
Salar MoarrefCornell University | CU · Sibley School of Mechanical and Aerospace Engineering
Salar Moarref
Ph.D. in Computer and Information Science
About
17
Publications
1,601
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
391
Citations
Publications
Publications (17)
The majority of work in the field of swarm robotics focuses on the bottom-up design of local rules for individual robots that create emergent swarm behaviors. In this paper, we take a top-down approach and consider the following problem: how can we specify a desired collective behavior and automatically synthesize decentralized controllers that can...
We consider the controller synthesis problem for multi-agent systems that consist of a set of controlled and uncontrolled agents. Controlled agents may need to cooperate with each other and react to actions of uncontrolled agents in order to fulfill their objectives. Moreover, agents may be imperfect, i.e., only partially observe their environment....
Bounded-rate multimode systems are hybrid systems that switch freely among a finite set of modes, and whose dynamics are specified by a finite number of real-valued variables with mode-dependent rates that vary within given bounded sets. The scheduler repeatedly proposes a time and a mode, while the environment chooses an allowable rate for that mo...
In this paper we consider the controller synthesis problem for multi-agent systems that consist of a set of controlled and uncontrolled agents. Controlled agents may need to cooperate with each other and react to the actions of uncontrolled agents in order to fulfill their objectives. Besides, the controlled agents may be imperfect, i.e., only part...
Reactive synthesis with the ambitious goal of automatically synthesizing correct-by-construction controllers from high-level specifications, has recently attracted significant attention in system design and control. In practice, complex systems are often not constructed from scratch but from a set of existing building blocks. For example in robot m...
Many control problems in environments that can be modeled as Markov decision processes (MDPs) concern infinite-time horizon specifications. The classical aim in this context is to compute a control policy that maximizes the probability of satisfying the specification. In many scenarios, there is however a non-zero probability of failure in every st...
With growing complexity of systems and guarantees they are required to provide, the need for automated and formal design approaches that can guarantee safety and correctness of the designed system is becoming more evident. To this end, an ambitious goal in system design and control is to automatically synthesize the system from a high-level specifi...
We consider the problem of compositional refinement of components’ specifications in the context of compositional reactive synthesis. Our solution is based on automatic refinement of assumptions and guarantees expressed in linear temporal logic (LTL). We show how behaviors of the environment and the system can be inferred from counter-strategies an...
With the tremendous growth of the Internet and the emerging software-defined networks, there is an increasing need for rigorous and scalable network management methods and tool support. This paper proposes a synthesis approach for managing software-defined networks. We formulate the construction of network control logic as a reactive synthesis prob...
The reactive synthesis problem is to find a finite-state controller that
satisfies a given temporal-logic specification regardless of how its
environment behaves. Developing a formal specification is a challenging and
tedious task and initial specifications are often unrealizable. In many cases,
the source of unrealizability is the lack of adequate...
Bounded-rate multi-mode systems (BMMS) are hybrid systems that can switch
freely among a finite set of modes, and whose dynamics is specified by a finite
number of real-valued variables with mode-dependent rates that can vary within
given bounded sets. The schedulability problem for BMMS is defined as an
infinite-round game between two players---th...
The design and implementation of software for medical devices is challenging due to their rapidly increasing functionality and the tight coupling of computation, control, and communication. The safety-critical nature and the lack of existing industry standards for verification, make this an ideal domain for exploring applications of formal modeling...
The design and implementation of software for medical devices is challenging due to their rapidly increasing functionality and the tight coupling of computation, control, and communication. The safety-critical nature and the lack of existing industry standards for verification, make this an ideal domain for exploring applications of formal modeling...