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Abstract

Two major breast cancer sub-types are defined by the expression of estrogen receptors on tumour cells. Cancers with large
numbers of receptors are termed estrogen receptor positive and those with few are estrogen receptor negative. Using
genome-wide single nucleotide polymorphism genotype data for a sample of early-onset breast cancer patients we
developed a Support Vector Machine (SVM) classifier from 200 germline variants associated with estrogen receptor status
(p,0.0005). Using a linear kernel Support Vector Machine, we achieved classification accuracy exceeding 93%. The model
indicates that polygenic variation in more than 100 genes is likely to underlie the estrogen receptor phenotype in early-
onset breast cancer. Functional classification of the genes involved identifies enrichment of functions linked to the immune
system, which is consistent with the current understanding of the biological role of estrogen receptors in breast cancer.
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Introduction

Breast cancer sub-types may be classified according to the

number of estrogen receptors present on the tumour. Tumours

expressing large numbers of receptors are termed estrogen

receptor positive (ER+) and, conversely, estrogen receptor negative

(ER2) for few or no receptors. ER status is extremely important

since ER+ cancers grow under the influence of estrogen, and may

therefore respond well to hormone suppression treatments, while

the proliferation of ER2 cancers is not driven by estrogen and

does not respond to estrogen modulation. Deroo and Korach [1]

describe the ‘‘classical’’ (or genomic) pathway of estrogen action:

an estrogen molecule binds to a receptor which induces receptor

phosphorylation and dimerization to form a nuclear estrogen-ER

complex [1,2]. The transcription of target estrogen responsive

genes is regulated through the binding of the estrogen-ER complex

to specific estrogen response elements (EREs) located in the gene

promoter region [3]. The target genes of this pathway are many

and varied; the majority are crucial for normal cell physiology,

growth and differentiation and can promote the growth of breast

tumours under certain conditions [2,4].

Two hypotheses seek to explain the relationship between

estrogen and breast cancer. The first considers the proliferation

of mammary cells stimulated by the binding of estrogen to the ER

leading to an increase in the number of target cells and associated

elevated risk for replication errors and acquisition of deleterious

mutations during cell division and DNA replication. A second

hypothesis identifies genotoxic by-products of estrogen metabolism

which may lead to DNA damage and, subsequently, cancer.

Evidence exists to support both hypotheses as mechanisms to

initiate and promote tumour development [1]. Estrogen is

necessary for breast tumour formation regardless of the receptor

status of the cells and the tumour-promoting effects of estrogen are

not limited to ER+ cells alone [5]. While estrogen influences the

growth of ER+ tumour cells through binding receptors it is

suggested that the growth of ER2 tumour cells is the result of

estrogen acting on cells of the tumour microenvironment which

enhances angiogenesis, stromal cell recruitment and thus, tumour

development and progression [5,6].

The estrogen receptor has two forms, a and b, which are

encoded by the ESR1 and ESR2 genes respectively. The two forms

have distinct roles in breast tissue; ERa promotes cell proliferation

in response to estrogen while ERb inhibits proliferation and

tumour formation [7,8]. Single nucleotide polymorphisms (SNPs)

in the ESR1 gene have been associated with increased suscepti-

bility to breast cancer, however they are fairly rare [9–11].

Variation in the ESR2 gene may also be important in disease

susceptibility however, no SNPs demonstrating a strong associa-

tion with breast cancer risk have been identified [1,12,13]. A

number of SNPs have been identified through genome wide

association studies (GWAS) as being breast cancer risk SNPs. In

many cases these SNPs relate to the risk of developing a particular

subtype of disease, often the ER+ type [14]. Overall, the genetic

basis of the estrogen receptor cancer sub-types is not well

understood and worthy of further analysis [1].

We hypothesized that patients who develop ER+ and ER2

tumours would show distinct constitutional genetic profiles the

exploration of which could yield new insights into the biological

effect of the host genomic environment on the emergence of these

forms of breast cancer. We developed machine learning (ML)
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classifiers to explore the distinction between profiles in well

characterised breast cancer cases. ML is used extensively in many

scientific fields for classification purposes. ML methods have been

used in genetic studies to explore the underlying genetic profile of

disease and build models capable of (i) detecting gene-gene

interactions; (ii) predicting disease susceptibility; (iii) predicting

cancer recurrence; and (iv) predicting cancer survivability [15].

Genetic SNP data can be used to build such classification models,

with high accuracy observed in many cases. Support Vector

Machines (SVMs) have been shown to have excellent power and

the ability to establish binary classification based on multiple

features [16]. The aim of the SVM approach is to separate the

data points from the two classification groups using a decision

surface, called a hyperplane. The simplest classifier is a linear

hyperplane but, for more complex datasets, it is necessary to map

the input features into high-dimensional space using a non-linear

mapping function, called a kernel function [16]. The placing of the

separating hyperplane depends on maximising the margin

between the hyperplane and the data points of two classes. If

the input data are not cleanly separable by a hyperplane (a non-

separable case, [17]), it is desirable to separate the data by the

smallest sum of all classification errors: the ‘soft margin

hyperplane’. In the case of genetic data linear models may be

sufficient in the absence of, for example, complex underlying gene-

gene interactions whilst kernel functions are most applicable

otherwise. We develop here a SVM classifier which discriminates

ER+ and ER2 breast cancer cases which provides new insights

into the biological nature of the ER+/ER2 breast cancer sub-

division.

Results

SVM classification accuracy
The overall classification accuracy of a ML classifier is a

measure of how successful the method is at assigning samples to

the correct class. In this study the highest classification accuracy

was achieved using 200 SNPs fully genotyped in all 542 study

samples (Table S1) and individually associated with the ER-

negative phenotype (p,0.0005). Five kernel models were pro-

duced, all with classification accuracy exceeding 93% (Table 1).

Classification accuracy was reduced when the highest ranked 50

(,86%) and 100 (,93%) SNPs were considered (Table S2). The

highest classification accuracy was achieved using the radial basis

function (RBF) kernel and normalized quadratic polynomial

kernel: 95.95% and 95.69% respectively. In both cases 99% of

the ER2 cases and 89% of the ER+ cases were classified correctly.

The true positive rate (number of ER+ cases correctly classified)

was equal in all five models, demonstrating that they are equally

successful at recognising and classifying ER+ cases in the test data.

The true negative rate always exceeds 0.95, indicating that at least

95% of ER2 cases are classified correctly in each model. All

models are superior at classifying ER2 cases compared to ER+
cases.

Classifier performance was further evaluated using the receiver

operating characteristic (ROC) area under curve (AUC) values

which indicate these models have excellent accuracy: all exceed

0.9 (Table 1). ROC curves were produced for the linear model and

RBF kernel model for both ER+ and ER2 cases (Figure 1) based

on true and false positive/negative values. Figure 2 shows the

relationship between chi-squares for individual SNPs derived from

PLINK [18,19] and weights from the linear classification model.

Variants with the largest (absolute value) weights are the most

discriminating in the classifier. The input chi-squares used in

feature selection (see methods) are uncorrelated with the linear

SVM model weights (r =20.026).

SVM classifiers were produced for two additional subsets of

SNP features to further investigate classification accuracy. A set of

200 SNPs showing no individual association for the ER+/ER2

distinction and a subset of 200 randomly selected SNPs were used

to produce classification models (Table S3). Accuracy is low for

both subsets (,69%) as are true positive rates in both cases

(,33%). Area under ROC curve values are also very low at 0.51

or less, indicating that these models perform no better than

‘random’ which achieves an AUC of 0.5.

DAVID functional annotation
To identify biological terms and pathways that are particularly

enriched for genes represented in the classifier (Table S1) we used

the DAVID annotation tool [20–22] DAVID identified four gene

annotation clusters, three enriched pathways and 36 term

annotation clusters. Of these, two gene annotation clusters and 9

term annotation clusters are particularly enriched (enrichment

score $1.00) relative to the whole genome background. The

cluster with the highest enrichment score contains genes related to

the inflammatory response (Table 2) and the next highest (Table 3)

shows enrichment of genes in specific pathways related to axon

guidance and signalling.

DAVID analysis was also performed for the 100 SNPs with the

highest absolute classifier weights (Table S1) from the linear SVM

kernel model. Similar annotation clusters were identified (data not

shown) with functions relating to immune cell activation again

being particularly enriched in the gene set.

Discussion

Machine learning techniques have an important role to play in

disease classification and the discovery of underlying disease

mechanisms, including gene-gene interactions or signalling path-

Table 1. Weka kernels and classification results using 200 SNPs with the strongest ER+/2 association.

Kernel type
Percentage correctly
classified

True positive
rate

False positive
rate

True negative
rate

False negative
rate Area under ROC

Linear 93.2863.07 0.8860.07 0.0460.03 0.9660.03 0.1260.07 0.9260.04

Normalized quadratic
polynomial

95.6962.69 0.8960.08 0.0160.02 0.9960.02 0.1160.08 0.9460.04

Quadratic Polynomial 93.8963.06 0.8960.07 0.0460.03 0.9660.03 0.1160.07 0.9360.04

Cubic Polynomial 94.5462.94 0.8960.07 0.0360.03 0.9760.03 0.1160.07 0.9360.04

RBF 95.9562.61 0.8960.07 0.0160.02 0.9960.02 0.1160.07 0.9460.04

doi:10.1371/journal.pone.0068606.t001
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Figure 1. ROC curves for ER+ and ER2 classification using linear and RBF kernels. ROC curves and area under ROC curve (AUC) values can
be used as more robust measures of classifier accuracy beyond overall classification accuracy. (A) ROC curves for ER+ classification. (B) ROC curves for
ER2 classification. In both cases the linear model is represented by a dashed line and the RBF kernel model is represented by a solid line. The point
on each curve corresponds to the true positive/negative and false positive/negative values obtained from 100 iterations of 10-fold cross-validation
carried out on 542 samples with 200 SNP features. The ROC curve for any meaningful classifier needs to lie above the y = x line; the case where equal
proportions of cases would be classified correctly and incorrectly, as would occur if class values were assigned at random.
doi:10.1371/journal.pone.0068606.g001

Figure 2. Relationship between weights under a linear classifier and chi-square values used in feature selection. SVM models were
constructed on 542 study samples with genotype data for a subset of 200 SNPs chosen based on ER+/2 association, determined from the chi-square
statistic. SNP feature weights were obtained from the linear SVM model and used as an indicator of the importance of each feature for classification;
SNPs with the largest absolute weight values are the most important for classification. Chi-square values used in feature selection and SVM classifier
weight values are uncorrelated; Pearson’s correlation coefficient r =20.026. SNPs with absolute weight values . 0.5 are annotated with the name of
the gene in which they reside or are in closest proximity to.
doi:10.1371/journal.pone.0068606.g002
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way enrichment which influences disease. Support vector

machines in particular are state-of-the-art classifiers [23] with

documented success at building accurate classifiers for disease

versus control populations based on genetic data [24–26]. As

discussed here, SVMs are useful for the analysis of disease sub-

types given that many diseases (breast cancer included) comprise

distinct sub-types with individual biology. The best resultant SVM

model for ER+/ER2 status in early-onset breast cancer cases

successfully classifies cases into sub-types with ,96% accuracy

(Table 1), with accuracy exceeding 93% with all kernels.

Although SVM classification accuracy is an important indicator

of success it can be misleading, particularly in the case of an

unbalanced data set (unequal numbers of cases in the two groups),

as in this study [27]. Other indicators, such as the number of cases

correctly classified into each group and the area under ROC curve

(AUC) values should also be considered. A ML algorithm may

produce a majority-class classifier when presented with an

unbalanced dataset [27]. In this situation all cases are classified

as members of the majority class, making the classifier appear

more accurate than in reality. For example, using this dataset, an

accuracy of 68.6% can be achieved by simply classifying all 542

samples into the majority group: ER2, giving a misleading

impression that the classifier is correctly identifying a reasonable

proportion of the samples. However, the true positive and true

negative rates, 0.00 and 1.00 respectively, identify the model as

invalid. The true positive (number of true ER+ cases classified as

ER+; TPR ,89%) and true negative (number of true ER2 cases

classified as ER2; TNR ,99%) results from the models in this

study (Table 1) indicate that a substantial proportion of the ER+
and ER2 cases are correctly classified. Therefore it is reasonable

to conclude that the SVM models produced are successful as

ER+/ER2 classifiers and any one of the five models is suitable as

a classifier for unseen data. It is evident however that the ER2

cases are classified more accurately than ER+ cases, which is likely

to reflect the unbalanced data (372 ER2 cases versus 170 ER+
cases). The greater difficulty in classifying ER+ cases arises from

the more limited variation in the SNP profile given the smaller

number of cases available to the classifier.

Classifier performance can be further evaluated using receiver

operator characteristic (ROC) curves which are based on the true

positive and true negative rates at several different thresholds. One

of the major advantages of the ROC curve is that it is unaffected

by unbalanced datasets [28]. The area under ROC curve (AUC)

measure [29] takes values between 0.00 and 1.00 with values

closer to 1.00 indicating good performance. A random classifica-

tion would produce an AUC of 0.5, the AUC values for the ER+/

ER2 classifier (Table 1) are in the range 0.92–0.94, suggesting

excellent classification ability.

Feature selection is an important component of building a ML

classifier. Much of the SNP data in these samples will not be useful

for building an accurate model (Table S3) so it was necessary to

select a subset of SNP features from which to build a classifier. For

a review on feature selection methods available for ML algorithms

see [30]. Feature selection prior to SVM implementation is

essential to avoid the ‘curse of dimensionality’, which tends to arise

Table 2. DAVID Annotation Clusters: Enriched gene ontology (GO) terms from the ER+/2 classification.

Cluster 1: Enrichment Score: 1.97 (GO: Biological Process)

Term No. genes % genes P value Fold Enrichment

calcium ion transport 7 6.03 0.00018 8.34

T cell proliferation 4 3.45 0.00051 25.05

di-, tri-valent inorganic cation transport 7 6.03 0.00056 6.73

T cell activation 6 5.17 0.00084 8.05

lymphocyte proliferation 4 3.45 0.00187 16.10

leukocyte proliferation 4 3.45 0.00214 15.37

mononuclear cell proliferation 4 3.45 0.00214 15.37

lymphocyte activation 6 5.17 0.00613 5.09

positive regulation of immune system process 6 5.17 0.01269 4.26

leukocyte activation 6 5.17 0.01356 4.19

cell proliferation 8 6.90 0.01360 3.10

response to abiotic stimulus 7 6.03 0.02048 3.22

cell activation 6 5.17 0.02619 3.54

Cluster 2: Enrichment Score: 1.93 (GO: Cellular Component)

Term No. genes % genes P value Fold Enrichment

synapse 10 6.90 0.00024 4.50

cell junction 11 9.48 0.00128 3.39

doi:10.1371/journal.pone.0068606.t002

Table 3. Significant enrichment of genes in KEGG pathway
identified by DAVID.

Pathway Genes P value

Axon guidance EPHA4, FYN, NRP1, NTN4, PPP3CA 0.007

T cell receptor signalling
pathway

FYN, IL5, PPP3CA, PTPRC 0.027

Fc epsilon RI signalling
pathway

FYN, IL5, MAP2K4 0.081

doi:10.1371/journal.pone.0068606.t003
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from training of too few examples with too many variables [15].

Therefore, it is suggested that the sample-to-feature ratio should

ideally exceed 5:1, which is clearly not achievable with unselected

genome-wide SNP data. Machine learning theory considers the

concept of VC-dimension [31]. The VC-dimension quantifies a

learning machine’s capacity describing how complex a model can

be: learning machine functions with high capacity may generate

lower training error rates but require larger training sets than

simpler, low capacity models. The best theoretical performance

guarantee is achieved through the right balance between the

accuracy attained for a given training set and the model capacity.

Because analysis of genomic disease data considers potentially very

large number of features (SNPs) evaluated on relatively small

numbers of samples (genomes) feature selection strategies aim to

reduce overfitting. Alternatives to the approach to reduce feature

complexity adopted here include Recursive Feature Elimination

(RFE) applied to linear SVMs using the ranked SVM weights to

recursively eliminate features [32]. Such an approach has been

used extensively for DNA micro-array gene expression data but

has received less attention thus far for GWAS disease data.

The underlying biological nature of the genes identified as

discriminators of ER+/ER2 breast cancer was of particular

interest in this study. To identify gene enrichment in gene groups

and pathways we used the DAVID toolset. Analysis of the 139

genes that the classifier SNPs reside in, or are closest to, identified

gene groups, pathways and annotation terms that were particu-

larly enriched (Tables 2 and 3). Of the two annotation clusters with

the highest enrichment scores (Table 2) it is notable that cluster 1

contains genes relating to immune/inflammatory cell activation,

differentiation and proliferation. This suggests one of the

distinctions between ER+ and ER2 tumours relates to genetic

variation in immune system pathways. The role of the immune/

inflammatory response in influencing tumourigenesis and tumour

progression, through the formation of an inflammatory microen-

vironment at the tumour site, is well characterised [33–36]. It has

been suggested that as much as 50% of breast tumour volume

comprises cells of the immune system, in particular, tumour-

associated macrophages (TAMs) and tumour-infiltrating lympho-

cytes (TILs) [37] that establish the tumour microenvironment.

Infiltrating immune cells are likely to be a major source of pro-

tumourigenic factors at the tumour site because they have the

capacity to release cytokines, chemokines, metalloproteases,

reactive oxygen species and a number of bioactive mediators into

the stroma. Furthermore, infiltrating immune cells regulate a

number of processes, including enhanced cell survival, angiogen-

esis and suppression of anti-tumour immune responses [38]

suggesting a role in both tumour development and progression.

In particular, TAMs have been implicated as a source of mitogenic

signals for tumour cells through cytokine secretion [39] potentially

enhancing cell division and tumour growth.

The role of estrogen and estrogen receptors as regulators of

proliferation and differentiation in breast tissue is well-established

and is crucially important for disease progression in many cases

[34,40]. It has been suggested that infiltrating leukocytes are a

major source of estrogen expression in breast tumours [41] which

could contribute to disease development and progression.

The estrogen receptor status of breast cancer patients has long

been recognised as a strong prognostic factor that influences

patient treatment options and survival. Patients with ER2 forms

of the disease tend to show decreased survival rates in the first few

years after diagnosis and present with more aggressive tumours

[42–45]. However, after 10 years of disease-free survival a relapse

is more likely to occur in a patient who originally presented with

ER+ disease [45]. A number of other factors influence breast

cancer patient survival, one of which is the infiltrating immune

system cells. There is a suggested strong correlation between the

infiltration of lymphocytic cells and patient survival, particularly in

patients with disease onset before the age of 40 years [33]. The

number of CD8+ T lymphocytes present at the tumour site

influences patient survival, with higher numbers being associated

with better survival rates. This effect is more evident in patients

presenting with ER2 tumours compared to ER+ tumours [46]. In

contrast, TAM levels in breast tumours appear to positively

correlate with aggressiveness of disease and poor prognosis

[47,48].

DAVID analysis of the gene set also identified five genes

implicated in the ‘axon guidance’ pathway (Table 3). Axon

guidance molecules are important in the mammary gland for

maintaining normal cell proliferation and adhesion during tissue

development [49] and the proximity of nerves and blood vessels in

a number of tissues suggests that there may be molecular cross-talk

and common cues between these structures [50]. Dysregulation of

these guidance molecules in the mammary gland has been linked

to breast cancer initiation and progression [49].

Genome wide association studies have identified risk-related

SNPs for many diseases. Thirty-five SNPs, which lie in or near to

36 genes, are identified as breast cancer risk SNPs in the Catalog

of Published Genome-Wide Association Studies [51]. From the

SNPs used in the ER+/ER2 classifier none of the 35 risk SNPs is

present in this list nor are any of the classifier SNPs in or near the

36 catalogued genes. Thus, the SNPs identified in this study

represent a set of genes not previously linked to breast cancer risk

although some of the genes have been linked to roles in prognosis.

Our analysis finds that variation in, or near, at least 139 genes

defines the genetic background on which different estrogen

receptor tumour phenotypes are most likely to arise in early onset

breast cancer patients. The polygenic nature of complex

phenotypes has become an emerging theme from the numerous

genome-wide association studies which have identified a large

number of causal variants with minor impacts on risk. A polygenic

model seems appropriate to define the distinction between breast

cancer sub-types such as ER+/ER2, which are likely to represent

distinct forms of disease. The evidence that this distinction relates

in part to genetic variation in highly complex immune system

pathways reinforces the emerging concept that the presenting

cancer phenotype is shaped not only by a random series of

acquired somatic gene mutations but also by the stable genetic

background of the individual in whom the cancer arises.

Understanding interactions between the host genome and the

process of oncogenesis will be an important contribution to the

development of more individualised treatment and prevention

approaches in the future.

Materials and Methods

Breast cancer samples
542 early-onset breast cancer patients were selected from the

‘Prospective study of Outcome in Sporadic versus Hereditary

breast cancer’ (POSH) cohort [52] of ,3000 patients with disease

onset before the age of 40 years. Germline DNA samples were

genotyped for 490,732 SNPs spanning chromosomes 1 to 22.

Tumours from all cases were classified for estrogen receptor status

with 170 identified as ER+ and 372 as ER2. The POSH study

received approval from the South and West Multi-centre Research

Ethics Committee (MREC 00/6/69). Written consent was given

by the patients for their information to be stored in the hospital

database and used for research.

Machine Learning Classifier for Breast Cancer
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SNP genotyping
Genotyping of the breast cancer samples was conducted using

the Illumina 660-Quad SNP array. Genotyping was conducted at

the Mayo Clinic, Rochester, Minnesota, USA (261 samples), and

the Genome Institute of Singapore, National University of

Singapore (281 samples) [53]. To ensure complete harmonisation

of genotype calling, the intensity data available from both

locations, in form of .idat files, were combined and used to

generate genotypes using the algorithm in the genotyping module

of Illumina’s Genome Studio software. A GenCall threshold of

0.15 was selected and the HumanHap660 annotation file was

used. SNPs were excluded from further analysis if they had a

sample minor allele frequency (MAF) below 0.01, a genotyping

call rate ,95% or showed significant deviation from Hardy-

Weinberg equilibrium (HWE, P-value ,0.0001). We used the

pairwise Identity-By-State (IBS) and multidimensional scaling,

implemented in PLINK v1.07 [18,19], to confirm that patients

were ethnically homogeneous. A proportion of the SNPs had

missing genotypes and we used the MACH 1.0 program [54–56]

to impute missing genotypes, where possible, based on genotype

and haplotype phase data specific for CEU population available

from HapMap phase 2 project. Genotype imputation was used to

establish a set of SNPs with complete genotypes for testing as

features in the models. However, imputation failed to resolve all

genotypes for 27 SNPs with high chi-squares and these were

removed from further consideration in the SVM models and

replaced with the next most associated and fully genotyped SNPs

in the ranked list.

SNP feature selection
SNPs showing significant association with ER2 cases were

identified from the additive chi-squared association test imple-

mented in the PLINK toolset in which ER+ samples were labelled

as ‘controls’ and ER2 samples were labelled as ‘cases’. Based on

results from the chi-squared test all SNPs were ranked in terms of

association with the ER+/2 classification. Subsets of SNPs were

selected as features for SVM models from the ranked list of SNPs

and models were produced from subsets of 50, 100 and 200 SNPs

to test utility as discriminatory factors for ER+/ER2 breast

cancer.

SVM model input
The three genotypes at each SNP were converted into numeric

values following [24] and [25]. Major and minor allele frequencies

for each SNP were determined from all genotypes in the sample.

Heterozygous genotypes were labelled 0, homozygotes for the

major allele were labelled 1, and homozygotes for the minor allele

labelled 21. The two classes of samples in the models were ER+
cases and ER2 cases.

Building a support vector machine classifier
Support vector machines are supervised machine learning

algorithms which build models based on ‘training’ data and search

for similar patterns in ‘test’ data [16]. The training set is often a

subset of all samples complete with all class and feature values and

the resultant model is then applied to the remaining test data.

Novel data can be presented to the model and classified according

to the position of the data point relative to the hyperplane

constructed from the training set. The robustness and reliability of

the SVM classifier can be tested using cross-validation, where the

data is split into n equally sized sets testing n models. We used 10-

fold cross-validation: data were divided into 10 approximately

equal-sized sets and a classifier built based on the data in 9/10 of

these sets. The remaining 10% of data was used as a test set to

determine the accuracy of the classifier. This process was repeated

10 times with each set representing the test data once and average

classification accuracy determined. We further explored 10-fold

cross-validation using 100 replicates and mean accuracy from

1000 resultant models was obtained for alternative kernel models.

The SVM classification model was produced using the Weka

data mining software [57,58]. The Sequential Minimal Optimi-

zation (SMO) algorithm for training a SVM classifier was applied

to the data. Five kernel models were evaluated; linear, normalized

quadratic polynomial, quadratic polynomial, cubic polynomial,

and radial basis function (RBF).

Gene annotation
Annotation of sets of SNPs used in the classification models was

undertaken using the ANNOVAR software [59,60]. Gene-based

annotation was carried out using the UCSC ‘Known Gene’

database. SNPs were annotated as intergenic, exonic, intronic,

downstream, ncRNA intronic, ncRNA exonic, upstream, UTR3,

or UTR5. For SNPs situated outside genes the closest gene was

identified and gene names were taken from the HUGO Gene

Nomenclature Committee database [61,62]. A total of 139 unique

gene names were linked to the set of 200 SNPs used in the final

classifier (Table S1).

Functional gene classification
Functional gene annotation clusters were identified using the

‘Gene Functional Classification’ tool in DAVID (Database for

Annotation, Visualization and Integrated Discovery) [20–22].

DAVID determines significant enrichment of function within a

submitted gene name list by contrasting with a ‘whole genome’

background. Annotation clusters were identified from the 139

genes using the ‘Functional Annotation Clustering’ tool and five

annotation categories: disease, functional categories, gene ontol-

ogy, pathways and protein domains. Enriched pathways were

identified using only the ‘Pathways’ annotation category with

BBID, BIOCARTA, and KEGG selected.

Supporting Information

Table S1 200 SNPs which most strongly discriminate
ER+ and ER2 breast cancers used in the classification
models. The weights are taken from a linear model built using

one iteration of 10-fold cross-validation in the WEKA Explorer.

Classification accuracy for this model was 92.4%. The magnitude

of the absolute values of the SNP weights indicates importance of

the SNP for classifying cases. Positive SNP weights relate to

classifying ER+ cases while negative SNP weights relate to

classifying ER2 cases. For those SNPs that are not located within

a gene the nearest gene is given and the distance of the SNP from

this gene is indicated by dist = .

(DOCX)

Table S2 Weka kernels and classification results for 100
and 50 SNPs with highest chi-squares. Comparison of

classifiers built with 100 and 50 highest ranked SNPs from PLINK

chi-square test.

(DOCX)

Table S3 Weka kernels and classification results for
bottom 200 and random 200 SNPs. Comparison of classifiers

built with 200 random SNPs and the lowest ranked by PLINK chi-

square test.

(DOCX)
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