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1 Introduction

Variational inequalities and variational inclusions, which have been extended and generalized
in different directions by using novel, innovative techniques and ideas, and provide a mathe-
matical models to some problems arising in economics, mechanics, engineering sciences and
other pure and applied sciences [8]. Recently some systems of variational inequalities, varia-
tional inclusions, complementarity problems and equilibrium problems have been studied by
some authors in recent years because of their closed relation to Nash equilibrium problems.
Huang and Fang [10] introduced a system of order complementarity problems and estab-
lished some existence results for these using fixed point theory. Verma [18] introduced and
studied some system of variational inequalities and developed some iterative algorithm for
approximating the solutions of system of variational inequalities. We remark that the almost
all results concerning the system of solutions of iterative scheme for solving the system of
variational inequalities and related problems are being considered in the setting of convex
sets. Consequently the techniques are based on the projections of operator over convex sets,
which may not hold in general, when the sets are nonconvex. It is known that the unified
prox-regular sets are nonconvex and included the convex sets as special cases, see [4, 12, 20].
Inspired by the recent work going on this fields see [1, 2, 3, 6, 7, 9, 11, 13, 15, 17], in this
paper, we introduced and studied a system of nonlinear reqularized nonconvex variational
inequalities in g-uniformly smooth Banach spaces. We established the equivalence between
the system of nonlinear regularized nonconver variational inequalities and some fixed point
problems. By using the equivalence relation, we construct a perturbed projection iterative
algorithms with mixed errors for finding a solution set of the aforementioned system. Also
we proved the convergence of the defined iterative algorithms under suitable assumptions.

2 Preliminaries

Let & be a real Banach space with dual space X*, (-, -) be the dual pairing between X and X'*
and CB(X™) denote the family of all nonempty closed bounded subsets of X'. The generalized
duality mapping J, : X — 2% is defined by

Jo(@) ={f" € X" {z, f7) = 2% Il = 2"} Ve e X

where ¢ > 1is a constant. In particular J5 is a usual normalized duality mapping. It is known
that in general J,(z) = [lz||97'J2(z) for all @ # 0 and J, is single valued if X* is strictly
convex. In the sequel, we always assume that A’ is a real Banach space such that J, is a single
valued. If X' is a Hilbert space then J, becomes the identity mapping on X'. The modulus of
smoothness of A" is the function py : [0, 00) — [0, 00) is defined by

1
px(t) =sup {(lz +yl + = —oll) = 1+ ol < 1, Iyl < ¢}
A Banach space X is called uniformly smooth if

t
lim M =i,

—
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A& is called g-uniformly smooth if there exists a constant ¢ > 0 such that
px(t) <ctl g>1.
Note that J, is single valued if X' is uniformly smooth. It is known that

p — uniformly smooth if 1 < p <0,

Ly(or ) or Wk, =
p(or Ip) or WP {2 — uniformly smooth if p > 2.

A Banach space X is said to be uniformly convex if given € > 0 there exists 6 > 0 such that
for all z,y € & with [lzf| < 1,|lyl <1 and ||z —y|| > €, ||2(z +y)| <14 It is well known
that L,, I, and Sobolev spaces W2 (1 < p < oo) are uniformly convex. Note that Jg is a
single valued if X' is uniformly smooth.

Definition 2.1. The proximal normal cone of K at a point v € X is given by
NEwW) ={¢ € X :ue Pe(u+al)},
where a > 0 is a constant and Pk is the projection operator of X onto K, that is,
Pr(u) ={v e K:dg(u) = |lu—2|},
where dic(u) is the usual distance function to the subset K, that is,
() = inf flu — v
Lemma 2.2. Let K be a nonempty closed subset of X. Then ¢ € NE(u) if and only if there
exists a constant o > 0 such that
(€ dgv —u)) < aflv—ul|? YveK.
Definition 2.3. The Clarke normal cone, denoted by N€ (u), is defined as
NE (u) = WINE ()],

where €64 means the closure of the convex hull of A. It is clear that NE(z) € NE(z). The
converse is not true in general. Note that NS (z) is closed and convex, but NE(z) is convex,
which may not be closed, (see [5, 16, 19]).

Definition 2.4. [4] For any r € (0, 4+c0], a subset K, of H is said the normalized uniformly
prox-regular (or uniformly r-prox-regular) if every nonzero proximal normal to K, can be
realized by an r-ball. This means that for all T € K, and all 0 # ¢ € NE () with ||¢]| =1,

1
iz — 7)) < —|z - z|° .
(Ciaa—2) < oz -2, zek

Lemma 2.5. [5] A closed set K C H is convex if and only if it is proximally smooth of radius
r for every r > 0.
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Proposition 2.6. [16] Let » > 0 and let K, be a nonempty closed and uniformly r-prox-

regular subset of H. Set
Ury={ue X :0<dg, (u) <r}.

Then the following statements are hold:

(a) forall z € U(r), P, (z) # 0;

(b) for all " € (0,r), is Lipschitz continuous mapping with constant

U ={ue H:0 <dkg.(u) <r'};

* on

T

(¢) the proximal normal cone is closed as a set-valued mapping.

From Proposition 2.6 (c), we have N¢ (z) = NE (z). Therefore we define N (z) =
NE (z) = NE (z) for a class of sets.

Definition 2.7. The single-valued mapping h : X — X is said to be

(i) accretive if
<h(x) - h(y)vjf](x - y>> 2 0! vl', y e X:

(ii) B-strongly accretive if there exists a constant § > 0 such that
(h(z) = h(y), Jo(z = y)) = Bllz — y|*, Vo, y € X,
(iii) o-Lipschitz continuous mapping if there exists a constant ¢ > 0 such that
[h(z) = h(YIl < ollz —yll, Vz,y € X.

Definition 2.8. Let g: & — X be a single-valued mapping and let @ : X x X — X be a
single valued mapping. Then @ is said to be

(i) accretive if
<Q<177U) - Q(I/7y)7jq(l' - ‘,L/)> 2 0’ Vly € Xv

(ii) Kk — g-strongly accretive with respect to g and the first variable of () if there exists a
constant £ > 0 such that

(Qz,y) — Q" y), Jo(9(2) — 9(¥))) = kllg(x) — g, Yo,y € X.
Definition 2.9. A two-variable set-valued mapping 7' : X x X — 2% is £ — E-Lipschitz
continuous in the first variable, if there exists a constant £ > o such that, for all z, 2’ € X,
D(T(z,y),T(",y)) <&llz —2'|l, Yy, €&,
where D is the Hausdorff pseudo metric, that is, for any two nonempty subsets A and B of X’
D(A, B) = max {sup d(xz, B),sup d(y, A)} .
T€EA yeB

Lemma 2.10. [21] The real Banach space X is g-uniformly smooth if and only if there exists
a constant ¢, > 0 such that for all z,y € X

o+ yll? < 2ll? + gy, Jy(@)) + cqlll”.
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3 System of Nonlinear Regularized Nonconvex Varia-
tional Inequalities

In this section, we introduce a new system of nonlinear regularized nonconvexr wvariational
inequalities in Banach space and investigated their relations.

Let Q; : X x X — X be the single-valued mappings, 7;,: & x X — CB(X') be nonlinear
set-valued mappings and g;,h; : X — X be nonlinear single valued mappings such that
K, Cgi(X), (i=1,...,N). For any constants n; > 0, (i = 1,..., V), we consider the problem
of finding z; € X(i = 1,...,N) and u; € Ti(xip1,2:)(t = 1,...,N = 1), uy € Tn(z1,zN)
such that h;(z;) € K-(i =1,...,N) and

MiQi(@is1, wi) + hi(zi) — gi(zit1), Jo(gi(x) — Ri(zi)) + 2=lgs(®) — hi(z:)|? 2 0,(i=1,...,N)
(INQN (1, un) + Ay (@n) = g (@1), Jolgn (@) = hn(an)) + £ llgn (@) — by (@w)l|? > 0,
Ve e Kr:gi(z),...,gn(2) € K,

(3.1)
The problem (3.1) is called the system of nonlinear reqularized nonconvex variational inequal-
ities.

Lemma 3.1. Let £, be uniformly r-prox-regular set then the problem (3.1) is equivalent to
finding z; € X(t =1,...,N) and w; € Ty(xj41,2:)(i =1,...,N = 1), uy € Tn(x1,2n) such
that

(3.2)

0 € n:Qi(Tit1,w:) + hi(zi) — gi(wiyr) + N,f,‘(hi(:r,:))(i = Ty oV =1
0e 'r)NQN(xl,uN) + /’LN(.’L'N) - gN(:L‘l) + ]V,gr(hN(fllN)),

where N,é(s) denotes the P-normal cone of K, at s in the sense of nonconvex analysis.

Proof. Let (z1,...,zN,u1,...,un) with z; € X, hi(z;) € K.(1 = 1,...,N) and u; €
Ti(zit1,zi)(i=1,...,N = 1), uy € Tn(z1,zn) be solution sets of the system (3.1). If

mQ1(z2, 1) + hi(z1) — g1(z2) =0
because the vector zero always belongs to any normal cone, then
0 € mQi(w2,w1) + hi(z1) — g1(22) + NE (R (21)).

If
mQi(zz, u1) + hi(x1) — gi(w2) #0
then for all z € X with ¢, (2) € K,

(=(mQ1(z2,u1) + hi(z1) — 91(x2)), Je(g1(x) — hi(z1))) < %Hgl(ﬂ’f) = By ) [ (3.3)

From Lemma 2.2 we have

—(mQ1(z2,ur) + hy(z1) — g1(x2)) € N,gr(hl(a:l))
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and

{ 0 € mQi(@ir1, wi) + hi(z:) = gi(wit1) + NE (hi(z:))(i=1,...,N = 1), (3.4)

0 € vQn (21, un) + hn(zn) — gn(21) + NE (hy(zn)),

Conversely if (z1,...,zn,u1,. .., uny) with #; € X(i = 1,...,N), hi(z;) € K.(i = 1,...,N)
and u; € Ti(wip1,24)(0 = 1,...,N — 1), uxy € Tn(z1,zy) are solution sets of the system
(3.2) then from Definition 2.4, z; € X(i = 1,...,N) and u; € Tj(zsy1,2:)(i =1,...,N — 1),
un € Tn(z1,zN) with hi(z;) € K,(i = 1,..., N) are solution sets of the system (3.1). O

The problem (3.2) is called system of nonlinear reqularized nonconvezr variational inclu-
sions in real Banach spaces.

4 Main results

Lemma4.1. Let Qq, - - - ON Ty TN g1, -GNy Bty By, M1 - .., 1y be the same as in
the system (3.1). Then (z1,...,zn,u1,...,un) with z; € X hi(z;) € K, forall i =1, .. LN
and u; € Ti(z2,21), uz € Ta(x3,72), .. ,un—1 € In-1(zn,zn-1), un € Tn(z1,2N) are
solution sets of the system (3.1) if and only if

{ hi(x;) = P, [9i(@iy1) — miQi(zig1,us)](i =1,...,N — 1), (4.1)

hn(zn) = P, [gn(z1) — nvQn (21, un)],
where Px, is the projection of X onto the uniformly r-prox-regular set ..
Proof. Let (x1,...,xNn,u1,...,un) with z; € X,hi(x;) € K, forall i = 1,...,N and u; €

Ti(wiy1,2:)(i = 1,...,N = 1), uy € Tn(21,2n) are solution sets of the system (3.1). Then
from Lemma 3.1 we have

0 € niQi(@iv1, wi) + hi(x:) — gi(@iy1) + NE (hi(z:))(i=1,...,N — 1), (4.2)
0 € nn@Qn(z1,un) +hn(zN) — gy (z1) + NE (A (zN)), '
9i(@it1) = MiQi(Tivr, wi) € (I + NE ) (hi(z:))(i=1,...,N = 1), (4.3)
gn(z1) = N@n (21, un) € (I + NE ) (hn (zn)), '
hi(zi) = P, [gi(ir1) — 1:Qi(@is1, w)](i =1,...,N = 1),
< { hn(zNn) = P, [gn(21) = nnvQn (z1, un)], e

where [ is an identity mapping and Py, = (I + N,’C),‘)“l. [l
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Remark 4.2. The inequality (4.1) can be written as follows

pi = 9i(Tiv1) — 1iQi(Tit1,wi), hi(zi) = P, [pl(i=1,...,N 1), (4.5)
pN = gn(z1) —n@Qn(z1,un), hn(zN) = Pk, [pN],
where n; > 0,7 =1,..., N are constants.

The fixed point formulation (4.5) enables us to construct the following perturbed iterative
algorithms with mixed errors.

Algorithm 4.3. Let Q1, -+, Qn,11,..., TN, g1, -, 9N, h1,..., An, M1, ... N be the same
as in the system (3.1) such that hy,...,hxy : X — X be onto operators. Let e, .. ,e(])\,,
.. .,r% € X, ap € Rand 19 > 0. For given pf,...,p% € X, we let 29,...,2% € &,
uy € Ty(xa, 1), ug € To(xs, x2), .. ;un—1 € Tn—1(xn,2N-1), un € TN (21, 2N) such that

hi(x9) = P, (p9); p} = (1 — a0)p) + co(gi(@it1) — moQi(aiyr, uf) +€d) +rP(i=1,...,N - 1),
hn (@) = Pe, (0% ); pv = (1 — ao)p}y + aolgn (1) — no@n (2], uQy) + €Rr) + 7
(4.6)
We Choose z1,...,zY € X such that hy(z1) = Pg,(pl),.. . .hn(zd) = Pc,.(py). By Nadler

theorem [14], there exists

l|Q( z+1’u ) Q( 114-1 ) HI1+1 }Hﬂ—kg,;“u?—u}||(i:1,...,N—1),
ET( Tit1n X ) ”u H ( (1+7’L) 1)D<E(x?+l7$?)vTi<x}+lvJ"}))(i:17"'7]\[71)7
IIQN(% uly) — @n (i, up)ll < Cvllaf = 21l + on[luly — upll,
up € Tn(ad, ad); llu = ulyll < (1 + (L +0)")D(Tn (o, 2R), T (21, 2y ).
(4.7
Continuing the above process inductively, we can obtain the sequences {z7}7%, ..., {z% 72,
{ut}e g, o {ul 12, by using

hi(#]) = P, (p7); PP = (1 — an)p} + an(gi(z?yy) — miQilalyy, ul) + €F) + 17,
(i=1,...,N-1)
hn(zy) = Pe,(py); Pt = (1 — an)ply + an(gn (@h) — nnQn (Tt uly) + €ely) + 1%
(4.8)
and

Qi ui’) = Q'(fU::LlI’u?H) < Gillziyy — x:jﬁ” + oilluf — n“”(i =1,...,N-1),
u € Ti(xhq,27); lluf — u T < 1+ (1+ n)fl)D(f (2f1,27); Tilz :TLI»JL”H)L

1Qn (2T, uly) — QN( LU DI < Sl — 2]+ enllufy — ui

uy € Tn(zt,z%); llul u}{,HH <1+ (1+n)"HD (TN(.LI,.LN) T (aTt, 2%,

(4.9)
where 0 < «a,, < 1 is a parameter and {e?}>2, ..., {e}}>2,, {r1}y, ..., {rV}o2, are
sequences in X to take into account of a possible inexact computation of the resolvent operator
satisfying the following conditions:

lim e = lim r}' =0;

n——=oC0 n——0oC
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doller = <oo, Y =P < oo, foralli=1,...,N. (4.10)
n=1 n=1

Theorem 4.4. Let Q;, T3, gi, hi.ni, for i = 1,..., N be the same as in the system (3.1) such
that, foreach i =1,..., N,
(1) Q; is k; — gi-strongly accretive with respect to first variable of ); and T; is & — D-
Lipschitz continuous with first variables;
(ii) h; is 0;-strongly accretive and o;-Lipschitz continuous;
(iii) g¢; is p;-Lipschitz continuous;
(iii) @; is ¢-Lipschitz continuous with first variable with constant ¢; > 0 and g,-Lipschitz

continuous with second variable with constant o; > 0 respectively.

If the constants n; > 0 satisfying the following conditions:

\“/uf = gk + eqni ¢ < (r =)L = m)r7t - 0, (4.11)

9= {’/u? — gkl + el 4+ & and = /1= @BiFegol (=1, N); (412)

where 7’ € (0,7) and ¢, is constant, then there exists z7,..., 25y € X with hy(27),...,hn(zy) €
K and v € T1(x3, 27),u5 € To(z3, 23),.. suy_1 € Tn—1(zy, Th_1)uny € In(z],zy) such
that (z7,...,2%,u],...,u}y) is asolution set of (3.1) and sequences {(z7,...,zx,ul, ..., ul) >,
suggested by Algorithm 4.3 converges strongly to (z7,..., 25, uj, ..., uy).

Proof. From (4.8), we have

I a1 < (ol g+ anllon (o) = oa(e} ™) - m(@uafa)

Qa3 )+ alled - 4+ g =

(- et - P+ ollon(e) = 93(657") — (@8, u) — Qa(a )
o Q5™ ) = Qulay ™ )|+ e} — T+ - 7 4.13)

IA

Since @1 is (;-Lipschitz continuous with first variable and g;-Lipschitz continuous with second
variable and 77 is €; — D-Lipschitz continuous with first variables, we have

1Q1(23, uf) = Qu(zy ™, uf)l < Gillay — 257, (4.14)

Q1 (23 ™" ui) = Qulaz ™ uf NI < arlluy _“1 ~

<oi(l+ )D(T( 3, at), Tay 2 ™)

1 _
gifpl 4 = )]{:1 = IH (4.15)

I A
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Since @ is k1 — g1-strongly accretive with respect to first variable of Q1 and ¢y is p1-Lipschitz
continuous, we get

l91(23) = g1(257") = m(Qu(zh, uf) — Qu(zy ™ L ut)? = llga(zy) — ga(zy )|

= gn(Q1(z3,uy) — Q1(37" . uy'), jq(gl<xz)_91(mn : )
+ cgni || Q1 (23, ui Ql( 5 hup))e

< ufllg - a5 <ao>-gl< 3+ eqniclllal — 23t
< e} — o~ = amdlaf - BT+ cqnclla — ot
(o~ e+ ) — a3 (4.16)

It follows from (4.13) and (4.16), we obtain that

3 7 - ¢ [0 [ [e 1
it =il < (@ —en)lp? — P+ an(\q/m’ = anikip] +egni G+ 0i&i(1+ )|z -
tomlef — e T I =TI =1,.. ., N = 1),

IpN"" =Pl < (1= aw)llpy = PR+ an \/NN — qINENBY + NGl
1 . o
ronEn(L+ 2D - 277 + el - e+ Ik = r L

By using (4.8), we get that

a7 =oM< e} -2t = (ae}) = (@I + Iha(el) - b (el )]
I =27 = (in(at) = @)l + 1P () = e, (1)1
< oy -2l ™ = (nad) — (Tl g - (@18)

Since hy is fp-strongly accretive and o1-Lipschitz continuous, we have

1—1
I+1

27 = 277! = (ha(2]) = ha(zPDIY = ot =277 = glha(@}) = ha(a} ™), Gg(a} — 277h))
+qulhl( 1) = b2y He
< ey =27~ gBullat - 27T+ cqofllaf — 27T
= ({1 ~qm + cool) ||zt — 2|9 (4.19)
By (4.18) and (4.19), we obtain that
2} =277 < {1 - ab +cofllaf — 2}~ |
that is
r
[ [ Ipt — oy 7M. (4.20)
o (r =) (1 — YT —gB1 + ¢g07)
Similarly, we can prove that
”
lef — 277 < Ipg = pi MG =1,...,N-1),
(r =711 = /1 - B +cq0f)
n n— r n—
2 — 23l - (4.21)

<
N )Y WY e R )Ile PN

I

(4.17)
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It follows from (4.13), (4.15), (4.16), (4.20) and (4.21) that

L +1 3 7 n—1 TQi(n) 7 ~n=1
Ipi™ =o'l < Q—a)llp? —p} Il + o CETO T 1Py — Pt |l
+a, el — e;"_1|| +||rt = r;”"1||(i =1,...,N—1),
, : iy (n) .
I =gl < (1—an)lply — 272 + Y et — P2
+anllefy —ex T+ Irk =it (4.22)

where, foralli =1,2,..., N
q q q G 1 A G
Qi(n) = ﬁl = gmirip! +eqni G+ ei&i(1+ ~), and mi = {/1 - afi + ¢

Now we define || - [[. on X x ... x X by

N —times

l(z1,....,zn)|[« = |lz1]] + ...+ |lan]], forall (z1,...,2§y) € X x ... x X.
S e

N —times

It is obvious that (X x ... x X | - ||.) is a Banach space, applying (4.22) we have
S !

N —times

Iy et = oF PRl S (L= el Y, pR) = - P )
+C¥n@(n)H(p71Ls . --aP%) - (p?_lv . "717711)—1)[,* =t O‘”H(e?’ : "76%) - (6711’717 : "teX/_I)H*
L [CRPR e (Al P gy (4.23)

Put

n) = max réli(n) rQln(n)
o(n) {(7“7"’)(1%2)’”" (7'~7~’)(1_7r1)}' (4.24)

Let ©(n) — ©, as n — ©

(4.25)

@:max{ il rily }

(r=r)(1=m) " (r=r)(1-m)

By (4.11), we know that 0 < © < 1. For © = £(© +1) € (6, 1) there exists ng > 1 such that
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O(n) = O for each n > no. So it follows from (4.23) that, for each n > ny,
1™ ™) = @, PR < (U= a8, 0R) — (B
+anOll(PY, - pR) = 7 P b Fanll(el, - eh) — (8T e Y
HIT ) = TR
=(1-an(l @))H(p17---7pzv) (P75 D+ anli(el, o eh) = (€L e ).
+||(7“?»~-'a7“7v)—(7’T 17" 7TN 1)“
<@ -au(1-8)(( - an(l = OG- ool ) = (G122
Fanller ™ ey ) = (R e T ) = 072 2)”)
Fanf(el, . el) = (e ey e T ) = T e
= (1= an(1 =02y Pl ) = (02, 2>u*+an(<1—an<1~©>>
X ) = (7 Dl el o) = (i)
+(1—an(1—9))|l(7“§”_ L e G O e | T G ST 3 I (NP s
<
< (L=an(L=0)" I, ppetY) = (40, ..., )]
n—np
o Y (1= an(1=8) I L ) (e el
i=1
n—mng . ) ( 1) ( 3 )
+ Y (1 —ap(l = @)UY, e Sl (o S T[N (4.26)
i=1
Thus, for any m > n > ng, we get that
m—1 )
1@, - pR) = (o1, -+, PRl ZII AR e B ¢ I - ST N
m—1
< D= an(T=8)Y e, ) — (pfe,. L )l
Jj=n
m—1j—ngo
N\\i— n—(i— n—(i—1 n—i n i
Fan D D (1= an(l = 8)) (07D, el Gy (gni e
j=n i=1
m—1j—ng
e n—(i—1 n—(i—-1 n—i n i
IR a1 i N ol T M- (4.27)

J=n i=1

Since (1 — a,(1 — @)) € (0,1), it follows from (4.10) and (4.30) that

Iy, R = (0, PRI = 197 = PVl + . + PR — PRl — 0 as n —> oo



38 Salahuddin and Verma

So {pl'},...,{p%} are Cauchy sequences in X and thus there exists pj,...,py € & such that
P — pi,..., PR — py as n — oo. By (4.22) and (4.23), it follows that the sequences
{a1},...{z}} are also Cauchy sequences in X. Hence there exists x7, ..., 2} € X such that
z} — x},..., 2 — T as n — oo. Since foreach ¢ = 1,..., N, T; are & — YS—Lipschitz
continuous in the first variable, therefore it follow from (4.7) that

lup —uf < (4 (L4 n)TH)D(Ti(a, ), Ty ap+h)
S (1 (1+”‘) )5 H/Ll+1“‘%jl—|-—+llH ‘—}0(121 2 ...,]V‘l),
luf =il < (141 +n) " )D(Tw (e}, 2), Tt ayth))
< (Q+QQ4+n)"Hew||z? -2 — 0, as n — oo. (4.28)
Hence {u}},...,{u} are Cauchy sequences in X and so there exists uj,...,uy € X
1 N 1 N
such that =} — z7,..., 2% — 2y as n — oc. Further u} € Ty (2%, x}) we have

d(ui, Ti(a3.05)) = wf{llu; —t] : ¢ € Ty(a3, 7))}

I

< g = w4+ d(uy, Tr(wg, 27))
< Jluf —ubl| + D(Ti(af,21), Ta (e, 2} ™))
< ul = ul]] + |2y — 25|l — 0, as n — oc. (4.29)

Hence d(uj, Ti (x5, 27)) = 0 and so uy — uj € Ty (x5, 7).
By the same method, we can prove that

A, @t @D) < llu = ulll+ ads, — wil — 0 =1,2,...,N = 1),
d(un. Tn(ai ay)) < llus —ufell + o} — 7] — 0, as n — o. (4.30)

A

Therefore u3 € Th(xs, 23),. . suy € Tn(x], x)y). Since g; for i = 1,..., N is continuous,
it follows from (4.8) and (4.10) that

pi = gi(ziy) —mQilziy,u)(i=12,...,N-1),
P = gn(zT) —n@QnN (2], uy)- (4.31)
Since Q1, + ,QnN,h1, ..., hxy and Py, are continuous, it follows from (4.8) and (4.31) that
hilel) = Pe(p]) = Preo(gilein) = @ity u))i = 1,2,..., N = 1),
hn(ry) = Pe.(py) = Px, (gn(27) — anvQn (2], uy))- (4.32)
Now Lemma 4.1, guarantees that (z7,..., 2%, u], ..., uy) is asolution set of system (3.1). O
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