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Abstract— With the advent of distributed and renewable 

energy sources, maintaining the stability of power grid is 

becoming increasingly difficult. Traditional power grid can be 

transformed into a smart grid by augmenting it with 

information and communication technologies, and machine 

intelligence. Machine learning and artificial intelligence can 

enable smart grid to make intelligent decisions and respond to 

sudden changes in customer demands, power outages, sudden 

drops and rises in renewable energy output or any other 

catastrophic events. Machine learning can also help capture 

customer consumption patterns, forecast energy demand and 

power generation of intermittent sources, and predict 

equipment failures. Reinforced learning can aid in making 

energy dispatch decisions and activate demand management 

signals in order to maintain balance of power supply and 

demand. The usage of wireless technologies in smart grid 

renders it vulnerable to cyber security threats. With the 

increase in data volume, it is now possible to employ machine 

learning for the detection and prevention of anomalous 

behaviour, intrusion, cyber-attacks, and malicious activities as 

well as data authentication. This paper reviews the application 

of different machine learning approaches that aims at 

enhancing the stability, reliability, security, efficiency and 

responsiveness of smart grid. This paper also discusses some of 

the challenges in implementing machine learning solutions for 

smart grid. 
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I. INTRODUCTION 

With the introduction of distributed and renewable 
energy sources, it is becoming increasingly difficult to 
maintain the balance between demand and supply of power 
as well as the quality of power in the electricity network. As 
the traditional power grid is not designed to handle 
bidirectional power flow, electricity networks are struggling 
to handle backflow of power from distributed generation 
sources such wind and solar. The intermittent nature of the 
renewable energy sources is also making it difficult to 
maintain stable power flow in the electricity network. The 
traditional power grid can be transformed into an intelligent, 
automated and responsive power grid by augmenting it with 
information and communication technologies, and machine 
intelligence. This type of grid is often termed as smart grid. 
The motivation behind developing smart grid is to ensure 
stable, reliable, efficient, economical and sustainable 
generation, distribution and usage of conventional and 
renewable power [1]. Smart grid can offer the following 
benefits to the generators, transmission and distribution 
operators, and consumers. 

 Demand management: Smart grid allows customers and 
network operators to manage electricity consumption to 
reduce peak demand and avoid network overloading. 

 Network stability: Smart grid maintains the balance of 
supply and demand and regulates the voltage by 
varying generation and managing demand. 

 Network reliability: Smart grid allows network 
operators to anticipate and locate faults and outages 
remotely that could lead to quicker restoration of 
power.  

 Empowering consumers: Smart grid makes real-time 
consumption of data available so that customer can 
control their consumption to take advantage of the off-
peak price and reduce power bill.  

 Integration of renewable energy sources: Smart grid 
facilitates integration of intermittent renewable energy 
sources by making energy dispatch decisions and 
controlling loads in real-time.  

Machine learning is a branch of artificial intelligence 
where machines learn automatically from data without the 
direct involvement of humans [2]. Machine learning 
algorithms embody the techniques that look for patterns and 
interrelations in the data and build a model that represent 
those patterns and interrelations. The learning experience 
enables the machine to predict future events based on past 
examples. Machine learning can be supervised or 
unsupervised [3]. In the supervised machine learning, the 
algorithm is provided with training data that has 
outcomes/labels. The algorithm builds a model/function 
from the pattern buried in the data. When presented with 
new data, the algorithm infers outcomes based on the 
model/function already built. In unsupervised learning, there 
is no outcome/label provided with the data. The algorithm 
finds the unknown structure or pattern in the data without 
any information on how to name or label it.  

The supervised learning algorithms generally fall into 
two categories – classification and regression. The 
classification problem separates data into predetermined 
labels of outcome. In classification problem, the outcome 
variable has a finite number of categories (such as 
male/female, low/moderate/high). The regression problem 
deals with predicting the real value of an outcome (such as 
age, price). Unlike classification problem, the outcome 
variable in regression problem has continuous values. The 
most common supervised learning algorithms are artificial 
neural network (ANN), support vector machine (SVM), 
decision tree, k-nearest neighbours (KNN) etc.  
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The unsupervised learning algorithms also generally fall 
into two categories – clustering and association. In 
clustering problem, the algorithm endeavours to discover the 
intrinsic grouping of data based on the similarity of data 
points (such as grouping of patients based on symptoms). 
Popular clustering algorithms are k-means clustering, 
hierarchical clustering, DBSCAN, OPTICS etc. In 
association problem, the co-occurrence of events with high 
frequency in large dataset is discovered and expressed as 
association rules (such as customers who buy bread also buy 
egg). The most frequently used association rule algorithms 
are AIS, SETM, Apriori etc.  

There is another kind of machine learning algorithm that 
fall between supervised and unsupervised machine learning 
algorithms, and thus called semi-supervised learning 
algorithms [3]. This sort of learning algorithms is used when 
vast majority of data are not labelled, only a small portion of 
the data is labelled. This situation arises when labelling of 
data requires high expertise and/or the labelling is resource-
intensive. 

Reinforcement learning is about learning to how to take 
the best action in a certain environment so that the 
cumulative reward is maximised [4]. In this type of learning, 
an agent learns through trial and error based on the reward it 
receives as a result of its actions. The difference between 
supervised learning and reinforcement learning is that the 
labels in supervised learning represent the answer, while in 
reinforcement learning, the agent has to decide the best 
action by correlating the delayed return with the action. 
Reinforced learning can be formulated as a Markov 
Decision Process (MDP) [5] with a finite set of states, a 
fixed set of actions and rewards. An agent in MDP selects 
an action to make transition from current state to another 
state and earn rewards. MDP enables agents to choose the 
best action in each state so that it can earn the maximum 
reward. The collection of optimal actions by an agent 
constitutes a policy. Q-learning is a reinforcement learning 
that learns an action-value function which yields the 
expected utility of a specified action in a specified state [6]. 

Unlike statistical analysis methods, machine learning 
requires vast amount of data to learn the interrelations and 
patters in the data. While most statistical methods require 
certain assumptions to hold about the distribution of data, 
machine learning algorithms can be applied to any data. 
However, data quality is very crucial for machine learning 
to build a useful model from the data. In many situations, 
the available data cannot be directly fed into the machine 
learning algorithms. The data has to go through a 
preprocessing stage where it is cleaned, transformed, and 
enriched before being fed into the machine learning 
algorithm. The number of attributes or features in the data 
plays an important role in the design of a machine learning 
pipeline. When the number of features is too high, the 
number of data points required in the training phase would 
be exceedingly high and the model could be exceptionally 
complex. This is often referred to as the curse of 
dimensionality [7] for machine learning. To decrease the 
complexity of the model and the volume of data required, 
the dimensionality needs to be reduced. There are two well-
known approaches to reduce the dimensionality of data: 
feature selection and feature extraction [8]. Feature 
selection selects a subset of features that are most relevant 
for model construction. Feature selection doesn’t transform 

the features, only drops the less important features. The 
features extraction by contrast, similar to principal 
component analysis, transforms the features into a smaller 
set of features that have fewer features than the original set 
of features. 

Machine learning and artificial intelligence can enable 
smart grid to make intelligent decisions and respond to 
sudden changes in customer demands, power outages, 
sudden drops and rises in renewable energy output or any 
other catastrophic events. The smart meters installed in the 
customer premises, and other measurement devices in the 
power system, generate a huge amount of data that could be 
fed into the machine learning algorithms to capture 
customer consumption patterns. The use of machine 
learning to forecast energy demand and power generation of 
intermittent sources are among the most common 
applications of machine learning in the power grid. Machine 
learning can be used to predict any equipment failure by 
analysing industry-wide equipment failure data, thus helping 
in asset maintenance and portfolio management. Besides 
supervised machine learning, unsupervised machine 
learning can have applications in the smart grid such as 
creating energy demand profiles through clustering. 
Reinforced learning algorithms can be used to make energy 
dispatch decisions and activate demand management signals 
in order to maintain balance of power supply and demand. 

This paper endeavours to review the application of 
different machine learning approaches that aims at 
enhancing the stability, reliability, security, efficiency and 
responsiveness of smart grid. The rest of the paper is 
organised as follows: Section 2 reviews the use of machine 
learning to estimate transformer loss of life. Section 3 
reviews the machine learning methods to detect power 
quality events. Section 4 reviews the prospect of machine 
learning to make optimal energy dispatch decisions aiming 
at balancing power supply and demand. Section 5 reviews 
the efficacy of using machine learning in improving 
electricity market operations. Section 6 reviews the machine 
learning techniques to detect vulnerabilities and threats in 
smart gird. Section 7 discusses some of the challenges in 
implementing machine learning solutions for smart grid. 
Finally, Section 8 concludes the paper.  

II. ESTIMATING TRANSFORMER LOSS OF LIFE 

Proactive maintenance of power system equipment 
involves prediction of equipment failure and replace or 
repair those equipment before the failure occurs, thus 
helping to minimise the unplanned downtime and 
unexpected disruption of power supply. However, 
prioritising the equipment for replacement or repair so that 
limited resources are spent towards the equipment that 
requires the most urgent attention is a challenging task. The 
machine learning models can predict the mean time between 
failures (MTBF) and rank feeders accordingly so that the 
feeder which is most likely to fail gets replaced or repaired 
first. 

Transformers are vital part of the electricity network and 
failure of transformers can jeopardise the reliability of the 
network. The repair and maintenance of transformers are 
costly as well as time consuming, and therefore, it pivotal to 
estimate the remaining life and replace the ageing 
transformer before the failure happens. The estimation of 
transformer loss of life is an important part of transformer 



asset management. The insulation of a transformer is the 
most vulnerable component, and hence, the life of a 
transformer is dictated by the condition of its insulation. The 
load profile and ambient temperature have an effect on the 
aging of transformer insulation. The prediction of load 
profile and temperature using historical data can help 
estimate the time to insulation failure for the transformer 
[9].  

Majzoobi at al. [10] developed a static model for hourly 
estimation of transformer loss of life based on adaptive 
network-based fuzzy inference system (ANFIS) which is a 
combination of ANN based machine learning and fuzzy 
inference system. Mahoor and Khodaei [11] further 
integrated ANFIS and radial basis function (RBF) to 
improve the accuracy of estimation even more. The data 
fusion techniques that were used to integrate the outputs of 
ANFIS and RBF are ordered weighted averaging (OWA) 
and sequential Kalman filter. 

III. POWER QUALITY EVENT DETECTION 

Machine learning can be used to predict outage or power 
quality events (PQE) in the power grid by using validated 
models [12]. Self-healing grids can be developed by 
automatically detecting and mitigating fault events with the 
aid of machine learning. Knowledge of fault signatures and 
their development combined with machine learning can 
facilitate the detection of fault events in the power grid [13]. 
Traditionally power system states are estimated using 
models consisting of high dimensional nonlinear equations; 
however, the computational complexity involved makes it 
very time consuming [14]. Consequently, these models are 
unable to predict the system state (such as frequency) soon 
enough after a disturbance has happened. Simplified models 
have been developed that work much faster than the original 
models, but these ignore some of the factors affecting the 
system states, and hence, produce unreliable results in some 
instances. Machine learning appears to be a viable solution 
for system state prediction as it is not as unreliable as the 
simplified models, and on the other hand, it doesn’t need to 
perform complex calculations every time it needs to 
estimate the system state. The machine learning models 
need to be trained with historical time series data in order to 
enable it to distinguish fault events from normal situations. 
The training process may be time consuming, but once 
trained, the machine learning models can reliably predict the 
system state within a short period of time.  

Ucar at al. [15] proposed a method to detect power 
quality events using extreme learning model (ELM). ELM is 
a single feedforward neural network which consists of a 
single layer of hidden nodes. The weights between the input 
and hidden layers are randomly assigned and remain fixed, 
while weights between the hidden and output layer is 
updated during the training phase. Due to having a single 
layer, the complexity of ELM is very low. Therefore, it can 
be trained extremely fast, while exhibiting acceptable 
performance. 

Fault detection is a research area where machine learning 
has gained prominence. SVM and ANN have been 
extensively used to classify the faults. The features from 
fault-induced current and voltage signals are generally 
extracted using discrete wavelet transform (DWT) which 
can extract the characteristics of a signal in a time window. 
Fast discrete orthonormal S-transform (FDOST) can also be 

used to extract features of current and voltage signals [16]. 
Other machine learning algorithms that are used for fault 
detection are decision tree, k-nearest neighbours, ELM, 
bagged tree ensemble, fuzzy logic etc. [17]. Machine 
learning techniques can also be used to determine fault 
locations. Support vector regressions (SVR), ANN, back 
propagation ANN, k-nearest neighbours are commonly used 
machine learning algorithms for this purpose. The features 
are extracted using fast Fourier transform (FFT), wavelet 
packet transform (WPT). 

Complex event processing (CEP) is a Big Data analytics 
technique which analyses trends, patterns and correlation in 
the data to identify complex situations. CEP can be quite 
useful for smart grid as it would allow smart grid to analyse 
complex situations and respond in real-time. An 
architectural framework based on Lambda architecture for 
complex event processing in smart grid was presented in 
[18]. 

IV. MAKING ENERGY DISPATCH DECISIONS 

The power grid operators rely heavily on forecasting of 
the electricity demand to adjust power generation to meet 
the demand and to avoid power system overload. The 
introduction of renewable and distributed energy sources is 
making it increasingly difficult to match the power 
generation with demand. Nowadays, it is essential to 
forecast both electricity demand and distributed generation 
to know how much power needs to be produced by the 
conventional generators to meet the net demand.  

Battery storage plays an important role in smoothing out 
the fluctuations in energy demand and distributed 
generations. Batteries can store power during periods of 
excess energy generation, and release it later to fill the gap 
during the period of generation deficit. A consumer can 
choose to consume power from any of the three sources – 
power grid, battery or PV, depending on the grid electricity 
price and availability of power from the battery or PV. The 
consumer can sell excess energy from PV or battery when 
the feed-in tariff is higher and store excess energy from PV 
in the battery or consume it when the feed-in tariff is lower. 
Similarly, the consumer can consume electricity from the 
power grid during off-peak period when the price is low and 
use up stored energy from battery during peak period when 
the price is high.  

A huge number of heuristic algorithms (such as particle 
swarm optimisation, genetic algorithm) and game theory 
based methods have been developed to make optimal energy 
dispatch decisions in smart grid [19],[20],[21]. 
Reinforcement learning based energy management 
algorithms can also make optimal energy dispatch decisions 
to reduce the cost of energy for the consumers. A Q-learning 
based energy management algorithm was developed in [22], 
which learns to make better energy dispatch decisions 
through experiences without having any prior knowledge. 
Simulation results using real-life data suggest that the 
proposed algorithm can significantly reduce the total energy 
cost based only on current information, while heuristic and 
game theory based methods rely on future energy demand 
forecast to make optimal energy dispatch decisions.  

V. ELECTRICITY MARKET OPERATIONS  

Maintaining balance between supply and demand is one 
of the key goals of smart grid. As mentioned earlier, 



increasing penetration of renewable and distributed sources 
has made it harder to find the balance. Various demand 
management and dynamic pricing schemes have 
complicated the prediction of energy usage patterns [23]. 
Electricity market operators match the demand for 
electricity with supply from generators in five minutes, 30 
minutes or one hour period. A more efficient and flexible 
approach is to introduce automated electricity brokers. 
These brokers can operate in a localised market to eliminate 
the inefficiencies arising from wide-area transmissions. 
Automated brokers can effectively trade in two different but 
interconnected markets to buy electricity from producers 
and sell electricity to retailers. The challenge faced by a 
broker is to balance the demand and supply of power and 
make profit while competing with other brokers. 

Q-learning was successfully used in [24] to make an 
automated broker learn an effective strategy to choose an 
optimal action in each state in a tariff market. As the price 
of electricity in real market is continuous, there is unlimited 
possibility of prices. To limit the state space, the price range 
was divided into some discrete values. Also, the energy 
portfolio was kept limited to a small set of states to control 
the state space.  

Recurrent deep Q-learning (DQN) can address 
continuous state space and discrete action space. A DQN 
based multiagent autonomous broker was employed in [25] 
to trade power in a local tariff market. As the tariff market 
prices are inherently continuous and temporal, a long short-
term memory (LTSM) based DQN was employed to enable 
a multiagent broker to learn pricing strategies. LTSM has 
excellent capability in modelling sequential data. The paper 
clustered customers according to usage patterns to limit the 
state space. Due to multiagent nature of the broker, a 
negative reward of a suboptimal action by an individual 
agent may be concealed by the global reward. The authors 
proposed a reward reshaping method to identify the 
implication of actions taken by each agent so that each agent 
is aware of the negative consequence of its suboptimal 
action. 

VI. SECURING SMART GRID  

Smart grid has two aspects of infrastructure - cyber and 
physical infrastructure and consists of several complex 
components which need to be interconnected for smooth 
operation [26]. One of the essential components of smart 
grid is smart meter which collects energy consumption data 
and sends to the service provider. Smart meters are designed 
to communicate with the service provider using an advanced 
metering infrastructure (AMI) network. AMI provides 
facilities to automate metering, monitoring, and controlling 
of power distribution/outage management through a wireless 
network [27]. In the AMI network, millions of smart meters 
communicate with the local utility service provider/control 
centre using a bidirectional network which can be a mesh, 
hierarchical, or hybrid topology. Internet of Things (IoT) 
could also be integrated in all major components of smart 
grid such as power generation, transmission, distribution, 
and utilisation. 

Seamless communication through the usage of wireless 
technology is a core feature of today’s smart grid. This 
communication involves device to device, device to cloud, 
device to gateway communication to name a few [28]. The 
usage of wireless technologies in smart grid makes it more 

vulnerable to cyber security threats. For reliable operation of 
smart grid, security and privacy need to be ensured both at 
physical and cyber level [29]. The security vulnerabilities of 
smart grid could be categorised as process control security, 
smart meter security, smart grid communication security, 
cyber security etc [26]. The potential security threats to 
smart grid include hacking, meter data tampering or meter 
fraud, injection of false information/data/commands, data 
stealing, privacy breaches, denial-of-service (DDoS) attacks, 
man-in-the-middle attacks, meter viruses and compromise 
of physical security [27],[30]. To develop a secure and 
reliable smart grid, it is essential to have a security system 
that can prevent different types of cyber-attacks. With the 
increase in data volume, machine learning could be 
efficiently used for the detection and presentation of 
anomalous behaviour, intrusion, cyber-attacks, and 
malicious activities (including virus) as well as data 
authentication. 

Parvez et al. [27] proposed a two-level security scheme 
for smart meters where a localization-based key 
management system was used for data encryption and KNN 
algorithm was used for meter authentication. In this system, 
a maximum likelihood estimator (MLE) based on received 
signal strength (RSS) of radio signal was used for the 
localization of a meter. This system creates a local 
positioning map based on the signal strength, where each 
meter has its own coordinate. Each meter has a secret key 
associated with its coordinates and this key is used along 
with a random key index for data encryption to prevent 
potential data hacking. 

Kurt et al. [31] proposed an online attack/anomaly 
detection framework using a model-free reinforcement 
learning approach for partially observable MDP. Using this 
approach, an unknown attack type can be detected without 
requiring the knowledge of any previous attack model. The 
simulation results demonstrate that the proposed solution 
can efficiently detect cyber-attacks, but some further 
improvement could be done by developing sophisticated 
memory management techniques, and incorporating 
linear/non-linear function approximation techniques and 
deep reinforcement learning to enhance performance. 

Zhang et al. [32] investigated different machine learning 
algorithms that could be used for efficient detection and 
defense of DDoS attacks. Features that are typically used to 
detect anomalies in the traffic are number of packets, 
average packet size, time interval variance, packet size 
variance, packet rate and bit rate. The authors suggest that 
machine learning algorithms such as random forest (RF) and 
naive Bayes (NB) could be used for achieving superior 
performance in classifying malicious and normal traffic. 

Karimipour et al. [33] proposed a real-time anomaly 
detection method for false data injection (FDI) attacks. In 
their work, the authors took an unsupervised approach based 
on statistical correlation between measurements to detect 
anomalies in smart grid. Symbolic dynamic filtering (SDF) 
was used for feature extraction to discover usual interactions 
among different smart grid subsystems. A Dynamic 
Bayesian network (DBN) based learning model was 
employed to detect unobservable cyber-attacks using free 
energy as an anomaly index. 

Ozay et al. [34] employed supervised and semi-supervised 
machine learning algorithms for FDI attack detection. Four 



different types of learning algorithms such as perceptron, 
KNN, SVM, and sparse logistic regression were used as 
supervised learning methods for attack detection. Semi-
supervised SVM was used as a semi-supervised learning 
method for attack detection. The authors used decision and 
feature level fusion algorithms as well as both batch and 
online learning methods for classification of measurements. 
The experimental results suggest that the state-of-the-art 
supervised machine learning algorithms can detect attacks 
more efficiently than state vector estimation (SVE) based 
algorithms for detection of different types of attacks. 
Perceptron is less sensitive and KNN is more sensitive to the 
system size than other algorithms. Moreover, KNN 
performs better in small scale systems whereas SVM 
performs better in large scale systems than other algorithms. 
However, SVM has challenges as it is sensitive to kernel 
type and sparsity of the system. The authors also found that 
semi-supervised learning algorithms are more robust to the 
sparsity of data than the supervised learning algorithms. The 
fusion algorithms - Adaboost and multiple kernel learning 
(MKL) make the learning models more robust in terms of 
change in system size and data sparsity. 

Zhang et al. [35] addressed a new security issue in the 
wireless communication channels by proposing a distributed 
intrusion detection system for smart grids (SGDIDS). The 
proposed system embeds a number of analysing modules 
(AM) in each layer of the smart grid. Each AM deploys 
SVM and artificial immune system (AIS) for efficient 
detection and classification of malicious data and potential 
cyber-attacks.  

Ahmed et al. [36] proposed a supervised machine 
learning based scheme to detect a new type of cyber-attack 
named covert cyber deception assault (CCD) where the 
attacks (data tampering) are initiated by hackers with a good 
knowledge of the system and hence, it is difficult for bad 
data detectors in traditional state estimators to detect such 
attacks. This work used a genetic algorithm (GA) based 
feature selection technique for selecting the optimal 
features, and then used SVM for classifying the CCD 
attacks. The feature selection technique can identify the 
most discriminative features and hence, reduces the 
computational complexity of the attack detection 
mechanism. Moreover, it reduces the delay, and increases 
the accuracy of attack detection. 

VII. CHALLENGES 

The supervised learning algorithms require fully labelled 
data for training purposes; however, fully labelled data is 
either limited or difficult to obtain [37]. In case of predicting 
power outage events, the scarcity and imbalance of event 
data poses a significant problem as power grid failures are 
quite rare. For example, distribution feeders have different 
kinds of failures and there are few training examples 
available for each kind [38]. The failure pattern may change 
rapidly and the model for prediction may be obsolete after 
some time. If deep learning algorithms are used for 
modelling problems in smart grid, the efficacy of modelling 
will depend on the availability of vast amount of quality 
data. It is possible to generate high resolution synthetic data 
for training by modelling and sampling, but this is not 
without challenges. The challenges mentioned in [39] are: 
(1) high dimensionality, (2) large number of observations, 
(3) non-Gaussian marginal probability of individual 

variable, and (4) complex nonlinear dependency among 
variables.  

Efficient classification/characterisation of threat and 
source of threat is very important for accurate detection of 
security attacks in smart grid [40]. With new types of 
attacks evolving over time, the classification might need to 
be regularly updated. Hence, the challenge is to develop a 
robust classification mechanism that can detect different 
types of evolving attacks reliably. As mentioned earlier, 
unavailability of past labelled data for using supervised 
learning-based approaches is a challenge, which makes 
anomaly detection in smart grid a challenging task. In such 
cases, careful consideration should be given to contextual 
information and other events (rather than depending only on 
one type of event) for successful characterisation of 
anomalous behaviour [41]. With the huge amount of data 
being produced by smart grids, the real-time detection of 
attacks has become an overwhelming task. Efficient feature 
selection techniques should be used to reduce the time delay 
and computational complexity of real-time attack detection 
methods [34]. Another challenge for security solutions is 
that the smart meters in smart grid have low memory and 
computational capability, so the security solutions need to 
be light weight but robust [27]. 

VIII. CONCLUSION 

This paper has reviewed the application of different 

machine learning techniques that could be used to enhance 

the stability, reliability, security, efficiency and 

responsiveness of smart grid. The findings of the paper 

show that machine learning algorithms could be efficiently 

used for estimating transformer loss of life, detecting power 

quality events and faults, making optimal energy dispatch 

decisions to reduce cost of energy, efficient electricity 

market operations, and securing data and preventing attacks 

on smart grid. This paper has also discussed some of the 

challenges in implementing machine learning solutions for 

smart grid. These include limitation of finding past labelled 

data, evolution of new types of attacks, rapid changes in 

failure patterns, issues with generating high resolution 

synthetic data for training, finding efficient feature selection 

techniques, low memory and computational capability of 

smart meters. With the integration of new energy sources 

and technologies, smart grid is becoming increasingly 

complex and vulnerable. Although many machine learning 

based smart grid solutions have been proposed in the 

literature, there are still a lot of opportunities for 

improvement. Deep Learning and Big Data can play a vital 

role in solving problems of smart grid in future.  
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