
Salem Lahlou- Université de Montréal
Salem Lahlou
- Université de Montréal
About
13
Publications
2,429
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
16
Citations
Current institution
Publications
Publications (13)
Generative Flow Networks (GFlowNets) have emerged as an innovative learning paradigm designed to address the challenge of sampling from an unnormalized probability distribution, called the reward function. This framework learns a policy on a constructed graph, which enables sampling from an approximation of the target probability distribution throu...
Preference optimization methods have been successfully applied to improve not only the alignment of large language models (LLMs) with human values, but also specific natural language tasks such as summarization and stylistic continuations. This paper proposes using preference optimization methods on Chain-of-Thought steps in order to improve the re...
We introduce BatchGFN -- a novel approach for pool-based active learning that uses generative flow networks to sample sets of data points proportional to a batch reward. With an appropriate reward function to quantify the utility of acquiring a batch, such as the joint mutual information between the batch and the model parameters, BatchGFN is able...
We present the Minigrid and Miniworld libraries which provide a suite of goal-oriented 2D and 3D environments. The libraries were explicitly created with a minimalistic design paradigm to allow users to rapidly develop new environments for a wide range of research-specific needs. As a result, both have received widescale adoption by the RL communit...
The increasing popularity of generative flow networks (GFlowNets or GFNs) is accompanied with a proliferation of code sources. This hinders the implementation of new features, such as training losses, that can readily be compared to existing ones, on a set of common environments. In addition to slowing down research in the field of GFlowNets, diffe...
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target distributions over compositional objects. A key limitation of GFlowNets until this time has been that they are restricted to discrete spaces. We present a theory for generalized GFlowNets, which encompasses both ex...
Bayesian Inference offers principled tools to tackle many critical problems with modern neural networks such as poor calibration and generalization, and data inefficiency. However, scaling Bayesian inference to large architectures is challenging and requires restrictive approximations. Monte Carlo Dropout has been widely used as a relatively cheap...
This paper builds bridges between two families of probabilistic algorithms: (hierarchical) variational inference (VI), which is typically used to model distributions over continuous spaces, and generative flow networks (GFlowNets), which have been used for distributions over discrete structures such as graphs. We demonstrate that, in certain cases,...
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context, with a training objective that makes them approximately sample in proportion to a given reward function. In this paper, we show a number of additional theoretical properties of GFlowNets. They can be used to est...
Epistemic uncertainty is the part of out-of-sample prediction error due to the lack of knowledge of the learner. Whereas previous work was focusing on model variance, we propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty, i.e.,...
Recent automatic curriculum learning algorithms, and in particular Teacher-Student algorithms, rely on the notion of learning progress, making the assumption that the good next tasks are the ones on which the learner is making the fastest progress or digress. In this work, we first propose a simpler and improved version of these algorithms. We then...
Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards...
We consider a tradable credits scheme for binary transport games where one option is faster (or more comfortable) than the other, but its quality of service suffers when usage is high. Applications can be found in mode choice (public transit versus road transport), premium (i.e., express bus) versus ordinary public transit, and fast (e.g., high-occ...