Saleh Alseekh

Saleh Alseekh
Max Planck Institute of Molecular Plant Physiology | MPIMP · Division of Molecular Physiology

PhD

About

220
Publications
48,933
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,824
Citations
Additional affiliations
January 2012 - August 2015
Max Planck Institute of Molecular Plant Physiology
Position
  • PostDoc Position
Description
  • -Quantitative traits Loci (QTL) for primary and secondary metabolites in plants, fruit quality, plant breeding

Publications

Publications (220)
Article
Full-text available
Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites wi...
Article
To explore the genetic robustness (canalization) of metabolism, we examined the levels of fruit metabolites in multiple harvests of a tomato introgression line (IL) population. The IL partitions the whole genome of the wild species Solanum pennellii in the background of the cultivated tomato (Solanum lycopersicum). We identified several metabolite...
Article
Full-text available
A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs...
Article
Full-text available
Given the potential health benefits (and adverse effects), of polyphenolic and steroidal glycoalkaloids in the diet there is a growing interest in fully elucidating the genetic control of their levels in foodstuffs. Here we carried out profiling of the specialized metabolites in the seeds of the Solanum pennellii introgression lines identifying 338...
Article
Full-text available
The majority of the crops and vegetables of today were domesticated from their wild progenitors within the past 12 000 years. Considerable research effort has been expended on characterizing the genes undergoing positive and negative selection during the processes of crop domestication and improvement. Many studies have also documented how the cont...
Article
Ocimum (basil) is a widespread genus commonly consumed for culinary and medicinal purposes attributed to unique secondary metabolites. The present research investigated the metabolic profiles of two Ocimum suspension cultures derived from O. basilicum and O. americanum, following elicitation by methyl jasmonate at different time intervals (24, 48,...
Article
Nigella sativa L. seeds (NS) are known as one of the most traditional immunomodulatory and nutritive food additives. NS can, furthermore, be roasted to give curries, breads, and other dishes a smoky, nutty flavor. This study evaluated the effect of roasting NS on the metabolic profile and immunomodulatory activity. Non-targeted metabolomics analysi...
Article
Full-text available
Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports i...
Article
Full-text available
Turmeric, the rhizomes of Curcuma longa L., is one of the top selling spices, food preservatives, and food colorants. In addition, it exhibits health promoting benefits owing to its unique phytochemical composition. Nevertheless, it is commonly subjected to heat drying, hence, the dried powder is the most used form and can easily be adulterated wit...
Preprint
Natural products from traditional medicinal plants are valuable candidates for clinical cancer therapy. Plants from the Oldenlandia-Hedyotis complex are popular ingredients of Traditional Chinese Medicine (TCM), however a major hurdle in the plant bioprospecting process of TCM plants is that the active metabolites, their biosynthetic pathways, and...
Article
Full-text available
Background Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coord...
Article
Full-text available
Oil palm (Elaeis guineensis Jacq.) is the most productive oil-producing crop per hectare of land. The oil that accumulates in the mesocarp tissue of the fruit is the highest observed among fruit-producing plants. A comparative analysis between high-, medium-, and low-yielding oil palms, particularly during fruit development, revealed unique charact...
Article
Aromatic compounds having unusual stability provide high-value chemicals and considerable promise for carbon storage. Terrestrial plants can convert atmospheric CO 2 into diverse and abundant aromatic compounds. However, it is unclear how plants control the shikimate pathway that connects the photosynthetic carbon fixation with the biosynthesis of...
Article
Although autophagy is a conserved mechanism operating across eukaryotes, its effects on crops and especially their metabolism has received relatively little attention. Indeed, whilst a few recent studies have used systems biology tools to look at the consequences of lack of autophagy in maize these focused on leaf tissues rather than the kernels. H...
Article
Hybrids between A. thaliana accessions are important in revealing the consequences of epistatic interactions in plants. F1 hybrids between the A. thaliana accessions displaying either defence or developmental phenotypes have been revealing the roles of the underlying epistatic genes. The interaction of two naturally occurring alleles of the OUTGROW...
Article
Full-text available
Volatile compounds produced during ripening of strawberry are key determinants of fruit quality and consumer preference. Strawberry volatiles are largely esters which are synthesized by alcohol acyltransferases (AATs) and degraded by carboxylesterases (CXEs). Although CXEactivity can have a marked influence on volatile contents in ripe strawberry f...
Article
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the light and remobilize it to support maintenance and growth at night. Starch synthesis and degradation are usually viewed as temporally separate processes. Recently, we reported that starch is also degraded in the light. Degradation rates are generally low early in th...
Preprint
Full-text available
Thioredoxins (TRX) are pivotal for the redox regulation of enzyme activities to adjust metabolic fluxes towards environmental changes. Previous reports demonstrated TRX o1 and h2 impact on mitochondrial metabolism including photorespiration and the tricarboxylic acid (TCA) cycle. Here, we aimed to unravel potential specificities between regulation...
Article
Full-text available
Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation. We recently identified redox enzymes previously known to be involved in the detoxification of fatty acid-derived reactive carbonyl species which were able to convert apocarotenoids into corresponding alcohols and carboxylic acids. However, their subsequent...
Article
Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including S. lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite...
Preprint
In plants, SUCROSE NON-FERMENTING RELATED KINASE 1 (SnRK1) is a key energy-sensor that orchestrates large-scale transcriptional reprogramming to maintain cellular homeostasis under energy deficit. SnRK1 activity is under tight negative control, although the exact mechanisms leading to its activation are far from being understood. We show that the A...
Article
Full-text available
The immune system is a potent army that defends our body against various infections and diseases through innate and adaptive immunity. Herbal medicine is one of the essential sources for enhancing immunity because of affordability, availability, minor side effects, and consumers' preferences. Hazelnuts, walnuts, almonds, and peanuts are among the m...
Article
Full-text available
Ethnopharmacological relevance: Since ancient times, Hibiscus sabdariffa L. calyces have been used as a folk remedy for the treatment of hypertension. However, it is questionable as to whether there is a difference in the antihypertensive activity of the hot or cold aqueous extracts. Aim of the study: We designed this study to specify the best meth...
Article
Full-text available
Here we present the approach used to develop the INCREASE “Intelligent Chickpea” Collections, from analysis of the information on the life history and population structure of chickpea germplasm, the availability of genomic and genetic resources, the identification of key phenotypic traits and methodologies to characterize chickpea. We present two p...
Article
Full-text available
Here we present the approach used to develop the INCREASE “Intelligent Chickpea” Collections, from analysis of the information on the life history and population structure of chickpea germplasm, the availability of genomic and genetic resources, the identification of key phenotypic traits and methodologies to characterize chickpea. We present two p...
Article
Full-text available
In order to meet the demand of the burgeoning human population as well as to adapt crops to the enhanced abiotic and biotic stress caused by the global climatic change, breeders focus on identifying valuable genes to improve both crop stress tolerance and crop quality. Recently, with the development of next-generation sequencing methods, millions o...
Article
Full-text available
Stomata are epidermal pores formed by pairs of specialized guard cells, which regulate gas exchanges between the plant and the atmosphere. Modulation of transcription has emerged as an important level of regulation of stomatal activity. The AtMYB60 transcription factor was previously identified as a positive regulator of stomatal opening, although...
Article
Full-text available
Our results suggest that the selected drought-tolerant wheat cultivar Wadielniel has a greater capacity in regulating water deficit stress than the drought-sensitive cultivar Condor. As suggested by an enhanced physiological response supported by upregulating regulatory genes and producing more sugars, organic acids, and important amino acids in sh...
Preprint
Full-text available
The Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs), comprising ERECTA (ER), ERECTA-LIKE 1 (ERL1) and ERECTA-LIKE 2 (ERL2), control epidermal patterning, inflorescence architecture, stomata development, and hormonal signaling. Here we show that the er/erl1/erl2 triple mutant exhibits impaired gibberellin (GA)...
Article
Full-text available
Abiotic stresses reduce crop growth and yield in part by disrupting metabolic homeostasis and triggering responses that change the metabolome. Experiments designed to understand the mechanisms underlying these metabolomic responses have usually not used agriculturally relevant stress regimes. We therefore subjected maize plants to drought, salt, or...
Article
Abiotic stresses reduce crop growth and yield in part by disrupting metabolic homeostasis and triggering responses that change the metabolome. Experiments designed to understand the mechanisms underlying these metabolomic responses have usually not used agriculturally relevant stress regimes. We therefore subjected maize plants to drought, salt, or...
Article
Full-text available
Macroautophagy/autophagy is a conserved mechanism responsible for the degradation of unnecessary or dysfunctional components and recycling of the nutrients they contain in order to promote cellular or organismal longevity. In plants photosynthesis is massively impaired under extended darkness stress and the transition to heterotrophic metabolism re...
Article
Full-text available
The apocarotenoid zaxinone promotes growth and suppresses strigolactone biosynthesis in rice. To shed light on the mechanisms underlying its growth-promoting effect, we employed a combined omics approach integrating transcriptomics and metabolomics analysis of rice seedlings treated with zaxinone, and determined the resulting changes at the cellula...
Article
Full-text available
Recent years have seen an increased consumer demand for flavorsome fruit and vegetables to counteract the perception that intensive breeding has led to a loss of flavor in mass produced fruits (Klee & Tieman, 2018). As such, research efforts into understanding the genetic basis of flavor metabolite accumulation have intensified. However, this remai...
Article
Short title: Time-resolved mGWAS of dark-induced senescence One-sentence summary: Time-resolved GWAS of Fv/Fm, chlorophyll, primary and lipid metabolites content allowed a comprehensive view of the genetic landscape of dark-induced senescence. ABSTRACT Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee...
Article
Full-text available
Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evalu...
Article
Full-text available
Actinorhizal plants have been regarded as promising species in the current climate change context due to their high tolerance to a multitude of abiotic stresses. While combined salt-heat stress effects have been studied in crop species, their impact on the model actinorhizal plant, Casuarina glauca, has not yet been fully addressed. The effect of s...
Article
Sulfur Deficiency Induced1 (SDI1) upregulates S-poor seed storage proteins in favor of S-26 rich seed storage proteins 27 Author contributions 28 FA and RH designed the research. FA wrote the manuscript supported by the co-authors, 29 generated the transgenic lines and the constructs, performed metabolite extraction and sample 30 preparation for me...
Article
Full-text available
Food legumes are crucial for all agriculture-related societal challenges including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating signific...
Article
Full-text available
Sulfur deficiency-induced proteins SDI1 and SDI2 play a fundamental role in sulfur homeostasis under sulfate-deprived conditions (−S) by downregulating glucosinolates. Here, we identified that besides glucosinolate regulation under –S, SDI1 downregulates another sulfur pool, the S-rich 2S seed storage proteins in Arabidopsis (Arabidopsis thaliana)...
Article
Full-text available
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linka...
Article
Both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) are widely used metabolomics approaches to detect and quantify hundreds of thousands of metabolite features. However, the application of these techniques to a large number of samples is subject to more complex interactions, particularly for genome-...
Preprint
Full-text available
Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports i...
Article
Full-text available
Well-characterized genetic resources are fundamental to maintain and provide the various genotypes for pre-breeding programs for the production of new cultivars (e.g., wild relatives, unimproved material, landraces). The aim of the current article is to provide protocols for the characterization of the genetic resources of two lupin crop species: t...
Article
Nitrogen (N) is fundamental to plant growth, development, and yield. Genes underlying N utilization and assimilation are well-characterized, but mechanisms underpinning plasticity of different phenotypes in response to N remain elusive. Here, using Arabidopsis thaliana accessions, we dissected the genetic architecture of plasticity in early and lat...
Article
Ginger (Zingiber officinale Roscoe) is consumed for health-promoting effects and as a food condiment. Comprehensive phytochemical analysis, other than gingerols and shogaols, has not yet been deeply investigated. Hence, the current research aimed to establish a non-targeted metabolomics approach for the discrimination between fresh ginger rhizome s...
Article
Full-text available
How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic e...
Article
The transcription factor Asr1 (ABA, stress, ripening 1) plays multiple roles in the plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression levels of ASR1 in tomato fruits, large scale analyses to uncover its role in fruits are still lacking...
Article
The transcription factor Asr1 (ABA, stress, ripening 1) plays multiple roles in the plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression levels of ASR1 in tomato fruits, large scale analyses to uncover its role in fruits are still lacking...
Article
Full-text available
The optimal use of legume genetic resources represents a key prerequisite for coping with current agriculture-related societal challenges, including conser- vation of agrobiodiversity, agricultural sustainability, food security, and human health. Among legumes, the common bean (Phaseolus vulgaris)isthemost economically important for human consumpti...
Article
Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC–HRMS) variants currently represent the best tools to tackle the challenges of complexity and lack of comprehensive coverage of the metabolome. UHPLC offers flexible and efficient separation coupled with high-sensitivity detection via HRMS, allowing for the detecti...
Article
Full-text available
One-sentence summary An update on the use of precision phenotyping to assess the potential of lesser cultivated species as candidates for de novo domestication or similar development for future agriculture.
Article
Full-text available
The growth of plant organs is driven by cell division and subsequent cell expansion. The transition from proliferation to expansion is critical for the final organ size and plant yield. Exit from proliferation and onset of expansion is accompanied by major metabolic reprogramming, and in leaves with the establishment of photosynthesis. To learn mor...
Article
Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant develo...
Article
How raffinose (Raf) family oligosaccharides (RFOs), the major translocated sugars in the vascular bundle in cucurbits, are hydrolyzed and subsequently partitioned has not been fully elucidated. By performing reciprocal grafting of watermelon (Citrullus lanatus) fruits to branch stems, we observed that Raf was hydrolyzed in the fruit of cultivar wat...
Article
Phytochrome (phy) photoreceptors are known to regulate plastic growth responses to vegetation shade. However, recent reports also suggest an important role for phys in carbon resource management, metabolism, and growth. Here, we use 13CO2 labelling patterns in multi-allele phy mutants to investigate the role of phy in the control of metabolic fluxe...
Article
Brown rice possesses various nutritionally dense bioactive phytochemicals exhibiting wide range of antioxidant, anticancer and antidiabetic properties known to promote various human health benefits. However, despite the wide claims made about the importance of brown rice for human nutrition the underlying metabolic diversity not systematically expl...
Article
Full-text available
We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography–mass spectrometry (GC–MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC–MS data within the Global Natural Product Social (GNPS) Molecular Networking analys...
Preprint
Full-text available
Nitrogen (N) is fundamental to plant growth, development, and yield. Genes underlying N utilization and assimilation are well characterized, but mechanisms underpinning plasticity of different phenotypes to varying amounts of N in the soil remain elusive. Here, using Arabidopsis thaliana accessions, we dissected the genetic architecture of plastici...