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Glioblastoma is the deadliest form of brain cancer. Aside from inadequate treatment
options, one of the main reasons glioblastoma is so lethal is the rapid growth of tumour
cells coupled with continuous cell invasion into surrounding healthy brain tissue.
Significant intra- and inter-tumour heterogeneity associated with differences in the corre-
sponding tumour microenvironments contributes greatly to glioblastoma progression.
Within this tumour microenvironment, the extracellular matrix profoundly influences the
way cancer cells become invasive, and changes to extracellular (pH and oxygen levels)
and metabolic (glucose and lactate) components support glioblastoma growth.
Furthermore, studies on clinical samples have revealed that the tumour microenvironment
is highly immunosuppressive which contributes to failure in immunotherapy treatments.
Although technically possible, many components of the tumour microenvironment have
not yet been the focus of glioblastoma therapies, despite growing evidence of its import-
ance to glioblastoma malignancy. Here, we review recent progress in the characterisation
of the glioblastoma tumour microenvironment and the sources of tumour heterogeneity in
human clinical material. We also discuss the latest advances in technologies for persona-
lised and in vitro preclinical studies using brain organoid models to better model glio-
blastoma and its interactions with the surrounding healthy brain tissue, which may play
an essential role in developing new and more personalised treatments for this aggressive
type of cancer.

Introduction
Glioblastoma is the most commonly diagnosed and aggressive type of brain cancer, accounting for
80% of primary malignant brain tumours of the central nervous system (CNS) and 60% of all brain
tumours in adults [1]. There are 10 000 and 100 000 new cases of glioblastoma diagnosed each year in
the U.S.A. and across the world, respectively [1,2], with the disease occurring 1.6-fold more frequently
in men compared with women [3]. While rare relative to overall cancer incidence, glioblastoma
accounts for 2.5% of total cancer-related deaths, having the highest rate of mortality in those aged
between 15 and 34 years of age [1].
Glioblastoma is a form of glioma, a group of cancers that have long been thought to arise from glial

cells of the CNS. However, recently strong evidence has emerged that glioblastoma arises from neural
stem cells within the subventricular zone of the brain rather than mature glia [4]. Two broad classes
of infiltrative gliomas are identified histologically which resemble normal glial populations; thus, astro-
cytomas and oligodendrogliomas have astrocytes and oligodendrocytes, respectively, as their normal
morphological counterparts [5]. Gliomas are further graded and categorised according to the World
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Health Organisation (WHO) guidelines based on a combination of histologic and molecular features [6]. The
most advanced (grade IV) astrocytomas are classified as glioblastoma. The essential diagnostic features of glio-
blastoma are atypical glial cells, brisk mitotic activity and evidence of microvascular proliferation (MVP) and/
or significant necrosis. MVP typically appears as glomeruloid tufts of multilayered endothelial cells that are
mitotically active along with smooth muscle cells or pericytes. This can be found around and directionally
oriented towards necrosis. Because of extensive neo-angiogenesis, the vasculature is highly abnormal with leaky
and hyperdilated vessels. Necrosis is a fundamental feature of glioblastoma and the strongest predictor of
aggressiveness [7–9].
First-line therapy for newly diagnosed glioblastoma (often referred to as primary glioblastoma) is surgical

intervention, or ‘maximal safe resection’, followed by concurrent chemo-radiation and maintenance chemother-
apy. However, this treatment regimen extends the median survival time to only 15 months [10], and the
disease remains incurable [11]. Despite these aggressive treatments, the disease almost inevitably returns as
recurrent glioblastoma, for which there is no standard treatment approach [12]. Treatment options for recur-
rent glioblastoma include re-resection, treatment with the anti-angiogenesis agent bevacizumab and experimen-
tal approaches in the context of clinical trials but none of these approaches has been shown to prolong survival
significantly. For recurrent glioblastoma patients, the 6-month progression-free survival is ∼15%, and overall
survival generally less than 6 months [13].
Two key reasons for lack of progress in the treatment of glioblastoma are (i) extensive intra- and inter-

tumour heterogeneity and (ii) the highly invasive and infiltrative nature of these tumours. This ability of glio-
blastoma cells to infiltrate surrounding healthy brain tissue is dependent upon complex interactions between
tumour cells and their surrounding microenvironment, which are still poorly understood [14–17]. Therefore,
we argue that there is a need to re-conceptualise the way that glioblastoma therapies are investigated, by study-
ing the role of the tumour microenvironment in promoting tumour progression, invasion and resistance to
therapy, while taking into account the heterogeneity that is inherent to human glioblastoma. This can be
achieved by focusing on the use of patient-derived glioblastoma cells rather than long-term cell lines, coupled
with advanced in vitro models that include elements of both the tumour and normal brain tissue. These
advances have the potential to reveal new molecular signatures that, if appropriately targeted, can stop tumour
growth and invasion without affecting the surrounding healthy brain tissue [17–24].
With this perspective in mind, and focusing on studies of human clinical material, we outline sources of glio-

blastoma heterogeneity and review how glioblastoma tumour cells interact with their microenvironment. We
also detail recent progress in the development of new preclinical models of glioblastoma based on newly devel-
oped human brain organoid approaches. These models show great promise for the development of precision
therapies for glioblastoma patients.

Glioblastoma heterogeneity
Genetic and transcriptional heterogeneity
Several genetic drivers have been reported to contribute to the development of glioblastoma, including amplifi-
cation of epidermal growth factor receptor (EGFR) gene and mutations in isocitrate dehydrogenase (IDH),
telomerase reverse transcriptase (TERT), phosphatase and tensin homologue (PTEN), neurofibromatosis type 1
(NF1) gene and platelet-derived growth factor receptor alpha (PDGFRα) [1,22,25–28]. Since we focus here on
the tumour microenvironment, we redirect readers interested in genetic drivers of this disease to dedicated
reviews on the topic [29–33].
As well as varying in these individual genetic aberrations, transcriptomic analyses have revealed that glio-

blastoma tumours also vary dramatically in their global gene expression profiles. Early clustering analyses of
microarray data generated by The Cancer Genome Atlas (TCGA) suggested the existence of four distinct glio-
blastoma subtypes: neural, pro-neural, classical and mesenchymal [34]. However, more recent analyses have
proposed that the neural subtype arose from contamination by normal neuronal cells, refining the molecular
subtypes into three instead of four [35]. Of note, the frequent transition between subsets has been noted in the
progression from primary to recurrent glioblastoma [35,36]. Furthermore, even different areas of the same
tumour can display distinct molecular profiles, highlighting the intra-tumour heterogeneity of glioblastoma
[37,38]. Interestingly, Ross et al. [22] identified distinct signalling networks and potential druggable proteins
specifically at tumour margins, as cells that belong to these regions are likely to escape surgery and lead to
recurrence.
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Heterogeneity at the cellular/tissue level: histopathology
Although no longer used in the current 2016 WHO classification of CNS tumours, the term glioblastoma mul-
tiforme (GBM) is still common in general use and highlights the wide variety of histological phenotypes that
may be seen in this tumour, not only between patients but also within a single tumour [6,39]. The key features
required for the histological diagnosis of glioblastoma include high cellularity, cytological atypia and mitotic
activity together with MVP and/or necrosis [7–9,29,40]. However, few human neoplasms are as histologically
heterogeneous in composition as glioblastoma and although there are usually some better-differentiated areas
showing a clear astrocytic phenotype to help with diagnosis, a wide range of other phenotypes have been
described [6–9,29].
Small cell glioblastoma is characterised by a monomorphic population of small round cells with scant cyto-

plasm, which, in ∼70% of cases, demonstrates EGFR amplification [41]. Glioblastoma with a primitive neuronal
component is characterised by more solid-looking nodules, sharply demarcated from the surrounding tumour,
with high cellularity and a high nuclear-to-cytoplasmic ratio reminiscent of medulloblastoma [42]. These fre-
quently demonstrate the expression of neuronal markers such as synaptophysin and MYC or MYCN gene amp-
lification [43]. The presence of oligodendroglioma-like components, characterised by cells with round, regular
nuclei with a fine chromatin pattern, often with clear cytoplasm and with a fine capillary vasculature, has been
a source of diagnostic difficulty in the past. However, with the incorporation of molecular testing, tumours
with this phenotype that demonstrate loss of heterozygosity of chromosomes 1p and 19q and IDH mutation
are now classified as anaplastic oligodendrogliomas, while tumours that are 1p and 19q intact and IDH wild
type are classified as glioblastomas [44,45]. Giant cell glioblastoma is characterised by the presence of large
numbers of multinucleated giant cells, although this is considered to probably represent a regressive change
and the tumour does not demonstrate a characteristic genetic signature [46]. In contrast, BRAF V600E muta-
tions occur in ∼50% of epithelioid glioblastoma tumours, which are composed of closely packed cells with
abundant cytoplasm reminiscent of epithelium, often with a rhomboid cell component [47,48]. Gliosarcoma is
probably the best-known phenotypic variant and is characterised by a biphasic pattern with areas demon-
strating glial differentiation alternating with areas of densely packed bundles of spindle cells, which may show
differentiation into mesenchymal tissues such as cartilage, bone, osteoid, muscle or even fat [49,50].
The most crucial difference between glioblastomas is the division between those that are wild type for IDH

and those bearing IDH mutations, which has now been incorporated into the revised 4th edition of the WHO
Classification of Tumours of the CNS published in 2016 [6]. The IDH wild-type glioblastoma makes up 90% of
all glioblastomas and arises de novo, in contrast with the 10% of IDH-mutant glioblastomas which are believed
to arise as a result of progression from lower-grade diffuse or anaplastic astrocytomas [51]. However, these two
groups, which exhibit such a clear-cut genetic distinction, are morphologically indistinguishable by histology.

Heterogeneity in tumour location
Sixty-one percent of glioblastoma incidence is reported within the four distinct regions of the cortex, with
tumours showing a systematic preference for the frontal lobes (Figure 1) [11]. It is estimated that 25–43% of
tumours are located in the frontal lobes (with ∼8% bifrontal), compared with 19–28% located in the temporal,
12–25% in the parietal and 3% in the occipital regions [11,52]. It has been reported that 80% of all recurrences
stem from the initial tumour site. However, 13–45% of glioblastoma have been reported to be multifocal
[11,53]. Laterality of glioblastoma appears non-biased with equal incidence rates in left and right hemispheres
and also presents bilaterally and inter-regionally (i.e. frontoparietal). While it is not clear how this heterogen-
eity at the organ level can be used for therapeutic benefit, however, radio-genomics and imaging studies
increasingly provide new information that advances current knowledge of glioblastoma [54–56]. It has been
shown that brain regions are also differentially invaded by glioblastoma cells, highlighting the concept of
varying susceptibility of different brain regions to glioblastoma progression, with the hippocampus being a
particularly uncommon site for glioblastoma cell invasion [57].

Brain tumour microenvironment
Tumour extracellular matrix
The extracellular matrix (ECM) constitutes the non-cellular component of the microenvironment present in all
tissues and functions as a physical scaffold as well as a source of biochemical signals [58]. It maintains a close
relationship with intracellular biochemical and biomechanical processes and strongly influences the
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biochemistry and biomechanics of tissue. Cooperation between cellular and ECM factors regulates cellular fate,
tissue morphology and organogenesis [59,60]. ECM makes up ∼20% of brain volume, varying in composition
among different brain regions [14]. For recent comprehensive reviews of brain ECM, we refer the reader else-
where [58,61].
The ECM is dynamic, changing with age and in response to biochemical, physical and mechanical signals.

Furthermore, the ECM is unique to particular cell ‘niches’, with profound consequences for organogenesis and
in human disease. During development, cell–ECM interactions regulate cell fate, differentiation and migration.
Similarly, interactions between glioblastoma tumour cells and the ECM play a critical role in invasion and
malignancy (Figure 2). For example, Rascher et al. [62] assessed changes in ECM in glioblastoma vasculature
and its relationship with blood–brain barrier (BBB) integrity, revealing that under pathological conditions of
glioblastoma, ECM agrin is partially lost from the basal lamina of blood vessels and replaced with tenascin.
Conversely, analyses of protein expression showed that the ECM surrounding the tumour has the same compo-
nents as healthy brain tissue (collagen IV, fibronectin and laminin), but contains increased levels of hyaluronic
acid (HA), as a result of high levels of hyaluronan synthases 1, 2 and 3 (HAS 1/2/3) [63]. Other important
ECM-binding proteins and/or modifying enzymes in glioblastoma cells are CD44 (HA receptor), matrix
metalloproteinase-9 (MMP9) and hyaluronidases 1/2/3 (Hyal 1/2/3). All these have a direct impact on ECM
remodelling, which facilitates the invasive and infiltrative phenotypes of glioblastoma.

Metabolic tumour microenvironment
Normal brain astrocytes are primarily glycolytic, while neurons rely on oxidative phosphorylation (OXPHOS)
[18,64,65]. It is commonly reported that tumour cells rely heavily on elevated glycolytic rates when compared
with normal cells, even in the presence of oxygen. Known as the Warburg effect, a high level of aerobic glycoly-
sis denotes a metabolic switch in which cancer cells become reliant on glycolysis as their major energy source
reportedly due to insufficient OXPHOS (Figure 2). Aerobic glycolysis is much less efficient at producing adeno-
sine triphosphate (ATP) than OXPHOS, which has led researchers to speculate as to why cancer cells have
evolved this method of energy production [65].
A key hypothesis is that aerobic glycolysis yields precursors required by biosynthetic pathways for growth

and invasion such as shuttling carbon from glucose into fatty acids, nucleic acids and some proteins [18,64,65].
While ATP is less efficiently produced in this mode of metabolism, it is reported that glioblastoma cells gener-
ate ATP through aerobic glycolysis at an abnormally high rate, as confirmed by lactate production, which is 20
times higher than lactate levels found in normal tissue [64]. Most importantly, lactate metabolism is strongly

Figure 1. The incidence of glioblastoma by brain sub-regions.

Different colours divide the human brain into its five sub-regions: frontal (purple), parietal (blue), occipital (green) and temporal

lobes (yellow), and the cerebellum (red). Percentages in each division are the glioblastoma incidence by sub-region, indicating

the high topographical heterogeneity in the brain, with a predominance in the frontal lobes.
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linked to extracellular pH, making the glioblastoma microenvironment more acidic than normal brain tissue
[66]. To maintain the high levels of energy required for rapid proliferation, it is reported that glioblastoma cells
can access fuel found in adjacent astrocytes [18,67,68]. The ‘lactate shuttle hypothesis’ takes advantage of astro-
cyte–neuronal coupling, in which exchanges of extracellular substrates result in OXPHOS. Here, the metabolites
generated by astrocytes such as lactate are taken up by adjacent glioblastoma cells and oxidised as extra fuel
[18,67,68].
Although tumour cells generally have a preference for glycolysis over mitochondria OXPHOS, results of

recent studies performed in mice and in vitro models support the notion that mitochondrial energy production
does occur in glioblastoma [18,67,69]. In this context, altered mitochondrial function in response to
up-regulated glycolysis contributes to increased reactive oxygen species and lactate production, resulting in
extracellular inflammatory signalling. Polson et al. [69] examined the clinical relevance of these findings by tar-
geting the mitochondria with small molecules, demonstrating glioblastoma apoptosis without damage to
healthy surrounding neuronal tissue.
Together, these changes in energy metabolism have consequences for the regulation of cell volume, synthesis

of ECM and increased in cell motility [70,71] as well as epigenetic reprogramming [72] that is required for the
invasion of glioblastoma tumour cells into the surrounding healthy tissue.

Figure 2. The brain tumour microenvironment.

Representation of the different cellular and extracellular contributions to the glioblastoma microenvironment by sector: cellular,

biochemical, biomechanical and vascular. Highlighted cellular components of the tumour microenvironment include TAMs

(indicated in green), which have a crucial role in tumour progression via the release of cytokines and chemoattractant that

promote the recruitment of high numbers of TAMs to the tumour microenvironment. Tumour cells have altered metabolic

pathways with elevated rates of aerobic glycolysis generating the main source of cellular energy, as outlined in the upper right

quadrant (biochemical contribution to the tumour microenvironment). Specific changes in the ECM composition and

biomechanical properties of the tumour microenvironment are characterised by an increase in HA, which contributes to

glioblastoma invasiveness into surrounding healthy tissue. Finally, deformation of the vasculature (described in the lower left

quadrant) arises because increased expression of VEGF induces the enlargement and permeabilisation of vessels, triggering

brain oedema, interstitial pressure and inflammation. Reactive T cells (represented in blue) have an essential role in these

processes. Abbreviations: ECM, extracellular matrix; HA, hyaluronic acid; HAS, hyaluronan synthases; Hyal, hyaluronidases;

MMP9, matrix metalloproteinase-9; OXPHOS, oxidative phosphorylation; TAMs, tumour-associated macrophages/microglia;

VEGF, vascular endothelial growth factor.
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Cellular tumour microenvironment
Like that of most solid tumours, the glioblastoma microenvironment contains other cell types in addition to
neoplastic tumour cells, in particular, vascular cells and immune cells (Figure 2). These cells secrete inflamma-
tory signalling molecules and ECM components in response to the presence of tumour cells and the evolving
biochemical and biomechanical conditions near the tumour. They also actively engage with the ECM, which is
dynamically modified due to the presence of cancer cells [16].
Abnormal vasculature in glioblastoma is a consequence of up-regulated angiogenic factors, specifically, vas-

cular endothelial growth factor (VEGF). Increased VEGF causes new blood vessels to form within the tumour
via angiogenesis and the associated proliferation of endothelial cells. The resulting vascular networks display
increased vessel permeability and enlarged vessel size that result in plasma leakage into tumour tissue and dis-
ruption to the BBB. Together, these abnormalities induce cerebral oedema, increased interstitial pressure and
inflammation [73]. Oxygen delivery is also compromised, resulting in subsequent hypoxia and pseudopallisad-
ing necrosis [74,75]. Therefore, anti-angiogenic treatments have been extensively investigated for the treatment
of glioblastoma, including monoclonal antibodies such as bevacizumab that inhibit VEGF function, or small
molecules that target its receptor (VEGFR) [74,76,77]. Nevertheless, these treatments have proved much less
effective than had been hoped [76–78]. Problematically, the combination of temozolomide (standard treatment)
with bevacizumab has been associated with high toxicity and intracranial haemorrhage, highlighting treatment
complications with multidrug therapies [78].
Astrocytes vastly outnumber neurons in the CNS, playing essential roles in glutamate, ion and water homeo-

stasis, as well as defence against oxidative stress, energy storage, and synaptic formation and remodelling
[18,79,80]. Astrocyte endfeet cover more than 99% of the cerebrovascular surface of the brain, where they con-
tribute to the formation of the BBB via astrocyte–neuronal coupling to regulate solute passage through contact
with pericytes and endothelial cells [79–81]. Astrocytes are present within the glioblastoma microenvironment,
as well as in the surrounding brain tissue, and are thought to play important roles in regulating glioblastoma
progression via displacement/degradation of astrocytic endfeet, decoupling the protective function of neurovas-
cular homeostasis [79,81,82]. Invasion and migration routes of glioblastoma are reported to occur along these
perivascular spaces, highlighting an essential role this restructuring has on proliferation [79,80].
Myeloid lineage cells, including brain-resident microglia and infiltrating macrophages, play a critical signal-

ling role between the cellular microenvironment and tumour cells [16,83]. Remarkably, tumour-associated
macrophages/microglia (TAMs) have been reported to constitute 30–50% of the glioblastoma tumour mass
[40]. A recent flow cytometric analysis of human tumour tissue estimated that ∼40% of these cells are infiltrat-
ing macrophages, 20% are brain-resident microglia, and the remaining 40% are myeloid-derived suppressor
cells [84]. Accumulating evidence suggests multiple mechanisms by which such TAMs can promote glioblast-
oma growth and invasion [7,40,84]. T cells are also present in the glioblastoma microenvironment, although at
lower frequencies than TAMs [85]. They have a profoundly exhausted phenotype, characterised by expression
of LAG3, TIGIT, CD39 and especially programmed cell death 1 (PD1) [86], likely accounting for their inability
to control tumour growth. The lack of effective T-cell response is also highlighted by the ineffectiveness of
checkpoint blockade immunotherapy in glioblastoma, with the striking exception of tumours with germline
mismatch repair deficiency [87].
Neuronal activity has also been implicated in glioblastoma tumour growth and progression [20,23]. In the

normal brain microenvironment, neurons are strong mitogenic signallers, stimulating the growth of neural and
oligodendrocyte precursor cells, an important consideration in the role of stem/progenitor cells in glioblastoma
[88,89]. Elegant studies of neuronal activity conducted by Venkatesh et al. [23,24] in xenograft glioma mouse
models show that presynaptic and postsynaptic function is disrupted in the presence of glioma, with
neuroligin-3 (NLGN3) being hijacked to induce signalling through the PI3K/PTEN/AKT/mTOR pathway, an
important cell-cycle regulator. Under normal conditions, this pathway is essential to promote growth and pro-
liferation over the differentiation of neural stem cells.
Disruption to this intracellular pathway not only increased tumour cell proliferation, but also up-regulated

NLGN3 production in a feed-forward manner [23,24]. Correlating data from human glioblastoma, lower levels
of NLGN3 were found to be associated with increased survival [23]. Moreover, there may be therapeutic appli-
cations in targeting neuronal activity, with ADAM10 inhibitors preventing the release of NLGN3 into the
tumour microenvironment, disabling tumour cell proliferation. ADAM10 inhibition is currently being trialled
clinically in the treatment of other cancers [24].
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In glioma tissue, neurons are often closely apposed to tumour areas, suggesting an interaction between
healthy brain tissue and the tumour [20], with neuronal programmed death ligand 1 (PD-L1) possibly playing
a key role. PD-L1 is not normally highly expressed in the brain other than in BBB endothelial cells. However, it
is up-regulated in glia in response to viral perturbations and inflammatory responses [20]. Low PD-L1 expres-
sion in the bulk tumour and high expression by neurons in the tumour microenvironment were strongly asso-
ciated with favourable prognosis for GBM patients. In contrast, high PD-L1 expression in tumour cells and low
neuronal expression in the microenvironment were associated with poor prognosis [20]. Accordingly, the
expression of PD-L1 by neurons surrounding glioblastoma tissue increased neuronal killing of tumour cells,
suggesting that up-regulation of PD-L1 in native brain neurons was a negative feedback signal for down-
regulation of PD-L1 expression by tumour cells, and that PD-L1 expression by glioblastoma cells limits T-cell
activation and helps cells escape immune surveillance [20].
In contrast with most solid tumours, classical fibroblasts are not a major component of the glioblastoma

microenvironment and historically have been largely ignored. However, recent studies have identified several
fibroblast-like cell types within the glioblastoma microenvironment. For example, glioblastoma-associated
stromal cells (GASCs), which closely resemble cancer-associated fibroblasts in epithelial tumours, are particu-
larly prevalent at the invasive periphery of tumours and enhance tumour growth [90], while a population of
mesenchymal stromal/stem cells (MSCs) are enriched in the perivascular niche and appear to enhance the
self-renewal capacity of glioblastoma stem cells [91].
Taken together, these studies highlight a clear role for non-tumour components of the tumour microenviron-

ment in supporting tumour cell proliferation and invasion. Furthermore, these studies implicate neuronal activ-
ity and transmembrane receptor ligands in the invasion process, but also highlight therapeutic opportunities to
protect surrounding native brain tissue.

New experimental models for glioblastoma
Currently, most clinical trials for the treatment for glioblastoma do not target the non-cellular tumour micro-
environment, with a majority targeting genetic drivers within tumour cells. Problematically for this approach,
heterogeneity both within and between tumours has limited the development of a single drug that ‘cures’ glio-
blastoma, or consistently prevents invasion and spread. Although the non-cellular tumour microenvironment
displays dynamic changes throughout the invasion process, it may represent a valid and more genetically stable
target for new therapeutic approaches.
Fundamental preclinical models that have been used to develop and assess the utility of new treatments for

glioblastoma include the implantation into mice of patient-derived glioblastoma stem cell-like cultures [92,93]
and organotypic brain slices [14,94]. Unfortunately, animal models do not accurately replicate native human
brain tissue or serve as a physiologically relevant platform to assess dynamic changes in the microenvironment,
exposing a fundamental flaw in modelling disease using human cells and tissues in mice. In contrast, cells cul-
tured on tissue culture plastic do not recapitulate the dimensionality, complex cellular composition or structur-
ally and physiologically relevant components of human brain tissue.
Platforms such as 3D bio-scaffolds, microfluidic devices and high-throughput systems aim to improve on

current brain tumour stem cell-like culture models [58,95–97]. However, in vitro models that better reflect
human brain tissue structure and functionality are necessary. In this regard, recent advances in stem cell bio-
technologies have seen the creation of cerebral or ‘brain organoids’ [98–100]. Brain organoids are ‘organ-like’
structures grown in vitro, which can recreate in a 3D environment some of the characteristics of a human
brain. These structures provide a mechanism for studying human brain disease, including cancer, in a physio-
logically relevant context and form a foundation for the development of personalised therapies [99].
Brain organoid technology can also be complemented by newly developed autochthonous models of glioblast-
oma in mice generated using CRISPR–Cas9 approaches [101], which have yielded important new insights into
genetic drivers of the disease and are likely to prove useful in studying the glioblastoma microenvironment.
Moreover, these technological advances, together with, for example, the recent insights into metabolic repro-
gramming using synthetic and natural compounds in targeting glioblastoma mitochondria without perturbation
to surrounding healthy brain tissue will be further advanced by glioblastoma-brain organoid models
[69,102,103].
Preclinical models in assessing brain tumours using organoid approaches have the potential to be trans-

formative in the development of new therapies. In this sense, the first organoid models developed to study glio-
blastoma were created from tumour cells. For example, Hubert et al. [104] generated long-lived and complex
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organoids from human glioblastoma biopsies that maintained key aspects of the source tumour, including the
maintenance of regional heterogeneity and hypoxia gradients, as well as a high tumorigenic capacity after
implantation into the frontal lobes of mice. These aspects were not observed when the cells were cultured as
simple spheroids. In a different approach, da Silva et al. [105] co-cultured glioblastoma spheroids with early-
stage brain organoids and demonstrated an efficient and rapid fusion between the sphere and the organoid,
followed by spontaneous infiltration of tumour cells into the organoid. Of note, although the primitive neuro-
epithelial structures used in this study are precursors of mature brain organoids, the former have an inverted
topology (i.e. apical junctions are exposed to the medium and reversion happens when the early-stage orga-
noids, i.e. embryoid bodies, are embedded within Matrigel [100]).
Natural, synthetic and semi-synthetic mediums that better reflect native tissue and tumour microenviron-

ments are critical for the advancement of preclinical models [58,59,106–108]. Both varying synthetic scaffolds
and mediums/hydrogels will allow researchers to optimise organoid culture, reduce variability between orga-
noids and reproduce brain regions systematically [59,108–110]. To clarify, increasing knowledge of the bio-
chemical and biomechanical properties of organoid models that better reflect brain and inter-regional brain
tissue can be incorporated into these models in the foreseeable future [109–111]. Personalised preclinical
models can then be constructed to reflect the heterogeneity of both the cellular microenvironment and brain
sub-regions. Precise characterisation of organoid models is already possible, as evidenced by cellular mapping
of whole organoids by Quadrato et al. [109] and regionally by Bagley et al. [111]. To illustrate, not only did
Quadrato et al. [109] show functional connectivity in brain organoids but also described how cell lines and
batch to batch culture either increased or decreased organoid variability at a genetic, cellular and regional level.
Ultimately, increased understanding of the cellular composition in both organoid and glioblastoma tumour
microenvironments, and superior designs of scaffolds and hydrogels for optimal organoid growth [58,108,112],
will surpass current modelling platforms.
Taking this technology further, combining 3D organoid models with CRISPR genetic engineering can effect-

ively model glioblastoma initiation, growth and invasion in a microenvironment mimicking the human brain.
Bian et al. [113] showed the development of what they refer to as a ‘neoplastic cerebral organoid’ (neoCOR),
which can reproduce many elements of brain tumourigenesis, such as overgrowth, cell identity and invasive-
ness. An essential characteristic in the neoCOR is the mixture of structures, with the presence of normal and
tumour tissue within the same culture, making this model an excellent way to test the influence of genome
aberrations on tumour cell invasion. In a related study, Ogawa et al. [114] targeted the human TP53 locus to
integrate a RAS expression cassette to block TP53 activity within established human brain organoids. The
tumour cells that formed invaded throughout the brain organoid, and injection of organoid-derived tumour
cells into mice generated tumours typical of glioblastoma, with a low rate of animal survival, cellular heterogen-
eity, necrotic areas and angiogenesis.
Sophisticated models such as these, complemented by next-generation (genome-wide tumour/normal exome

and tumour RNA) sequencing [115], to offer personalised treatment in a clinically useful timeframe (<35 days)
hold enormous potential for the treatment of glioblastoma (Figure 3), and especially of the complex interac-
tions between tumour cells and their microenvironment [18,79,81,82,107,110]. Such models will also be valu-
able for the development of preclinical testing platforms for personalised medicine approaches. However, it is
important to mention that brain organoid-glioblastoma models are under development and still limited by low
to medium throughput as well as requiring a significant amount of time, equal to, or more than, the clinically
relevant time frame, to develop (see also Oksdath et al. [58] for further discussion on this topic). Importantly,
the incorporation of high-throughput and robotic platforms are expected to reduce organoid variability and are
required to distinguish significant challenges associated with significant tumour and microenvironment hetero-
geneity. Moreover, key discrepancies between human brain tissue and these models are still present. One par-
ticular issue is the lack of vascularisation, although this may be overcome by transplanting organoids into the
brains of mice [116]. In vitro approaches to vascularisation of organoids are also developing, with encouraging
results observed for a single patient specimen demonstrating that induced pluripotent stem cell (iPSC)-derived
endothelial cells can be incorporated into brain organoids as blood vessel-like structures [117]. The additional
incorporation of further components into organoid models, including immune cells and BBB function (see,
e.g., [118,119]), will remain a focus for ongoing studies.
Taken together, the development of patient-derived glioblastoma organoids shows significant promise for

transformative preclinical models and pharmaceutical testing. These can be expedited by using high-throughput
and robotic culture systems, effectively reducing batch variability. In conjunction with continuously developing
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biotechnologies such as synthetic scaffolds and various hydrogels, these approaches to study glioblastoma and
its interaction with the surrounding healthy brain tissue microenvironment are tantalisingly imminent.

Perspectives
• Glioblastoma is a highly heterogeneous disease, not only because of the different signalling pathways that

drive it but also differences in tumour location, phenotype and the cellular and non-cellular and metabolic
tumour microenvironments. Current treatment options for glioblastoma extend survival rates to a median
of only 15 months, with the last 30 years showing no significant progress in its treatment. Two key reasons

Figure 3. Human brain organoid models for glioblastoma studies.

Summary of the current ‘brain organoid’ strategies to study glioblastoma: Top, genetically engineered iPSC-derived brain

organoids allow modelling of glioblastoma initiation, growth and invasion. An advantage of this system is the presence of

healthy and tumour tissue within the same organoid, a condition that reflects the clinical context of the disease. Middle,

Co-culture methods address tumour cell invasion in a short period but require the use of brain organoids at very early stages

before they fully develop. Bottom, glioblastoma spheres (organoids) derived from human biopsies recapitulate many features

of the disease, including regional heterogeneity and hypoxia gradients but lack the surrounding healthy brain tissue

microenvironment, which could be partially mimicked by orthotopic xenotransplantation of organoids within the mouse brain.
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for lack of progress in the treatment of glioblastoma are (i) extensive intra- and inter-tumour heterogeneity
and (ii) the highly invasive and infiltrative nature of these tumours.

• Although much of the progress to date in developing new therapies for glioblastoma have been achieved in
cell lines and animal models, these do not accurately reflect the actual heterogeneity present in the clinic, in
particular, the relationship between the genetics of the of tumours and the complexity of their surrounding
microenvironment. This has limited our capacity to understand (i) the origin of glioblastoma heterogeneity,
(ii) what makes these tumours more aggressive and (iii) the underlying causes of resistance to therapies.
Thus, research now aims to better characterise these factors and find new molecular targets and treatments
for glioblastoma.

• The development and clinical validation of new preclinical models based on patient-derived samples that
allow better reproduction of the complexity of the tumour in the patient will facilitate a more accurate
assessment of whether patients will respond to a particular treatment. In this regard, organoid technologies
are particularly promising and provide a clinically relevant time frame for personalised medicine
approaches. Finally, as our knowledge grows in relation to the tumour microenvironment, and our capacity
to better mimic this in preclinical in vitro models improves (i.e. using organ on a chip and high-throughput
approaches with clinical validation), we anticipate the future discovery of novel therapeutic targets for glio-
blastoma treatment.
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