoriginal publication. We also implemented a method for rescaling the network sizewhich preserves first and se...
Electrophysiological oscillations in neocortex have been shown to occur as multi-cycle events, with onset and offset dependent on behavioral and cognitive state. To provide a baseline for state-related and task-related events, we quantified oscillation features in resting-state recordings. We used two invasively-recorded electrophysiology datasets:...
Biophysically detailed modeling provides an unmatched method to integrate data from many disparate experimental studies, and manipulate and explore with high precision the resulting brain circuit simulation. We developed a detailed model of the brain motor cortex circuits, simulating over 10,000 biophysically detailed neurons and 30 million synapti...
Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and high-perf...
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences.
There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amou...
Fueled by breakthrough technology developments, the biological, biomedical, and behavioral sciences are now collecting more data than ever before. There is a critical need for time- and cost-efficient strategies to analyze and interpret these data to advance human health. The recent rise of machine learning as a powerful technique to integrate mult...
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amou...
Dendritic spikes in thin dendritic branches (basal and oblique dendrites) of pyramidal neurons are traditionally inferred from spikelets measured in the cell body. Here, we used laser-spot voltage-sensitive dye imaging in cortical pyramidal neurons (rat brain slices) to investigate the voltage waveforms of dendritic potentials occurring in response...
We developed a biophysically detailed multiscale model of mouse primary motor cortex (M1) with over 10,000 neurons and 35 million synapses. We focused on intratelencephalic (IT) and pyramidal-tract (PT) neurons of layer 5 (L5), which were modeled at high multicompartment resolution. Wiring densities were based on prior detailed measures from mouse...
Fueled by breakthrough technology developments, the biological, biomedical, and behavioral sciences are now collecting more data than ever before. There is a critical need for time- and cost-efficient strategies to analyze and interpret these data to advance human health. The recent rise of machine learning as a powerful technique to integrate mult...
Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to eva...
Increasing availability of comprehensive experimental datasets in neuroscience and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational network models. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and h...
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool ( www.netpyne.org ) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implem...
Geppetto is an open-source platform that provides generic middleware infrastructure for building both online and desktop tools for visualizing neuroscience models and data and managing simulations. Geppetto underpins a number of neuroscience applications, including Open Source Brain (OSB), Virtual Fly Brain (VFB), NEURON-UI and NetPyNE-UI. OSB is u...
When standard optimization methods fail to find a satisfactory solution for a parameter fitting problem, a tempting recourse is to adjust parameters manually. While tedious, this approach can be surprisingly powerful in terms of achieving optimal or near-optimal solutions. This paper outlines an optimization algorithm, Adaptive Stochastic Descent (...
Computational models are powerful tools for investigating brain function in health and disease. However, biologically detailed neuronal and circuit models are complex and implemented in a range of specialized languages, making them inaccessible and opaque to many neuroscientists. This has limited critical evaluation of models by the scientific comm...
Dystonia is a movement disorder that produces involuntary muscle contractions. Current pharmacological treatments are of limited efficacy. Dystonia, like epilepsy is a disorder involving excessive activity of motor areas including motor cortex and several causal gene mutations have been identified. In order to evaluate potential novel agents for mu...
Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe he...
A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas inc...
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-...
Many researchers base their neuronal models on experimental data, but few systematically calibrate to it, and even fewer use unpooled data from multiple subjects. Some (partial) exceptions are [1], where one model parameter was calibrated to data pooled across four macaques; and [2], where five model parameters were calibrated to unpooled data from...
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-...
In this paper we propose a kernel adaptive filtering (KAF) approach to repair lesions via microstimulation in a biomimetic spiking neural network of sensorimotor cortex. The fundamental challenge of designing neuroprosthetics and brain machine interfaces (BMIs) is the decoding of electrical activity of neurons and behavior. For injured or damaged b...
Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One...
Electrical microstimulation can be used to drive neural responses to match meaningful spiking patterns corresponding to natural sensory stimuli or motor behaviors. Optimizing microstimulation sequences requires repeatedly stimulating the neural system to obtain sufficient probing data to construct an inverse model. This is challenging in the real b...
Optogenetics is a potent tool for performing precise perturbations to ongoing cortical dynamics in behaving primates. However, only small numbers of neurons can be recorded simultaneously. In this work, we present a biomimetic spiking network model of macaque primary motor cortex (M1) in order to explore network-level effects of optogenetic stimula...
Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions at multiple levels, from synaptic mechanisms to network connectomics. We developed a model of sensory and motor cortex consisting of several hundred spiking model-neurons. A biomimetic model (BMM) was trained using spike-timing dependent reinforcement l...
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sona...
In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene anal...
http://neurosimlab.org/salvadord/spmb_manuscript_Dura-Bernal.pdf
The spectrotemporal representation of an ultrasonar wave reflected by an object contains frequency shifts corresponding to
the velocity of the object’s moving parts, also known as the micro-Doppler signature. The present study describes how the
micro-Doppler signature of human subjects, collected in two experiments, can be used to categorize the ac...
The ability to identify an individual quickly and accurately is a critical parameter in surveillance. Conventional contactless systems are often complex and expensive to imple-ment since video-based processing requires high computational resources. In this paper we present a micro-Doppler (mD) system and a computationally efficient classifier for t...
Hierarchical generative models and Bayesian belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierar- chical distributed cortical anatomy. The complexity...
We present a model which stems from a well-established model of object recognition, HMAX, and show how this feedforward system can include feedback, using a recently proposed architecture which reconciles biased competition and predictive coding approaches. Simulation results show successful feedforward object recognition, including cases of occlud...