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 An example of a combinatorial problem is the vehicle routing problem with 

time windows (VRPTW), which focuses on choosing routes for a limited 

number of vehicles to serve a group of customers in a restricted period. 

Meta-heuristics algorithms are successful techniques for VRPTW, and in 

this study, existing modified artificial bee colony (MABC) algorithm is 

revised to provide an improved solution. One of the drawbacks of the 

MABC algorithm is its inability to execute wide exploration. A new solution 

that is produced randomly and being swapped with best solution when the 

previous solution can no longer be improved is prone to be trapped in local 

optima. Hence, this study proposes a perturbed MABC known as pertubated 

(P-MABC) that addresses the problem of local optima. P-MABC deploys 

five types of perturbation operators where it improvises abandoned solutions 

by changing customers in the solution. Experimental results show that the 

proposed P-MABC algorithm requires fewer number of vehicles and least 

amount of travelled distance compared with MABC. The P-MABC 

algorithm can be used to improve the search process of other population 

algorithms and can be applied in solving VRPTW in domain applications 

such as food distribution.  
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1. INTRODUCTION 

Logistics management is critical for lowering costs and increasing a company's competitiveness. 

Logistics firms must make strategic and operational choices to plan business operations effectively. 

Numerous businesses optimize truck routes to decrease costs and enhance the quality of logistic services. The 

vehicle routing problem (VRP) has shown promising results in chain management and other domains. The 

VRP may be described as the process of finding the most efficient set of vehicle routes to improve logistic 

businesses' competitiveness by saving time and cost [1], [2]. Thus, research on a variety of VRP variants 

were performed (e.g., VRP with pick-up and delivery (VRPPD), multi-depot vehicle routing problem 

(MDVRP) with time windows (MD-VRPTW), multiple depot VRP (MDVRP), and capacitated VRP 

(CVRP), and vehicle routing problem with time windows (VRPTW) [3], [4]. The VRPTW is an NP-hard 

issue that involves finding the optimal route for a group of limited-capacity vehicles between a central 

warehouse and a number of scattered customers, all of whom must be reached within a certain timeframe the 

time window as shown in Figure 1. VRPTW has been implemented in various real-world applications, 
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including food distribution [5], container transport [6], perishable delivery [7], newspaper delivery [8], and 

petrol station [9]. In 1987, Solomon [10] first introduced heuristics to solve the VRPTW, and metaheuristics 

has become popular in recent years [11], [12]. 

 

 

 
 

Figure 1. An example of VRPTW 

 

 

Metaheuristics algorithms can be divided into local search and population-based techniques [13], [14]. 

The local search technique manipulates a single solution by exchanging segments of its components to produce 

better solutions, whereas the population-based technique uses more than one solution. Iterated local search and 

guided local search algorithms belong to the former class, whereas evolutionary computation, particle swarm 

optimization, grey wolf optimization and ant colony optimization belong to the later one [15], [16]. Population-

based techniques are divided into two types, i.e., swarm intelligence algorithms and evolutionary algorithms 

[17], [18], on the basis of natural events that the algorithms represent. The theory of evolution is used by 

evolutionary algorithms to generate new species [19], [20]. Swarm intelligence algorithms rely on 

metaheuristics that mimic the collective behavior of problem-solving processes in self-organized systems [21], 

[22]. The collective intelligence emerges from the interactions of agents in social colonies with their 

surroundings [23], [24]. Metaheuristics algorithms have inspired many researchers to develop algorithms for 

VRPTW, including the genetic algorithm [25], particle swarm optimization [26], memetic algorithm [27], and 

the artificial bee colony (ABC) [28]. This research focuses on the ABC algorithm.  

In 2005, Karaboga [29] developed the ABC algorithm to address numerical optimisation problems. 

Alzaqebah et al. [30] presented an updated version of the ABC algorithm for solving the VRPTW, and 

demonstrate that the modified ABC method beats the original. The bees in ABC algorithm are divided into 

three groups, namely, employed (EBs), onlooker (OBs), and scout (SBs) bees, adding to the bee colony's 

collective intelligence. The ABC algorithm is capable of exploration and exploitation. SB explores the search 

space globally and EB and OB explore the search space locally. In this research, the existing modified ABC 

(MABC) algorithm [30] is revised to solve the VRPTW. Although MABC is reported to be successful, its 

exploration process cannot execute wide exploration because a new solution is produced randomly and being 

swapped with best solution when the previous solution can no longer be improved. Randomly generated 

solutions, such as making it difficult to discover promising regions by exploring the area blindly, may affect 

the search process. SBs only focus on searching in relative proximity to the best solution, that is, exploiting 

around the same regions. 

In this research, a new approach, perturbation of MABC (P-MABC) algorithm, is proposed to 

improve the exploration mechanism of the MABC. This approach uses five types of perturbation operators. 

These operators are adapted to perturb abandoned solutions by changing customers in the solution. This 

approach is performed to improve the exploration task and find many sub-ideal solutions or global ideal 

solution. Experimental results show that the proposed P-MABC approach improves the results. Overall 

comparison indicates that the P-MABC approach can obtain the best results in comparison with other 

https://en.wikipedia.org/wiki/Iterated_local_search
https://en.wikipedia.org/wiki/Guided_Local_Search
https://en.wikipedia.org/wiki/Evolutionary_computation
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optimization approaches, as presented by reducing the distance travelled and the number of vehicles, which 

are the main objectives of the VRPTW. 

The remainder of this paper is organized as follows. Section 2 describes the mathematics of 

VRPTW. Section 3 offers the methods. Section 4 presents the proposed P-MABC approach. Section 5 

explores the experimental results, performance evaluation, and benchmark datasets used in this research. 

Finally, section 6 provides the summary and the outlook for future research. 

 

 

2. VEHICLE ROUTING PROPLEM WITH TIME WINDOWS 

The VRPTW formulation, consisting of a single warehouse, a selected number of distributed 

customers, a number of homogeneous vehicles, and a network linking all customers to the warehouse, is 

presented in this section. The VRPTW benchmark is suggested by Solomon [10] and has 56 datasets, in which a 

predetermined set of vehicles must serve 100 customers. A connection between two nodes is seen by each arc in 

the undirected graph, and the direction of travel is defined. Any vehicle must begin from the warehouse, travel 

to the identified locations, and then return to the warehouse. Hence, each vehicle displays one route in the 

undirected graph. Based on the Solomon dataset, costs (𝑐𝑖𝑗) and time (𝑡𝑖𝑗) of travel are related to each arc in the 

undirected graph. The vehicle spends one unit of time for one unit of travelled distance. 

Every vehicle has the same capacity, and only one of the vehicles must meet each customer once and 

have a defined deman. The overall capacity of all demands must be equivalent to or less than the full capacity of 

the vehicle operating on the route, and overloaded vehicles should not be present. A predetermined time 

interval, i.e., the earliest and latest times of access, shows the time window restrictions. Thus, the vehicle must 

reach the customer before the latest deadline for access and the vehicle must wait before the earliest access 

deadline. The service time needed for each customer to load/unload is often calculated and is specific 

irrespective of the demands’ size. The goal is to establish a practicable route schedule, which reduces the total 

travel distance and, the number of vehicles. The VRPTW formulation is represented, 

 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑖𝑗 × 𝑋𝑖𝑗
𝑘𝑣

𝑘=1
𝑛
𝑗=0

𝑛
𝑖=0  (1) 

 

𝑚𝑖𝑛 ∑ 𝑦0𝑘
𝑛
𝑖=0   

 

were, 

 

𝑋𝑖𝑗
𝑘 = {

1     if vehicle 𝑘 travels from 𝑐𝑖  to 𝑐𝑗    

 0     otherwise                                            
 

 

𝑦𝑖
𝑘 = {

𝑣    if customer 𝑐𝑖  is served by vehicle 𝑘
𝑛   otherwise                                                   

  

 

∑ 𝑋𝑖𝑗
𝑘𝑛

𝑖=0 = 𝑦𝑗
𝑘 , ∀𝑘 = 1, … , 𝑣 , ∀= 1, … . , 𝑛 (2) 

 

∑ 𝑋𝑖𝑗
𝑘𝑛

𝑗=0 = 𝑦𝑖
𝑘 , ∀𝑘 = 1, . . . , 𝑣 , ∀= 1, … . , 𝑛 (3) 

 

∑ 𝑦𝑖
𝑘𝑛

𝑖=0 × 𝑞𝑖 ≤ 𝑄𝑘 , ∀𝑘 = 1, . … . , 𝑣 (4) 

 

∑ 𝑦𝑖
𝑘𝑣

𝑘=1 = 1, ∀𝑖 = 1, … . , 𝑛 (5) 

 

∑ 𝑦0
𝑘𝑣

𝑘=1 = 𝑣 (6) 

 

𝑡𝑖 + 𝑊𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 = 𝑡𝑗 , ∀𝑖 , = 0, 1, 2. . … . 𝑛 ≠ 𝑗 (7) 

 

𝑒𝑖 ≤ 𝑡𝑖 ≤ 𝐼𝑖 , ∀𝑖= 0, 1, 2. . . . 𝑛 (8) 

 

𝑊𝑖 = 𝑚𝑎𝑥 {𝑒𝑖 − 𝑡𝑖, 0}, ∀𝑖= 0, 1, 2. … . . 𝑛 (9) 

 

Constraints (2) and (3) validates that each vehicle start and end from any customer until it finishes 

servicing the customer. Constraint (4) validates that the vehicle's capability is unviolated. Constraint (5) confirms 

the service is fulfilled only once for each customer. Constraint (6) ensures that the starting point of each vehicle is 

from the depot. Constraints (7)-(9) reflect time limitations to confirm that no time window is surpassed. 
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3. METHOD 

The MABC algorithm [30]via SB lacks the ability to execute a wide exploration when solutions can 

no longer be improved, thus decreasing swarm diversity. This research improves the diversification in a 

promising region by exploring the search space to find the optimal solutions by using five perturbation 

operators and overcome this drawback. These operators are adapted to perturb abandoned solutions by 

changing customers in the solution. Such an approach is introduced as abandoned solutions and may contain 

beneficial information.  

The five perturbation operators are explained as follow: (i) Forward insertion: Randomly select two 

customers (𝑐𝑖 and 𝑐𝑗) from the route and insert 𝑐𝑖 after the position of 𝑐𝑗. (ii) Backward insertion: Randomly 

select two customers (𝑐𝑖 and 𝑐𝑗) from the route and insert 𝑐𝑗 before the position of 𝑐𝑖. (iii) Two interchanges: 

The first step is to swap two customers randomly from separate routes. Next, reverse location, and then swap 

one customer from one route with one from the other. The purpose of this procedure is to minimize the 

distance by moving customers that may not be in the ideal route. (iv) Cross-exchange: This procedure cuts 

two separate routes into two sections and regroups them with crossing arcs. It swaps the segments from route 

𝑟1 and 𝑟2 beginning at customer 𝑐𝑖 and 𝑐𝑗 sequentially. (v) 2 opt: This is an intra-route procedure that 

overturns a part of a route by removing two arcs randomly and switching them with the other two arcs to 

reform the route to minimize the operational expense. 

 

 

4. PROPOSED P-MABC FOR VRPTW 

The P-MABC algorithm starts with population initialization followed by the use of neighbourhood 

operations in EB and OB, and the use of perturbation operations by SB. This procedure is repeated until the 

termination condition is met. The main phases of the proposed P-MABC algorithm are as follows:  

Initialization phase: By validating the constraints of VRPTW. The algorithm's initial population 

solutions are generated at random. Afterwards, each solution's fitness value is calculated, and the best 

solution is determined.  

Exploitation process of employed bees (EB) phase: Solutions from the population are randomly 

allocated to each EB. Then, given the chosen solution in its memory, each EB tries to enhance the solultion 

by using a random neighborhood operation same as described previously. The existing solution is adjusted on 

the basis of the amount of nectar (i.e., fitness value distance) of the new solution. Each solution undergoes 

the neighborhood operation to investigate the surrounding area and improve the existing solution.  

Exploitation process of onlooker bees (OB) phase: Based on the information given by the EB. Each 

OB is responsible for selecting potential food sources. Food sources are chosen on the basis of probability, 

which is calculated using (10), 

 

𝑝 =
𝑓𝑖

∑ 𝑓𝑖𝑁
𝑖=1

 (10) 

 

where 𝑓𝑖 is the fitness value of the 𝑖 solution, and N is the number of food sources in the colony. A good 

solution is that with high probability (𝑝) of the 𝑖 food source. Each OB modifies the food source on the basis of 

the amount of nectar by performing the random neighborhood operation on the current solution in its memory 

(i.e., fitness value distance). Each solution undergoes the neighborhood operation to investigate the surrounding 

area and improve the existing solution. If the existing solution remains unchanged after a certain number of 

iterations, called the limit, the solution is intended to be abandoned, and OB is transformed into SB. 

Exploitation process of scout bees (SB) phase: The SB phase is implemented to replace an 

unchanged solution called the abandoned solution after a certain number of iterations. If the number of trials 

for a food source is higher than a predefined value limit, SB generates a new solution on the basis of five 

moves i.e., forward insertion, backward insertion, cross-exchange, 2 opt, and two interchange, to perturb 

abandoned solutions instead of starting the search from a random solution or swap the generated one with 

best solution, P-MABC perturbs abandoned solutions for swarm diversity to discover the less-crowded region 

in the existing archive and possibly achieve non-dominated solutions. 

Termination process: termination criterion of P-MABC. If the termination criteria are reached, P-

MABC comes to a halt and uses the best solution identified so far. Moreover, EB, OB, and SB stages are 

repeated. The flowchart of the P-MABC algorithm is Figure 2 as shown in Appendix.  

 

 

5. EXPERIMENTAL RESULTS AND COMPARISONS 

In this section, an extensive set of experiments have been performed to assess the performance of P-

MABC for VRPTW. Section 5.1 presents the benchmark dataset and the deployed parameter setting, while 

https://thesaurus.yourdictionary.com/sequentially
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Section 5.2 provides the analysis of experimental results. Focus of the comparison is to determine if the 

proposed P-MABC outperform the MABC. 

 

 

 
 

Figure 2. Flowchart of the P-MABC algorithm for VRPTW 

 

 

5.1.  VRPTW benchmark dataset and parameter setting 

Computational experiments are conducted on Solomon's VRPTW benchmark. The benchmark is 

divided into six classes of problems: R1, R2, C1, C2, RC1, and RC2. There are 100 customers, a single 
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warehouse, capacity, and time window restraints are present for all problems. On the basis of customer 

distribution, customers are randomly distributed into R1 and R2, customers are clustered in C1 and C2. 

Customers are mixed for randomly distributed and clustered in RC1 and RC2 as shown in Table 1. The 

problems of R2, C2, and RC2 have long scheduling horizon, whereas those of R1, C1, and RC1 have short 

scheduling horizon. Table 1 summarizes the characteristics of VRPTW instances and Table 2 presents the 

deployed parameter settings [30] for the proposed P-MABC algorithm. 

 

 

Table 1. Features of solomon's VRPTW benchmark 

Features 
Dataset 

R1 R2 C1 C2 RC1 RC2 

Instances number 12 11 9 8 8 8 

Vehicle capacity 200 1,000 200 700 200 1,000 
Service time 10 10 90 90 10 10 

Time windows width Tight Wide Tight Wide Tight Wide 

Customer distribution Randomly Randomly Clustered Clustered Mixed Mixed 

 

 

Table 2. Parameter settings for P-MABC algorithm 
Parameter Value 

Number of iterations  1,000 
Population size = EB=OB  50 

Limit  100 

 

 

5.2.  Experimental results 

Two sets of experiments are performed in this research to investigate the efficacy of the proposed  

P-MABC algorithm in solving VRPTW. The first experiment investigates the ability of perturbation 

operations to improve the performance of MABC by enhancing the exploration task, which leads to increased 

swarm diversity and obtaining good quality solutions. The results of utilized perturbation operations on P-

MABC are compared with those of MABC. The second experiment involved the analysis of the performance 

of P-MABC in solving the VRPTW compared with those of optimization algorithms. 

 

5.2.1. Comparison between P-MABC and MABC algorithm 

P-MABC has been assessed on a set of 56 VRPTW benchmarks to evaluate the P-MABC on VRPTW. 

This experiment aims to compare P-MABC versus MABC. Experimental results are based on 31 independent 

runs. Tables 3-5 show the performance comparison results in categories R, C, and RC, respectively. 

 

 

Table 3. Comparison results for the problem R1 and R2 
Instance MABC P-MABC 

NV TD Average NV TD Average 

R101 20 1643.18 1647.91 20 1642.88 1645.87 
R102 18 1480.73 1490.66 18 1472.57 1480.71 

R103 14 1240.87 1258.50 14 1209.43 1239.51 

R104 12 1047.06 1070.27 11 1002.4 1022.9 
R105 16 1369.52 1382.35 15 1360.74 1372.32 

R106 13 1271.13 1285.81 13 1237.32 1254.19 

R107 12 1129.99 1142.23 11 1073.34 1115.28 
R108 11 1004.11 1026.11 10 947.66 975.39 

R109 13 1170.50 1211.12 13 1148.75 1168.95 

R110 12 1123.36 1145.30 12 1071.61 1100.98 
R111 12 1101.59 1129.55 12 1048.11 1090.97 

R112 11 1019.84 1026.25 10 966.88 993.90 

R201 8 1185.57 1192.87 6 1170.25 1175.34 
R202 7 1103.15 1114.87 6 1056.84 1060.02 

R203 6 958.94 984.34 5 881.12 893.13 

R204 4 818.44 836.49 5 740.53 787.09 
R205 6 1020.53 1023.79 4 957.48 979.47 

R206 5 960.29 976.45 5 885.74 928.53 

R207 5 905.70 930.46 4 809.45 821 
R208 4 764.90 789.02 3 728.43 734.73 

R209 6 943.16 952.73 5 861.46 877.37 

R210 6 1003.91 1015.11 5 982.93 979.07 
R211 5 837.66 855.79 4 767.22 773.68 
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Table 4. Comparison results for the problem C1 and C2 

Instance 

MABC P-MABC 

NV TD Average NV TD Average 

C101 10 828.94 828.94 10 828.93 828.93 

C102 10 828.94 828.94 10 828.93 828.93 

C103 10 828.94 840.66 10 828.06 828.93 
C104 10 858.90 889.10 10 824.78 837.99 

C105 10 828.94 828.94 10 828.93 828.93 

C106 10 828.94 828.94 10 828.93 828.93 
C107 10 828.94 828.94 10 828.93 828.93 

C108 10 828.94 830.85 10 828.93 828.93 

C109 10 828.94 836.47 10 828.93 828.93 
C201 3 591.56 591.56 3 591.56 603.13 

C202 3 591.56 601.78 3 591.56 603.56 

C203 3 600.54 616.39 3 591.17 601.60 
C204 3 610.01 648.57 3 590.6 602.83 

C205 3 588.88 596.10 3 588.87 590.66 

C206 3 588.88 601.49 3 588.49 591.49 
C207 3 589.58 601.60 3 588.29 592.78 

C208 3 591.65 613.47 3 591.32 592.08 

 

 

Table 5. Comparison results for the problem RC1 and RC2 

Instance 
MABC P-MABC 

NV TD Average NV TD Average 

RC101 16 1,634.52 1,668.07 16 1,633.28 1,654.88 

RC102 15 1,492.89 1,505.94 14 1,480.38 1,498.06 
RC103 13 1,334.57 1,360.15 12 1,275.35 1,300.94 

RC104 11 1,215.62 1,245.35 10 1,140.21 1,169.73 

RC105 15 1,546.43 1,575.46 15 1,520.33 1,540.63 
RC106 14 1,423.10 1,443.77 13 1,408.22 1,413.5 

RC107 12 1,300.00 1,324.00 12 1,212.83 1,264.51 

RC108 12 1,193.68 1,213.67 11 1,135.69 1165 
RC201 8 1,308.76 1,320.24 7 1,276.48 1,326.99 

RC202 8 1,167.00 1,180.48 6 1,112.53 1,130.85 

RC203 6 1,014.79 1,032.77 5 935 948.62 
RC204 4 881.88 894.76 4 790.65 812.80 

RC205 7 1,210.68 1,232.84 7 1,161.67 1,166.39 

RC206 6 1,112.38 1,133.99 5 1,089.14 1,096.61 
RC207 7 1,059.62 1,076.47 6 970.97 998.97 

RC208 5 882.06 898.45 5 784.56 839.15 

 

 

In Tables 3-5 the travelled distance (TD) and number of vehicles (NV) produced from P-MABC and 

MABC algorithms are presented. Table 3 demonstrate that P-MABC enables produce better results than the 

MABC algorithm in terms of distance from all instances in R1 and R2. The P-MABC algorithm utilizes a 

smaller number of vehicles than MABC for 14 out of 23 instances (60.86%) from R1 and R2. 

Table 4 shows that P-MABC produces better results for 15 out of 17 instances (88.23 %) compared 

with MABC. The present 15 instances (i.e., C101, C102, C103, C104, C203, C204, C206, C207, C208, 

C109, C203, C204, C205, C206, C207 and C208) in terms of the TD from problem instances C1 and C2. 

Both algorithms are at equal when comparison is made on NV in problem sets C1 and C2. 

Table 5 shows that the P-MABC produces better results compared with MABC in terms of distance 

from all 16 instances in RC1 and RC2. Furthermore, the P-MABC algorithm utilizes a smaller NV than the 

MABC for 10 instances out of 16 instances (62.5%) from RC1 and RC2. Given these results, the consecutive 

conclusion can be made on the P-MABC has improved the performance by addressing the VRPTW as 

compared to MABC of 56 instances. P-MABC algorithm yield better results in 54 out of 56 out of 56 

instances (96.42%) compared with MABC in terms of distance moreover, P-MABC obtains better results 

than MABC for 24 out of 56 instances (42.85%) in terms of the number of vehicles. 

 

5.2.2. Comparsion between P-MABC and optimization algorithms 

The results achieved by P-MABC are compared with those results provided by various optimization 

algorithms deployed for the VRPTW in terms of NV and TD. The following algorithms have been utilized: 

localized genetic algorithm (LGA) [25], M-MOEA/D [27], tabu-ABC [28], and the evolutionary scatter 

search particle swarm optimization algorithm (ESS-PSO) [26]. The TD and NV results of P-MABC versus 

optimization algorithms for VRPTW problems (i.e., R1, R2, C1, C2, RC1, and RC2) are listed in Tables 6-8. 
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Table 6. Comparison results for the problem R1 and R2 

Instance 
LGA M-MOEA/D Tabu-ABC ESS-PSO P-MABC 
NV TD NV TD NV TD NV TD NV TD 

R101 20 1,646.9 20 1,644.7 20 1643.18 20 1,642.88 20 1,642.88 

R102 18 1,474.28 18 1,473.73 18 1460.26 18 1,472.92 18 1,472.57 

R103 15 1,222.68 14 1,213.62 15 1217.39 14 1,213.73 14 1,209.43 
R104 11 989.53 11 991.91 11 987.61 11 976.61 11 1,002.4 

R105 16 1,382.78 15 1,366.56 15 1363.91 15 1,360.76 15 1,360.74 

R106 13 1,250.11 13 1,249.22 13 1247.9 13 1,239.37 13 1,237.32 
R107 12 1,083.42 11 1,086.22 12 1087.5 11 1,073.34 11 1,073.34 

R108 10 952.44 10 965.52 11 961.85 10 950.59 10 947.66 

R109 13 1,160.69 13 1,155.38 13 1152.99 13 1,151.84 13 1,148.75 

R110 12 1,080.69 12 1,106.03 12 1091.5 12 1,073.46 12 1,071.61 

R111 12 1,057.64 11 1,073.82 12 1067.46 12 1,053.5 12 1,048.11 
R112 10 965 10 981.43 10 973.25 10 953.62 10 966.88 

R201 9 1,156.29 6 1,185.79 6 1,174.69 9 1,148.48 6 1,170.25 

R202 8 1,042.25 5 1,049.72 5 1,046.1 7 1,049.74 6 1,056.84 

R203 6 877.29 5 889.36 5 884.02 5 900.08 5 881.12 

R204 4 736.52 5 743.29 4 750.4 4 772.33 5 740.53 

R205 6 960.35 5 954.48 5 960.75 6 970.89 4 957.48 
R206 6 894.19 4 887.9 4 900.97 5 898.91 5 885.74 

R207 4 800.79 4 809.51 4 809.72 3 814.78 4 809.45 

R208 3 706.86 3 711.59 5 723.14 3 723.61 3 728.43 
R209 5 860.63 4 867.47 5 863.12 6 879.53 5 861.46 

R210 5 948.82 5 920.06 5 927.54 7 932.89 5 982.93 

R211 5 762.23 4 767.1 4 763.22 4 808.56 4 767.22 

 

 

Table 7. Comparison results for the problem C1 and C2 

Instance 
LGA M-MOEA/D Tabu-ABC ESS-PSO P-MABC 

NV TD NV TD NV TD NV TD NV TD 

C101 10 828.94 10 828.94 10 828.94 10 828.94 10 828.93 

C102 10 828.94 10 828.94 10 828.94 10 828.94 10 828.93 

C103 10 828.06 10 828.06 10 828.06 10 828.06 10 828.06 
C104 10 824.87 10 824.87 10 824.87 10 824.78 10 824.78 

C105 10 828.94 10 828.94 10 828.94 10 824.94 10 828.93 

C106 10 828.94 10 828.94 10 828.94 10 828.94 10 828.93 
C107 10 828.94 10 828.94 10 828.94 10 828.94 10 828.93 

C108 10 828.94 10 828.94 10 828.94 10 828.94 10 828.93 
C109 10 828.94 10 828.94 10 828.94 10 828.94 10 828.93 

C201 3 591.56 3 591.56 3 591.56 3 591.56 3 591.56 

C202 3 591.56 3 591.56 3 591.56 3 591.56 3 591.56 
C203 3 591.17 3 591.17 3 591.17 3 591.17 3 591.17 

C204 3 590.6 3 590.6 3 594.89 3 590.6 3 590.6 

C205 3 588.88 3 588.88 3 588.88 3 588.88 3 588.87 
C206 3 588.49 3 588.49 3 588.49 3 588.49 3 588.49 

C207 3 588.29 3 588.29 3 588.29 3 588.29 3 588.29 

C208 3 588.32 3 588.32 3 588.32 3 588.32 3 588.32 

 

 

Table 6 represent the P-MABC algorithm results versus optimization algorithms in problem 

instances R1 and R2. The P-MABC algorithm gives better results for 12 out of 23 instances (52.17%) than 

LGA, 16 out of 23 instances (69.56%) than M-MOEA/D, 15 out of 23 instances (65.21%) than ESS-PSO, 

and 17 out of 23 instances (73.91%) than tabu-ABC. At the same NV, the P-MABC algorithm gives better 

results for nine instances and competitive results for 13 instances with the same NV as compared to the LGA, 

the P-MABC gives better results for one instance and competitive results for 18 instances with the same NV 

as compared to the M-MOEA/D, the P-MABC gives better results for five instances and competitive results 

for 15 instances with same NV as compared to the tabu-ABC, and the P-MABC gives better results for five 

instances and competitive results for 16 instances with same NV as compared to the ESS-PSO. Table 7 

illustrates that P-MABC has accomplished better results in terms of distance than LGA, M-MOEA/D,  

Tabu-ABC, and ESS-PSO in 8 (i.e., C101, C101, C105, C105, C107, C108, C109, and C205) out of 17 

instances (47.05%) from problem instances C1 and C2. All algorithms are equal in problem sets C1 and C2 

to compare the NV amongst these algorithms. 

The obtained results by P-MABC versus optimization algorithms in problem sets RC1 and RC2 are 

shown in Table 8. Comparison with LGA verifies that P-MABC produces best distance in nine out of 16 

instances (56.25%). P-MABC beats M-MOEA/D in 12 out of 16 instances from (RC1 and RC2). P-MABC is 

better for 13 out of 16 instances (81.25%) than Tabu-ABC. Also, the P-MABC algorithm obtained best 

results than the ESS-PSO in two out of 16 instances from RC1 and RC2. 
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Correspondingly, the P-MABC algorithm gives better results for nine instances and competitive 

results for seven instances with the same NV as compared to the LGA. P-MABC gives better results for one 

instance and competitive results for 10 instances with the same NV as compared to the M-MOEA/D.  

P-MABC gives better results for three instances and competitive results for 12 instances with same NV as 

compared to the Tabu-ABC and ESS-PSO. 

The outcomes of Tables 6-8 can be summarized through the following conclusion made on the  

P-MABC performance versus the state-of-the-art algorithms in VRPTW instances. On the basis of the 56 

instances of VRPTW, the results obtained by the P-MABC algorithm yield good solutions compared with 

optimization algorithms. The P-MABC algorithm is better than the LGA by 51.78%, M-MOEA/D and  

Tabu-ABC by 64.28%, and ESS-PSO by 48.21% in terms of TD. Furthermore, the P-MABC algorithm 

continues to be efficient in terms of overall NV. P-MABC algorithm is better than the LGA by 25.07%,  

M-MOEA/D by 3.57%, Tabu-ABC and ESS-PSO by 14.28%, in terms of NV. 

 

 

Table 8. Comparison results for the problem RC1 and RC2 

Instance 
LGA M-MOEA/D Tabu-ABC ESS-PSO P-MABC 

NV TD NV TD NV TD NV TD NV TD 

RC101 16 1,660.55 16 1,646.65 16 1,646.17 16 1,639.75 16 1,633.28 

RC102 15 1,494.92 15 1,484.48 14 1,481.61 14 1,461.33 14 1,480.38 
RC103 12 1,276.05 11 1,274.85 12 1,280.76 12 1,277.55 12 1,275.35 

RC104 10 1,151.63 10 1,145.79 11 1,162.03 10 1,138.13 10 1,140.21 

RC105 16 1,556.21 15 1,528.61 16 1,545.3 15 1,519.46 15 1,520.33 
RC106 14 1,402.25 13 1,399.17 14 1,401.17 13 1,378.62 13 1,408.22 

RC107 12 1,212.83 12 1,235.54 12 1,235.28 12 1,212.83 12 1,212.83 

RC108 11 1,133.25 11 1,138.95 11 1,136.35 11 1,118.57 11 1,135.69 
RC201 10 1,281.63 7 1,289.94 7 1,271.78 9 1,265.56 7 1,276.48 

RC202 8 1,103.47 5 1,118.66 6 1,116.21 8 1,096.53 6 1,112.53 

RC203 6 942 5 940.55 5 941.81 5 926.82 5 935 
RC204 4 796.12 4 792.98 4 801.87 4 786.38 4 790.65 

RC205 8 1,168.89 6 1,187.48 7 1,165.82 7 1,157.55 7 1,161.67 

RC206 7 1,060.52 5 1,089.14 5 1,072.85 6 1,057.83 5 1,089.14 
RC207 7 970.97 5 987.88 5 977.11 6 966.37 6 970.97 

RC208 5 782.7 4 807.83 5 792.33 4 779.31 5 784.56 

 

 

The results obtained in this research demonstrate that the proposed P-MABC is an effective solution 

algorithm for the VRPTW. This finding can be attributed to the applicability of the proposed P-MABC that 

has different perturbation operators in the abandoned solutions for different problem instances. By utilizing 

different operators during the search, the P-MABC can deal with various problem instances as well as the 

changes that might happen during the optimization of a solution. Based on these results, the P-MABC raised 

in section 5.2.2 is accepted and proved to be true. 

Table 9 and Figure 3 illustrate the statistical test of the performance of P-MABC versus other 

optimization algorithms based on the nonparametric Friedman test with Holm’s post hoc test. This test aims 

to find the dominant P-MABC among 56 datasets. The average TD, and the average NV are included. As 

Table 9, in all cases, the lowest rank indicates good algorithm performance. Consequently, the P-MABC 

achieves the best average rank in TD and the second average rank in the NV. 

 

 

Table 9. Overall results on the average perfomance 
 Algorithm 

MABC LGA M-MOEA/D Tabu-ABC ESS-PSO P-MABC 

Distance 5.43 3.31 3.68 3.59 2.69 2.26 
Number of vehicles 4.14 3.99 2.79 3.54 3.43 3.05 

 

 

Figure 3 demonstrates the result of the average TD rank versus the NV rank. The P-MABC acquires 

the best TD and the second in the NV. Under these circumstances, the P-MABC dominates the perturbation 

operators versus optimization algorithms in two assessment criteria. This result is due to the enhancement 

process in the exploration phase accomplished by using five types of perturbation operators to help the MABC. 

Perturbation operators utilize swarm diversity and to find promising areas that have good-quality solutions. 
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Figure 3. Average rank test of the P-MABC versus optimization algorithms 

 

 

6. CONCLUSION 

In this research, the MABC exploration process and the quality of generated solutions by SB have 

been enhanced by five perturbation operations adapted for the MABC called the P-MABC algorithm. This 

enhancement made the P-MABC has a good exploration process to explore the search space. Experimental 

results have proven that the P-MABC improves the solutions through SB when using neighborhood operation 

as a perturbation search to improve the solution quality and encourage search diversification, discover the 

less-crowded region in the existing archive, and achieve good-quality solutions. The overall comparison 

indicates that the P-MABC algorithm outperforms the MABC algorithm alone. In addition, P-MABC can 

achieve the best results in comparison with other optimization algorithms by reducing the cost of TD and the 

NV, which are the main objectives of the VRPTW. The proposed P-MABC will be used in VRPTW 

applications, such as material handling systems and bank delivery, to explore its performance further. 
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