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1  Introduction

The emergence of portable and wearable devices has 
increased the usage of mobile applications dramatically 
from last few years. Recent statistics predicted that around 
2.6 billion mobile devices, including 220 million wear-
able devices, are going to be sold by 2020  [1, 2]. These 
devices are coming with numerous in-built sensors (accel-
erometers, GPS, microphone, camera, etc.), that stimulate 
mobile traffics or applications to increase ten times within 
2019, whereas cellular capacity only by a factor of 1.4 dur-
ing the period. Meanwhile, the mobile application market 
is expected to exceed $100 billion worldwide by 2020 [1, 
2]. The sensor based sophisticated applications includ-
ing pattern or gesture recognition, health monitoring and 
diagnosis, mobile biometric, reality augmentation, video 
and image processing etc. require continuous sampling 
and high speed processing capabilities from today’s smart 
devices  [3]. However, these devices still show poor per-
formance while running compute-intensive applications 
because of limited battery life, insufficient memory and 
processing resources.

In the literature, computational offloading is proposed 
to increase the performances by offloading some remotely 
executable parts of a compute-intensive application to the 
nearby cloud service providers  [4–7]. However, executing 
codes at distant master clouds  [6–11] suffers from higher 
latency, intermittent connectivity and even unavailability of 
remote clouds  [12, 13]. Nevertheless, the emerging appli-
cations including military operations, disaster recovery 
require real-time responses. In such cases, resource-rich 
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nearby smaller instances of cloud, known as cloudlets, have 
been exploited in the literature  [14, 16–19] to decrease 
the service latency. While virtual machine resources on 
a cloudlet provide better accessibility for executing user 
applications, they also suffer from resource limitations 
either due to execution demands of very large applica-
tion or arrival of many execution requests from devices 
at pick hour  [20]. In such circumstances, in addition to 
using cloudlet resources, underutilized resources of nearby 
mobile devices can be exploited opportunistically for the 
execution of codes from other users, in the form of Mobile 
Device Cloud (MDC)  [12, 13, 21]. In the literature, this 
opportunistic computation of application codes on nearby 
mobile devices is also known as Mobile Edge Cloud  [20, 
22–24] or Virtual Mobile Cloud [7, 25]. Since executors in 
MDC are located closer to the initiators, the energy con-
sumption, communication latency or response delay have 
been reduced significantly compared to cloudlets  [12, 26, 
27].

Large applications are partitioned into a set of modules 
to make them executable on MDC. A module is executed 
either on MDC or local device to minimize energy con-
sumption, response time, data transmission time and the 
wastage of computing resources [28–30]. Almost at every-
where, we are surrounded with a plethora of mobile devices 
either in large scale stationary place (i.e. stadium, shopping 
center, restaurants or movie theater) or during travelling by 
bus/train and on air. Though the devices are mobile, col-
lectively they become stationary in the context of onboard 
vehicle or the situated place. In such cases, collabora-
tion among these stationary mobile devices may unfold 
improved computing opportunities for solving resource-
hungry applications like augmented reality, face recogni-
tion, real time multimedia, visual text translation, voice 
synthesis etc. on smart devices  [31]. However, to execute 
an application in MDC system, the major challenge is to 
select reliable devices while minimizing execution time. 
Nearby devices with high computing resources may often 
not provide services with good reliability, and vice-versa. 
Offloadable module selection, estimation of associativity 
time, data rate, energy consumption and signal strength 
between offloader and offloadee are other challenges that 
need to be addressed for the successful execution of an 
application.

In this paper, MDC platform has been used to design and 
develop a collaborative and distributed computing architec-
ture to minimize the application execution time. The main 
philosophy of the work is to reduce the overall execution 
time of an application by scheduling its modules in a non-
overlapping manner. We have aggregated the idle comput-
ing power of the nearby mobile (donor) devices to execute 
compute-intensive applications. Best donor devices are 
selected considering both execution time and reputation. 

A preliminary version of this work has been published 
in [32] that considers parallel execution of modules in the 
same dependency level of an application tree to minimize 
the total execution time. However, in this work, we develop 
TESAR system that trades off in between execution 
speedup and reliability of computation through optimal 
selection of donor devices for the application modules. The 
key contributions of this work are summarized as follows:

–	 Development of a novel computation framework with 
necessary system components that enables collabora-
tive computational capability of nearby mobile devices 
to execute compute-intensive applications in MDC envi-
ronment.

–	 Formulation of a Mixed Integer Linear Programming 
(MILP) objective function with necessary constraints to 
assign the computation loads for the application mod-
ules on nearby donor devices so that the performances 
are optimized.

–	 An algorithm to construct a dependency tree among the 
modules of an application to determine relative execu-
tion order.

–	 Extensive evaluation of computation performances of 
the proposed TESAR system and compared with the 
state-of-the-art works in an emulated environment.

The rest of the paper is organized as follows. Sect. 2 con-
tains a study of the existing works on the issue of code off-
loading in MDC environment. We discuss our application 
model, MDC architecture and proposed tradeoff analysis in 
Sect. 3. In Sect.  4, we present experimental environments 
and results. Finally, we conclude the paper in Sect.  5 with 
future directions.

2 � Related works

The immense increase of mobile devices and applications 
running on those, cloudlet based solutions can no longer 
satisfy the resource requirement let alone the remote master 
cloud based solutions. Offloading modules of an application 
to nearby mobile devices with idle computing resources is 
considered to be the future of mobile computing  [25, 33, 
34]. This concept was first introduced in Serendipity  [26] 
that presented an algorithm to distribute tasks among 
nearby mobile devices so as to speed up the computing 
speed and to conserve energy. The authors in  [27] devel-
oped an application to use the computational resources of 
nearby mobile devices in Cirrus clouds. The application 
used RollerNet and Haggle trace to emulate the Serendip-
ity functionality, where fixed size of independent tasks 
are disseminated among the mobile devices. Although the 
authors considered the intermittent connectivity, computing 
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capacity of the devices and quantification of network signal 
strengths were untouched.

Mtibaa et  al. designed an emulation testbed to evalu-
ate the potentiality of Serendipity architecture in [12, 35]. 
The authors showed that, offloading tasks to nearby mobile 
devices can save up to 50% execution time and 26% energy 
compared to master cloud based execution. However, the 
authors did not consider heterogeneous computational 
capacities of the nearby devices. Furthermore, the sys-
tem assumed all devices having the same energy level and 
number of offloadable tasks was fixed at 50%, which is not 
often practical.

The user mobility patterns and its opportunistic contact 
rates with nearby devices were taken into consideration for 
determining the appropriate devices for offloading by Wang 
et. al. in  [21]. The authors developed a convex optimiza-
tion technique to determine the amount of computation to 
be offloaded to other devices and results showed the effi-
ciency of the algorithm in terms of higher computation suc-
cess rate.

In  [13], Mtibaa et. al. provided a generic computation 
offloading framework to heterogeneous devices including 
master cloud and cloudlets. The framework maximizes the 
computational gain with respect to response time, energy 
consumption and network lifetime. However, there were no 
consideration of execution dependency among the applica-
tion modules, expected data rate and available energy level 
of the devices.

Fernando et. al. exploited stealing method [37] on a set 
of mobile devices for better load sharing among the worker 
nodes in  [36]. It was first implemented using Bluetooth 
technology and later on Wi-Fi Direct technology [24]. The 
model works only for independent tasks and it does not 
consider the computing capacity of the devices, resulting 
in stealing jobs from weak workers frequently which in turn 
causes poor system throughput.

In  [38], Habak et  al. proposed a dynamic, self-config-
uring and multi-device mobile cloud, named FemtoCloud, 
consisting of a cluster of mobile devices coordinated by a 
cloudlet. The authors tried to maximize the overall work-
load of the participating devices in the cluster. However, it 
didn’t consider signal strength (or data rate) offered by the 
devices and their residual energy levels.

Note that all of the above works emphasized on the ben-
efits of MDC technology that distributes computing loads 
to other mobile devices. However, none of those consid-
ered the parallel execution of the application modules, 
while maintaining the inter-dependencies so as to speed-up 
the execution of the application. Furthermore, whether a 
target mobile device is reliable for code offloading or not 
has not been quantified for its selection. In this work, we 
develop code offloading framework for MDC system that 
makes a tradeoff in between execution speedup and reliable 

execution of codes. The performance is optimized through 
selecting devices that are reliable, offer higher computing 
capacities, signal strengths and energy levels.

3 � Mobile device cloud architecture

The mobile device cloud (MDC) architecture is comprised 
of heterogeneous set of mobile devices including laptops, 
smart-phones, palmtops, tabs/pads, wearable devices like 
watch, glass, etc. The amount of computation, communica-
tion and storage resources of the devices greatly vary from 
each other. Typically, they have small scale computation 
and storage capacities that remain idle most of the time on 
a large number of devices. These idle computing resources 
can be accumulated together to run heavy weight applica-
tions that are not executable on their devices within delay 
deadline. In MDC, these idle resources act as small virtual 
machines (VMs) for executing codes of nearby users. The 
user can configure the VM of his/her device by limiting the 
amount of resources (CPU, storage, bandwidth usage, etc.) 
to serve applications of other users and to gain benefits. 
The amount of resources shared by a device is reconfigur-
able at any point of time and users have complete control 
of managing resources of their devices. What follows next, 
we present a framework for code offloading in MDC and an 
optimal selection method of nearby mobile VM resources 
for code offloading.

3.1 � Compute‑intensive code offloading framework

Limited resources of a mobile device restrict it to deliver 
the results of an application in time. Application codes 
requiring higher computing power, need a great num-
ber of CPU cycles, storage and thus its battery drains out 
very fast. However, if the application is partitioned into a 
number of modules that are offloadable to nearby mobile 
devices, then the execution load gets distributed and com-
pletion time of the application gets reduced. This work is 
based on such a collaborative computing architecture, as 
shown in Fig. 1. The mobile devices are connected to each 
other through Wi-Fi access points (APs).

The proposed architecture has three different tiers. A 
device that requires to offload codes to others for faster exe-
cution is known as donee device and it resides in tier one. 
The cloudlet and wireless communication infrastructure 
that facilitate collaboration are at tier two. At tier three, we 
have (donor) devices where the compute-intensive codes 
are offloaded for execution. A (donor) device communi-
cates with the cloudlet at tier two and show its interest to 
run any compute-intensive applications. The cloudlet col-
lects information of the (donor) devices, makes scheduling 
plan and offloads modules of the application in favor of the 
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donee devices. It also performs the mapping of applica-
tion modules to the VMs of (donor) devices and offloads 
accordingly. It acts as a broker by partitioning the applica-
tion into modules, coordinating the distribution of modules 
to remote devices and accumulating results obtained from 
donor devices. It’s very energy hungry for a donee device 
to keep constant communication with all other devices and 
thus to decide the code distribution among nearby devices.

The functional components of the proposed compute-
intensive code offloading framework are shown in Fig.  2. 
Detailed descriptions for each of the components are given 
below.

–	 Global coordinator (GCO) The GCO takes an applica-
tion as input from mobile user and acts as an interface 
for other components to communicate with the user. It 
also controls and coordinates the functionality of other 
system components.

–	 Application profiler (APP) The APP takes the applica-
tion from GCO and partitions it into modules which can 
be processed through parallel execution. Based on static 
analysis, it determines total number of task modules, 
instruction size of each module and inter-dependencies 

among these modules. For each module, it creates a 
tuple containing module number, instruction size, set 
of parent nodes of that module and relative execution 
dependencies. The relative dependencies determine 
modules that can be executed in parallel so as to mini-
mize the overall execution time of the application. A 
rooted tree construction algorithm for determining the 
module dependencies is presented in Sect. 3.2.1.

–	 Resource monitoring manager (RMM) The RMM moni-
tors and stores the device specific information that can 
be used during module allocation. Specifically, the 
RMM stores device ID, signal strength, clock cycle, 
available energy, reputation value, present workload and 
updates it periodically.

–	 Offloading manager (OFM) The OFM takes informa-
tion from APP and RMM in order to decide which mod-
ules are offloadable and which devices can be selected 
for offloading. The OFM determines the optimal map-
ping of individual donor devices to different application 
modules. Moreover, the OFM ensures that, no device 
will be assigned two modules which can run simultane-
ously, i.e., having zero relative execution dependency. 
Detail operation of offloading decision making mecha-
nism is presented in Sect. 3.2.

–	 Task scheduler (TSS) The TSS dispatches the selected 
modules to donor devices, and notifies failure(s) of 
execution, if any, to RMM so as to reassign a different 
donor device.

–	 Fault tolerant manager (FTM) The FTM handles the 
operation of the failed modules execution in a prior-
ity basis to continue the intended execution flow of 
the modules. It directly communicates with RMM and 
selects an available donor device to execute the failed 
module so that the execution of the other modules are 
not halted.

–	 Reward manager (RWM) The RWM is a global author-
ity that increases or reduces reward of a mobile device 
after successful completion or failure of execution of a 
task respectively. The reputation is given as a means of 
reward that is increased/decreased based on the success-
ful/failed execution of a task. Whenever a new device 
wants to get registered, the Resource Monitoring Man-
ager communicates with the RWM to collect and store 
the reputation information. Detail procedure of calculat-
ing the reputation values is presented in Sect. 3.2.5.

The critical part of the proposed TESAR architecture is the 
identification of parent-child relationship between mod-
ules and mapping donor devices to offloadable modules. 
Although we provide a complete architecture for MDC sys-
tem, this work, particularly, focuses on OFM that optimally 
assigns computation modules to donor devices. However, 
for parallel execution of offloadable modules, identification 

Fig. 1   Computation architecture in Mobile Device Cloud
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Fig. 2   Compute-intensive code offloading framework
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of parent-child relationship among the modules is a pre-
requisite. For this reason, the APP executes Algorithm  1, 
described in Sect.  3.2.2, to construct a dependency tree 
between the modules and then the OFM determines the 
optimal assignment of computation modules to donor 
devices.

In this work, initial reputation of mobile devices has 
been chosen randomly. Moreover, a number of works have 
already been carried out to determine the associativity time 
of mobile devices [14, 15] and we have adopted [14], since 
it exploits historical trace of mobile devices and fairly cap-
tures the MDC environment.

3.2 � Optimization problem formulation

In this subsection, we first define an application model for 
compute-intensive MDC system. Then, we determine the 
sets of parent and child modules of the application and time 

required for executing those locally. After that, we derive 
an objective function that will select remote mobile hosts 
in such a way that total execution time gets minimized and 
reliability of execution in respect of device reputation get 
maximized while satisfying a number of constraints.

Table 1 shows the list of notations used in this work.
Binary variable ym,k = {1, 0} is used to indicate that 

module m ∈  is executed on device k. Since the appli-
cation contains both local and remote executable tasks, the 
total number of modules therefore, can be obtained as,

3.2.1 � Compute‑intensive application model

Each application in MDC system can be considered as a 
directed graph G(, e) with  processing modules where 
each module performs a specific operation of the applica-
tion. The directed edges between modules form a rooted 

(1) = || + ||.

Table 1   List of notations
 Set of modules in the application
 Set of available devices
Π

m
Set of parents of module m

L Set of Leaf nodes
 Set of modules executed Remotely
 Set of modules executed Locally
o

m
Instruction size of offloadable module m ∈ 

u

m
Instruction size of locally executable module m ∈ 


m

Output instruction size of module m ∈ 

�
k

Execution speed of device k ∈ 

 l

m
(o) Local device execution time of module m ∈ 

 l

m
(u) Local device execution time of module m ∈ 

 x

m,k
Remote execution time of module m ∈  in device k ∈ 

 t

m,k
Transmission time of module m ∈  from the cloudlet

 r

m,k
Output reception time of module m ∈  in the cloudlet

u

k
Uplink bandwidth between cloudlet and device k ∈ 

d

k
Downlink bandwidth between cloudlet and device k ∈ 

�x
k

Energy consumption rate of device k ∈  for module execution
�t
k

Energy consumption rate of device k ∈  for input transmission
�r
k

Energy consumption rate of device k ∈  for output reception
x

m,k
Total execution energy of module m ∈  in device k ∈ 

 t

m,k
Total input transmission energy of module m ∈  in device k ∈ 

 r

m,k
Total output transmission energy of module m ∈  in device k ∈ 

Ψ Energy threshold

k

Signal strength of device k ∈ 

� Tolerable signal strength threshold
�
k

Associativity time of device k ∈ 

E
k

Available energy of device k ∈ 

Ω
k

Reputation of device k ∈ 

�
n,m

Percentage of dependency of a child module m ∈  on its parent n ∈ 
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tree to define dependencies between modules. This rooted 
tree determines execution flow of the application as shown 
in Fig. 3. Each edge consists of two weights—o

m
 and m,  

the input and output instruction sizes, respectively, of the 
module m ∈ . A dependent child module can be exe-
cuted only when output of the parent module is available. 
However, all parallel modules can be executed simultane-
ously based on availability of the donor devices.

The execution time of an application is inversely related 
with the number of dependency levels since the later 
decreases execution parallelism. The total execution time 
of the application is the maximum execution time of a sub-
tree including communication delays. In this work, local 
and remote executions have been used interchangeably with 
donee and donor device executions, respectively.

3.2.2 � Construction of rooted tree of modules

A module n is said to be the parent of another module m if, 
there exists a dependency between the execution of mod-
ule m and n that is, module m requires the output from n 
at any particular instance of it’s execution. A module may 
require outputs form more than one parent modules and 
the set of all parent modules of module m is given by Πm.  
Again, a module has been considered as leaf, if it has no 
child dependent on it. The set of leaf modules is given by 
. Algorithm  1 summarizes the steps of determining Πm 
and  from the dependency graph G(, e). Here, each ele-
ment of e is a directional edge from parent module to child 
module.

3.2.3 � Time required for local execution

Time of execution for the whole application in the local 
device is the total time required for the completion of both 
local and remote executable modules. Here, time required for 
executing module m ∈  is given by,  l

m
(o) =

o
m

�k|k=0
 where, 

o
m
 represents the size of module m ∈  and �k represents the 

execution speed of device k ∈ ; k = 0 represents the local 
device and all the remote devices under the cloudlet takes a 
nonzero value of k. Similarly, time required for executing 
module m ∈  is represented as,  l

m
(u) =

u
m

�k|k=0
. Therefore, 

the total local execution time is obtained from the execution 
delay of all local () and remote () executable modules,

3.2.4 � Time estimation for remote execution

To calculate the execution time of offloadable modules at 
remote hosts and unoffloadable modules at local device, we 
need to consider the time for transmitting the modules, exe-
cute the modules and collect the results back to the cloudlet. 
The time for transmitting module m ∈  from the cloudlet 
to device k ∈  can be expressed as,

where, d
k
 represents the available bandwidth for data trans-

mission from cloudlet to device k ∈ ; k = 0 again repre-
sents the donee device which executes the unoffloadable 

(2) (l) =

||∑

m=1

 l
m
(o) +

||∑

m=1

 l
m
(u).

(3) t
m,k

=

(
u
m

d
k|k=0

+
o
m

d
k|k>0

)
×ym,k,

A

B C

D E

F

S
o
m

Wm

Fig. 3   Dependency tree of the application modules
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modules. Now, the time for execution of module m ∈  in 
device k ∈  of MDC can be represented as,

After completion of execution of a module, all devices 
including the donee will transmit the result back to the 
cloudlet. The time required to send the execution result of 
module m ∈  from device k ∈  to cloudlet can be cal-
culated as,

where, m represents the size of results produced after the 
execution of module m. Therefore, the total execution time 
of module m ∈  in device k ∈  can be obtained as,

Now, for calculating the completion time of a module, 
we have summed up the total time required to execute the 
module from the beginning of execution of the applica-
tion. This is performed by adding the execution time of the 
module ( c

m,k
) with the total completion time of it’s parent 

(n(r)|n ∈ Πm). However, a child may not always depends 
completely on the result of it’s parents. It may start inde-
pendently and after completion of a certain percentage 
of execution it requires the results from it’s parents. This 
dependency relation is represented by �n,m. Therefore, the 
total completion time of module m ∈  is given by,

The total time required for execution completion of the 
application is therefore, the largest time required for com-
pletion among all the leaf modules. The total time required 
for execution of the complete application is represented as,

In order to evaluate the completion time of an application 
in MDC and compare among different scheduling arrange-
ments, scheduling speedup factor needs to be calculated. 
The speedup factor of a scheduling can be represented as,

3.2.5 � Reputation value calculation

For successful execution of offloaded modules reliable 
donor selection is a prerequisite. If a low performing or 
unreliable donor is selected for execution of a module, it 
turns into an unsuccessful execution, increasing response 

(4)
x
m,k

=

(
u
m

𝜇k|k=0
+

u
m

𝜇k|k>0

)
×ym,k.

(5) r
m,k

=
m

u
k

×ym,k,

(6)
c
m,k

= 
t
m,k

+ 
x
m,k

+ 
r
m,k

.

(7)m(r) = max ( c

n,k̄
) + 

c
m,k

(1 − 𝜙n,m);∀n ∈ Πm.

(8) (r) = max (m(r));∀m ∈ L.

(9) (f ) = 1 −
 (r)

 (l)
.

time and hence deteriorates the overall performance of off-
loading mechanism. Any device may advertise itself as a 
first-rate donor with high computing capability whereas its 
successful execution rate might be very poor. The reputa-
tion parameter can be used to guard against such unquali-
fied donors. The reputation of a device is calculated as,

where, � is a relative weight parameter and takes value 
from the range [0,1]; cm,k is a binary variable having value 
1 when, module m ∈  is completed successfully in device 
k ∈  and, 0 otherwise. Similarly, binary variable ym,k 
is set to 1, if m ∈  is executed on device k ∈ , and 0 
otherwise.

While scheduling the offloadable modules of an applica-
tion, reputation of the mobile devices for task execution needs 
to be considered. Involving devices with higher reputation 
for execution of the modules of an application increases the 
execution reliability. Calculation of total reputation for sched-
uling all the modules of an application can be expressed as,

As soon as a registered device comes in contact with a 
cloudlet, the RMM communicates with the RWM and 
loads reputation value (Ωk) of that device. Whenever execu-
tion of a particular application ends, the RWM calculates 
reputation value of all the involved mobile devices. Since 
this work mainly focuses on making the offloading decision 
optimally, we do not discuss on calculation of reputation 
value further in this paper.

3.2.6 � Energy required for remote execution

Since mobile devices suffer from the scarcity of energy, we 
need to calculate the total energy that will be required to 
offload a module to a donee device. To calculate the total 
energy consumed to offload a module, we need to con-
sider the energy required for the transmission and execu-
tion of the module and collection of the result back. Energy 
required to transmit module m ∈  from cloudlet to 
device k ∈  is given by,

where, �t
k
 represents the energy consumption rate for trans-

mission by device k ∈ . Now, the energy required to exe-
cute module m ∈  in device k ∈  is expressed as,

Similarly, energy required to transmit output of module 
m ∈  from device k ∈  to cloudlet is,

(10)Ωk = � × Ωk + (1 − �) ×

∑
m∈ cm,k∑
m∈ ym,k

,

(11)Ωt =
∑

k∈

Ωk × ym,k.

(12)
t
m,k

= 
t
m,k

×�t
k
×ym,k,

(13)
x
m,k

= 
x
m,k

×�x
k
×ym,k.
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where, �x
k
 and �r

k
 represents the energy consumption rate 

of device k ∈  for execution and result transmission 
respectively.

3.2.7 � Optimal selection of mobile server

Now to select the optimal set of remote mobile devices for 
the execution of offloadable modules, we need to choose 
those devices for which the execution delay of offloadable 
and unoffloadable modules gets minimized while total repu-
tation of all the scheduling devices gets maximized. The 
objective function for the selection of remote mobile devices 
is formulated as,

Here, weight factor � has been used to represent rela-
tive priority between application completion time and 
device reputation. The value of � can be determined by the 
requirement of the application. Time sensitive applications 
can set a higher of � while applications requiring high reli-
ability can choose a lower percentage of �.

Constraints Each module should be executed in a single 
device at a time.

The offloadable computation time of the modules through 
MDC should be less than local computation time of the 
whole application, i.e.,

Participating node signal strength should be greater than a 
certain minimum threshold, i.e.,

where, k represents the signal strength of device k ∈  
which is obtained through simulation process; and, � rep-
resents the threshold value of signal strength that must be 
satisfied by a potential donor.

Participating device energy, after execution, should be 
greater than a certain minimum threshold, that is,

(14)
r
m,k

= 
r
m,k

×�r
k
×ym,k,

(15)Maximize: { = � ×  (f ) + (1 − �) × Ωt}.

(16)
∑

k∈

ym,k = 1;∀m ∈ 

(17) (r) <  (l).

(18)k > 𝛾;∀k ∈ ,

(19)Ek > 
t
m,k

+ 
x
m,k

+ 
r
m,k

+ Ψ;∀k ∈ ,∀m ∈ ,

where, Ψ represents the energy threshold that the donor 
devices must hold after the completion of the execution.

During the execution and transmission period, the par-
ticipating devices will be available within the range of the 
cloudlet, i.e.,

where, �k represents the associativity time of device k ∈  
with the cloudlet.

All the unoffloadable modules (m ∈ ) must have to be 
executed on the local device

Note that, the objective function of the proposed TESAR 
algorithm provided in equation (15) selects those mobile 
devices for which total execution time in remote mobile 
device cloud is minimum and have the highest previous 
reputation of execution. It is a multi-objective mixed inte-
ger linear programming (MILP) problem that has both 
combinatorial and continuous constraints. To solve the 
MILP problem, the NEOS optimization tool [39] has been 
used to find the impact of optimization function param-
eters and the optimal mapping between modules and donor 
devices for task allocation and scheduling in TESAR. Two 
Intel Xeon E5-2698@2.3 GHz CPU with 192GB RAM has 
been used to find the optimal scheduling for an application 
containing 12–15 modules and 60–80 mobile devices. Note 
that, with the increase of number of modules and availa-
ble mobile devices, real-time solution of TESAR becomes 
intractable in a typical cloudlet and thus the problem can be 
grouped as NP-complete one [40]. However, the constraints 
(16–21) facilitate us to significantly reduce the input sets 
in TESAR environment and thus the optimal solution was 
found in polynomial time.

4 � Performance evaluation

In this section, we discuss the emulation testbed that is 
used to implement the proposed module offloading algo-
rithm TESAR and compare the obtained results with state-
of-the-art works. We compare the performance of TESAR 
with the following algorithms:

(20)m(r) < 𝜆k;∀m ∈ ,∀k ∈ ,

(21)ym,k =

{
1, if k = 0

0, otherwise.

Table 2   Device settings Device Model OS Version RAM CPU

Laptop (cloudlet) ASUS ZenBook UX303LN Windows 10 8GB Core i5-5200U 2.20GHz
Cell phone (donee) Sony LT18i Android 4.0.4 512 MB 1.4 GHz Scorpion
Tablet PC (donor) Symphony T8Q Android 4.2.1 1 GB Quad-core 1.2 GHz Cortex A7
Cell phone (donor) Walton Primo X2mini Android 4.2.1 1 GB Quad-core 1.5 GHz Cortex-A7
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•	 OMDC In OMDC  [13], the application modules are 
assigned to different available donors in a round robin 
scheduling order.

•	 Honeybee In Honebee  [36], application modules are 
scheduled on different donor devices based on avail-
ability in a purely random fashion. If a poor donor was 
chosen for a module, the work stealing mechanism is 
applied to take out the module (from the poor donor) 
and is executed later on a computation rich donor.

•	 Random In this mechanism, the modules are assigned to 
different donor devices randomly without considering 
the device status.

4.1 � Experimental testbed

To evaluate the performance of our proposed TESAR, an 
emulation testbed has been set up by implementing an 
Android application on a number of heterogeneous mobile 
devices. The cloudlet functionalities are implemented on a 
laptop through which all the mobile devices are connected. 
The mobile devices and the laptop communicate to each 
other via a Wi-Fi access point. Different parameters and 
their values used to carry out the emulation are summa-
rized in Table 2.

We consider prime number calculation problem as an 
experimental prototype to represent a compute-intensive 
application. Generation of prime numbers with a large 
range requires a lot of computation. This particular prob-
lem can easily be subdivided into several modules that are 
passed through Algorithm  1 to construct the parent-child 
dependency tree. Then, we run the objective function on 
this set of modules for distributing the execution of mod-
ules on nearby donor devices.

In this experiment, the prime number problem produces 
primes between 1 and 300,000, where the complete range 
is divided into modules of different size. The number of 
modules varies from 4 to 12 according to the need of the 
experiment. Total number of available devices were 12 
which is also varied for measuring different performance 
metrics. First module of the application is always executed 
on the donee device. The donee device can execute one or 
more modules while the rest of the modules are offloaded 
to be executed on the donor devices.

A device must contain a certain percentage of remaining 
battery power (�) for self-sustainability and a minimum of 
−80 dB signal strength to be a candidate donor. The � is 
a system defined parameter and its value can be tuned fol-
lowing the needs of the computing environment and without 
loss of generality, we have kept � = 20% in our experiments. 
The access point that has been used to connect the mobile 
devices with the cloudlet supports IEEE 802.11b/g/n and 
can achieve maximum 150 Mbps data rate through different 

channels [41]. The value of � has been chosen to be 0.6 to 
give emphasis on the execution time. All the experiments 
have been conducted for 20 times and the obtained results 
are averaged. The local device takes 235 s on an average to 
execute the application without offloading.

4.2 � Results and discussion

This subsection provides the experimental result and analy-
sis of our proposed TESAR system with other benchmark 

Completion Time

Communication Latency

Rescheduling Overhead

(a)

(b)

(c)

Fig. 4   Impacts of increasing number of modules in an application
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solutions. In most of the cases, random allocation method 
fails to execute the allocated module as it doesn’t consider 
the capability of the donor device and handles failed mod-
ules. The results depict that, the magnitude of transmission 
time is negligible compared to completion time. The results 
for random allocation are obtained from the successful 
completion of application executions only.

4.2.1 � Impact of number of modules in an application

Figure  4 shows the impact of varying the total number of 
modules in an application on the performances of the stud-
ied systems. Figure 4a shows that, initially, the total comple-
tion time is decreased significantly with the increasing num-
ber of application modules in all the studied systems. Such 

Completion Time

Communication Latency

Rescheduling Overhead

(a)

(b)

(c)

Fig. 5   Impacts of increasing number of donor devices
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Fig. 6   Impacts of increasing number of parallel modules
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behavior is theoretically expected as well since the scope of 
parallel execution is enhanced with the number of modules. 
However, after reaching at a certain level of partitioning (10 
modules in the figure), the completion time starts increasing 
gradually with the number of modules. This is due to the fact 
that, as the number of modules increases, the assignment of 
modules to relatively poor donor devices also increases and 
communication latency among the interdependent modules 
is increased with the same rate. In case of communication 
latency (Fig.  4b), with the rise of the number of modules, 
transmission time and output reception time increases for 
all the approaches. Figure 4c shows the result of reschedul-
ing overhead with the growth of number of modules. As the 
number of modules increases, the module size decreases and 
hence the rescheduling overhead is also decreased. However, 
our TESAR system outperforms all others with respect to 
completion time, communication latency and rescheduling 
overhead since it selects devices with higher signal strength, 
reliability and associativity period.

4.2.2 � Impact of number of devices

With increasing number of devices, the opportunity of 
selecting more suitable candidates for code offloading is 
enhanced, resulting in better performances in comple-
tion time as well as rescheduling overhead of modules, 
as shown in Fig. 5a, c. However, with the increase in the 
number of devices, communication latency for code off-
loading is increased gradually (Fig.  5b). Nevertheless, 
since TESAR method selects devices with high reputa-
tion, it can avoid rescheduling of application modules to a 
large extent and hence it experiences better performance 
compared to state-of-the-art offloading algorithms.

4.2.3 � Impact of number of parallel modules

Comparative study among the systems on varying num-
ber of parallel modules is illustrated in Fig. 6. Here, the 
number of total modules is fixed at 12, amongst which 
the number of parallel modules has been increased from 
2 to 10. Fig.  6 shows that, the completion time of the 
application decreases gradually with the number of paral-
lel modules. However, computation latency and module 
rescheduling overhead rise for higher number of paral-
lel modules. This is caused by increased communication 
latency among the higher number of modules. Again, the 
likelihood to module rescheduling increases with grow-
ing number of parallel executable modules. However, the 
proposed TESAR system considers partial dependency 
and it selects optimal devices for code offloading and 
hence outperforms compared to other offloading algo-
rithms under study.

4.2.4 � Impact of � value on the performance of TESAR 
system

Figure 7 shows performances of the proposed TESAR sys-
tem in terms of completion time of applications with respect 
to increasing number of devices and modules for different 
values of �. The graph reveals the fact that, the proposed 
TESAR system provides the worst completion time for � = 0. 
The completion time is decreased with the gradual increase 
in � value. This is because, with the increase of �, the algo-
rithm chooses devices having high computational speed and 
reasonable reliability. It exhibits the optimal behavior when 
� takes the value of 0.6. However, further increase of � value 

Fig. 7   Impact of � value on the 
performance of TESAR system

secivedforebmungnisaercnIseludomforebmungnisaercnI(a) (b)
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starts increasing the completion time again. This is due to the 
fact that, much higher value of � forces the system to choose 
devices offering reduced reliability, causing a number of 
modules experience rescheduling and therefore, completion 
time of the application is increased.

5 � Conclusion

In this paper, we have focused on strategies for code 
offloading to surrounding mobile devices instead of dis-
tant remote cloud. Offloading decision has been imple-
mented to make a tradeoff between execution speedup 
and reliability for compute-intensive applications. The 
proposed TESAR system employs cloudlet infrastructure 
to coordinate apportion of application into modules and 
to distribute on different donor devices for faster execu-
tion. The system outperforms as the best donor devices 
are extracted from the set of candidate donors by con-
sidering offered computation speed, reliability, signal 
strength and available energy. Simultaneous execution 
of parallel modules with most suitable donor device 
achieves better result in terms of execution time, com-
munication latency and rescheduling overhead compared 
to the state-of-the-art works for varying number of mod-
ules and devices. In future, this work can be extended 
further to develop an incentive mechanism for provid-
ing rewards to different donor devices according to their 
execution performances. Such kind of incentives might 
encourage a mobile device to share its resources and to 
act as a donor.
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