
Vol.:(0123456789)1 3

Multimedia Systems
DOI 10.1007/s00530-017-0563-8

SPECIAL ISSUE PAPER

Tradeoff between execution speedup and reliability
for compute‑intensive code offloading in mobile device cloud

Sajeeb Saha1 · Md. Ahsan Habib1 · Tamal Adhikary1 · Md. Abdur Razzaque1  ·
Md. Mustafizur Rahman1

© Springer-Verlag GmbH Germany 2017

Keywords  Mobile device cloud · Compute-intensive ·
Code offloading · Execution speedup · Reliability · MILP

1  Introduction

The emergence of portable and wearable devices has
increased the usage of mobile applications dramatically
from last few years. Recent statistics predicted that around
2.6 billion mobile devices, including 220 million wear-
able devices, are going to be sold by 2020 [1, 2]. These
devices are coming with numerous in-built sensors (accel-
erometers, GPS, microphone, camera, etc.), that stimulate
mobile traffics or applications to increase ten times within
2019, whereas cellular capacity only by a factor of 1.4 dur-
ing the period. Meanwhile, the mobile application market
is expected to exceed $100 billion worldwide by 2020 [1,
2]. The sensor based sophisticated applications includ-
ing pattern or gesture recognition, health monitoring and
diagnosis, mobile biometric, reality augmentation, video
and image processing etc. require continuous sampling
and high speed processing capabilities from today’s smart
devices [3]. However, these devices still show poor per-
formance while running compute-intensive applications
because of limited battery life, insufficient memory and
processing resources.

In the literature, computational offloading is proposed
to increase the performances by offloading some remotely
executable parts of a compute-intensive application to the
nearby cloud service providers [4–7]. However, executing
codes at distant master clouds [6–11] suffers from higher
latency, intermittent connectivity and even unavailability of
remote clouds [12, 13]. Nevertheless, the emerging appli-
cations including military operations, disaster recovery
require real-time responses. In such cases, resource-rich

Abstract  With the advent of different mobile computing
technologies, mobile devices have opened up a plethora
of computational infrastructure to provide improved per-
formance for compute-intensive applications to the end
users. Mobile Device Cloud (MDC) technology brings the
code offloading mechanism from distant cloud to neighbor
mobile devices. However, the major challenges of code off-
loading in MDC systems include maximization of compu-
tation speedup and reliability; unfortunately, these two per-
formance parameters often oppose each other. In this paper,
an optimization framework, namely TESAR, has been
devised to tradeoff between application execution speedup
and reliability while maintaining device energy within a
predefined range. We also provide an algorithm for devel-
oping a dependency tree among the modules of an appli-
cation so as to allow higher number of parallel executions,
wherever and whenever it is possible. The emulation results
of the proposed algorithm outperform the relevant state-
of-the-art works in terms of application completion time,
communication latency and rescheduling overhead.

 *	 Md. Abdur Razzaque
	 razzaque@du.ac.bd

	 Sajeeb Saha
	 sajeeb.saha.bd@ieee.org

	 Md. Ahsan Habib
	 m.a.habib@ieee.org

	 Tamal Adhikary
	 tamal@cse.du.ac.bd

	 Md. Mustafizur Rahman
	 mustafiz@du.ac.bd

1	 Green Networking Research Group, Department of Computer
Science and Engineering, University of Dhaka, Dhaka,
Bangladesh

http://orcid.org/0000-0002-2542-1923
http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-017-0563-8&domain=pdf

	 S. Saha et al.

1 3

nearby smaller instances of cloud, known as cloudlets, have
been exploited in the literature [14, 16–19] to decrease
the service latency. While virtual machine resources on
a cloudlet provide better accessibility for executing user
applications, they also suffer from resource limitations
either due to execution demands of very large applica-
tion or arrival of many execution requests from devices
at pick hour [20]. In such circumstances, in addition to
using cloudlet resources, underutilized resources of nearby
mobile devices can be exploited opportunistically for the
execution of codes from other users, in the form of Mobile
Device Cloud (MDC) [12, 13, 21]. In the literature, this
opportunistic computation of application codes on nearby
mobile devices is also known as Mobile Edge Cloud [20,
22–24] or Virtual Mobile Cloud [7, 25]. Since executors in
MDC are located closer to the initiators, the energy con-
sumption, communication latency or response delay have
been reduced significantly compared to cloudlets [12, 26,
27].

Large applications are partitioned into a set of modules
to make them executable on MDC. A module is executed
either on MDC or local device to minimize energy con-
sumption, response time, data transmission time and the
wastage of computing resources [28–30]. Almost at every-
where, we are surrounded with a plethora of mobile devices
either in large scale stationary place (i.e. stadium, shopping
center, restaurants or movie theater) or during travelling by
bus/train and on air. Though the devices are mobile, col-
lectively they become stationary in the context of onboard
vehicle or the situated place. In such cases, collabora-
tion among these stationary mobile devices may unfold
improved computing opportunities for solving resource-
hungry applications like augmented reality, face recogni-
tion, real time multimedia, visual text translation, voice
synthesis etc. on smart devices [31]. However, to execute
an application in MDC system, the major challenge is to
select reliable devices while minimizing execution time.
Nearby devices with high computing resources may often
not provide services with good reliability, and vice-versa.
Offloadable module selection, estimation of associativity
time, data rate, energy consumption and signal strength
between offloader and offloadee are other challenges that
need to be addressed for the successful execution of an
application.

In this paper, MDC platform has been used to design and
develop a collaborative and distributed computing architec-
ture to minimize the application execution time. The main
philosophy of the work is to reduce the overall execution
time of an application by scheduling its modules in a non-
overlapping manner. We have aggregated the idle comput-
ing power of the nearby mobile (donor) devices to execute
compute-intensive applications. Best donor devices are
selected considering both execution time and reputation.

A preliminary version of this work has been published
in [32] that considers parallel execution of modules in the
same dependency level of an application tree to minimize
the total execution time. However, in this work, we develop
TESAR system that trades off in between execution
speedup and reliability of computation through optimal
selection of donor devices for the application modules. The
key contributions of this work are summarized as follows:

–	 Development of a novel computation framework with
necessary system components that enables collabora-
tive computational capability of nearby mobile devices
to execute compute-intensive applications in MDC envi-
ronment.

–	 Formulation of a Mixed Integer Linear Programming
(MILP) objective function with necessary constraints to
assign the computation loads for the application mod-
ules on nearby donor devices so that the performances
are optimized.

–	 An algorithm to construct a dependency tree among the
modules of an application to determine relative execu-
tion order.

–	 Extensive evaluation of computation performances of
the proposed TESAR system and compared with the
state-of-the-art works in an emulated environment.

The rest of the paper is organized as follows. Sect. 2 con-
tains a study of the existing works on the issue of code off-
loading in MDC environment. We discuss our application
model, MDC architecture and proposed tradeoff analysis in
Sect. 3. In Sect. 4, we present experimental environments
and results. Finally, we conclude the paper in Sect. 5 with
future directions.

2 � Related works

The immense increase of mobile devices and applications
running on those, cloudlet based solutions can no longer
satisfy the resource requirement let alone the remote master
cloud based solutions. Offloading modules of an application
to nearby mobile devices with idle computing resources is
considered to be the future of mobile computing [25, 33,
34]. This concept was first introduced in Serendipity [26]
that presented an algorithm to distribute tasks among
nearby mobile devices so as to speed up the computing
speed and to conserve energy. The authors in [27] devel-
oped an application to use the computational resources of
nearby mobile devices in Cirrus clouds. The application
used RollerNet and Haggle trace to emulate the Serendip-
ity functionality, where fixed size of independent tasks
are disseminated among the mobile devices. Although the
authors considered the intermittent connectivity, computing

Tradeoff between execution speedup and reliability for compute‑intensive code offloading…

1 3

capacity of the devices and quantification of network signal
strengths were untouched.

Mtibaa et al. designed an emulation testbed to evalu-
ate the potentiality of Serendipity architecture in [12, 35].
The authors showed that, offloading tasks to nearby mobile
devices can save up to 50% execution time and 26% energy
compared to master cloud based execution. However, the
authors did not consider heterogeneous computational
capacities of the nearby devices. Furthermore, the sys-
tem assumed all devices having the same energy level and
number of offloadable tasks was fixed at 50%, which is not
often practical.

The user mobility patterns and its opportunistic contact
rates with nearby devices were taken into consideration for
determining the appropriate devices for offloading by Wang
et. al. in [21]. The authors developed a convex optimiza-
tion technique to determine the amount of computation to
be offloaded to other devices and results showed the effi-
ciency of the algorithm in terms of higher computation suc-
cess rate.

In [13], Mtibaa et. al. provided a generic computation
offloading framework to heterogeneous devices including
master cloud and cloudlets. The framework maximizes the
computational gain with respect to response time, energy
consumption and network lifetime. However, there were no
consideration of execution dependency among the applica-
tion modules, expected data rate and available energy level
of the devices.

Fernando et. al. exploited stealing method [37] on a set
of mobile devices for better load sharing among the worker
nodes in [36]. It was first implemented using Bluetooth
technology and later on Wi-Fi Direct technology [24]. The
model works only for independent tasks and it does not
consider the computing capacity of the devices, resulting
in stealing jobs from weak workers frequently which in turn
causes poor system throughput.

In [38], Habak et al. proposed a dynamic, self-config-
uring and multi-device mobile cloud, named FemtoCloud,
consisting of a cluster of mobile devices coordinated by a
cloudlet. The authors tried to maximize the overall work-
load of the participating devices in the cluster. However, it
didn’t consider signal strength (or data rate) offered by the
devices and their residual energy levels.

Note that all of the above works emphasized on the ben-
efits of MDC technology that distributes computing loads
to other mobile devices. However, none of those consid-
ered the parallel execution of the application modules,
while maintaining the inter-dependencies so as to speed-up
the execution of the application. Furthermore, whether a
target mobile device is reliable for code offloading or not
has not been quantified for its selection. In this work, we
develop code offloading framework for MDC system that
makes a tradeoff in between execution speedup and reliable

execution of codes. The performance is optimized through
selecting devices that are reliable, offer higher computing
capacities, signal strengths and energy levels.

3 � Mobile device cloud architecture

The mobile device cloud (MDC) architecture is comprised
of heterogeneous set of mobile devices including laptops,
smart-phones, palmtops, tabs/pads, wearable devices like
watch, glass, etc. The amount of computation, communica-
tion and storage resources of the devices greatly vary from
each other. Typically, they have small scale computation
and storage capacities that remain idle most of the time on
a large number of devices. These idle computing resources
can be accumulated together to run heavy weight applica-
tions that are not executable on their devices within delay
deadline. In MDC, these idle resources act as small virtual
machines (VMs) for executing codes of nearby users. The
user can configure the VM of his/her device by limiting the
amount of resources (CPU, storage, bandwidth usage, etc.)
to serve applications of other users and to gain benefits.
The amount of resources shared by a device is reconfigur-
able at any point of time and users have complete control
of managing resources of their devices. What follows next,
we present a framework for code offloading in MDC and an
optimal selection method of nearby mobile VM resources
for code offloading.

3.1 � Compute‑intensive code offloading framework

Limited resources of a mobile device restrict it to deliver
the results of an application in time. Application codes
requiring higher computing power, need a great num-
ber of CPU cycles, storage and thus its battery drains out
very fast. However, if the application is partitioned into a
number of modules that are offloadable to nearby mobile
devices, then the execution load gets distributed and com-
pletion time of the application gets reduced. This work is
based on such a collaborative computing architecture, as
shown in Fig. 1. The mobile devices are connected to each
other through Wi-Fi access points (APs).

The proposed architecture has three different tiers. A
device that requires to offload codes to others for faster exe-
cution is known as donee device and it resides in tier one.
The cloudlet and wireless communication infrastructure
that facilitate collaboration are at tier two. At tier three, we
have (donor) devices where the compute-intensive codes
are offloaded for execution. A (donor) device communi-
cates with the cloudlet at tier two and show its interest to
run any compute-intensive applications. The cloudlet col-
lects information of the (donor) devices, makes scheduling
plan and offloads modules of the application in favor of the

	 S. Saha et al.

1 3

donee devices. It also performs the mapping of applica-
tion modules to the VMs of (donor) devices and offloads
accordingly. It acts as a broker by partitioning the applica-
tion into modules, coordinating the distribution of modules
to remote devices and accumulating results obtained from
donor devices. It’s very energy hungry for a donee device
to keep constant communication with all other devices and
thus to decide the code distribution among nearby devices.

The functional components of the proposed compute-
intensive code offloading framework are shown in Fig. 2.
Detailed descriptions for each of the components are given
below.

–	 Global coordinator (GCO) The GCO takes an applica-
tion as input from mobile user and acts as an interface
for other components to communicate with the user. It
also controls and coordinates the functionality of other
system components.

–	 Application profiler (APP) The APP takes the applica-
tion from GCO and partitions it into modules which can
be processed through parallel execution. Based on static
analysis, it determines total number of task modules,
instruction size of each module and inter-dependencies

among these modules. For each module, it creates a
tuple containing module number, instruction size, set
of parent nodes of that module and relative execution
dependencies. The relative dependencies determine
modules that can be executed in parallel so as to mini-
mize the overall execution time of the application. A
rooted tree construction algorithm for determining the
module dependencies is presented in Sect. 3.2.1.

–	 Resource monitoring manager (RMM) The RMM moni-
tors and stores the device specific information that can
be used during module allocation. Specifically, the
RMM stores device ID, signal strength, clock cycle,
available energy, reputation value, present workload and
updates it periodically.

–	 Offloading manager (OFM) The OFM takes informa-
tion from APP and RMM in order to decide which mod-
ules are offloadable and which devices can be selected
for offloading. The OFM determines the optimal map-
ping of individual donor devices to different application
modules. Moreover, the OFM ensures that, no device
will be assigned two modules which can run simultane-
ously, i.e., having zero relative execution dependency.
Detail operation of offloading decision making mecha-
nism is presented in Sect. 3.2.

–	 Task scheduler (TSS) The TSS dispatches the selected
modules to donor devices, and notifies failure(s) of
execution, if any, to RMM so as to reassign a different
donor device.

–	 Fault tolerant manager (FTM) The FTM handles the
operation of the failed modules execution in a prior-
ity basis to continue the intended execution flow of
the modules. It directly communicates with RMM and
selects an available donor device to execute the failed
module so that the execution of the other modules are
not halted.

–	 Reward manager (RWM) The RWM is a global author-
ity that increases or reduces reward of a mobile device
after successful completion or failure of execution of a
task respectively. The reputation is given as a means of
reward that is increased/decreased based on the success-
ful/failed execution of a task. Whenever a new device
wants to get registered, the Resource Monitoring Man-
ager communicates with the RWM to collect and store
the reputation information. Detail procedure of calculat-
ing the reputation values is presented in Sect. 3.2.5.

The critical part of the proposed TESAR architecture is the
identification of parent-child relationship between mod-
ules and mapping donor devices to offloadable modules.
Although we provide a complete architecture for MDC sys-
tem, this work, particularly, focuses on OFM that optimally
assigns computation modules to donor devices. However,
for parallel execution of offloadable modules, identification

Fig. 1   Computation architecture in Mobile Device Cloud

Application
Profiler
(APP)

Task Schedular (TSS)

Reward
Manager
(RWM)Fault Tolerent Manager (FTM)

Resource
Monitoring

Manager
(RMM)

Offloading
Manager
(OFM)

Global Coordinator (GCO)

Fig. 2   Compute-intensive code offloading framework

Tradeoff between execution speedup and reliability for compute‑intensive code offloading…

1 3

of parent-child relationship among the modules is a pre-
requisite. For this reason, the APP executes Algorithm 1,
described in Sect. 3.2.2, to construct a dependency tree
between the modules and then the OFM determines the
optimal assignment of computation modules to donor
devices.

In this work, initial reputation of mobile devices has
been chosen randomly. Moreover, a number of works have
already been carried out to determine the associativity time
of mobile devices [14, 15] and we have adopted [14], since
it exploits historical trace of mobile devices and fairly cap-
tures the MDC environment.

3.2 � Optimization problem formulation

In this subsection, we first define an application model for
compute-intensive MDC system. Then, we determine the
sets of parent and child modules of the application and time

required for executing those locally. After that, we derive
an objective function that will select remote mobile hosts
in such a way that total execution time gets minimized and
reliability of execution in respect of device reputation get
maximized while satisfying a number of constraints.

Table 1 shows the list of notations used in this work.
Binary variable ym,k = {1, 0} is used to indicate that

module m ∈  is executed on device k. Since the appli-
cation contains both local and remote executable tasks, the
total number of modules therefore, can be obtained as,

3.2.1 � Compute‑intensive application model

Each application in MDC system can be considered as a
directed graph G(, e) with  processing modules where
each module performs a specific operation of the applica-
tion. The directed edges between modules form a rooted

(1) = || + ||.

Table 1   List of notations
 Set of modules in the application
 Set of available devices
Π

m
Set of parents of module m

L Set of Leaf nodes
 Set of modules executed Remotely
 Set of modules executed Locally
o

m
Instruction size of offloadable module m ∈ 

u

m
Instruction size of locally executable module m ∈ 


m

Output instruction size of module m ∈ 

�
k

Execution speed of device k ∈ 

 l

m
(o) Local device execution time of module m ∈ 

 l

m
(u) Local device execution time of module m ∈ 

 x

m,k
Remote execution time of module m ∈  in device k ∈ 

 t

m,k
Transmission time of module m ∈  from the cloudlet

 r

m,k
Output reception time of module m ∈  in the cloudlet

u

k
Uplink bandwidth between cloudlet and device k ∈ 

d

k
Downlink bandwidth between cloudlet and device k ∈ 

�x
k

Energy consumption rate of device k ∈  for module execution
�t
k

Energy consumption rate of device k ∈  for input transmission
�r
k

Energy consumption rate of device k ∈  for output reception
x

m,k
Total execution energy of module m ∈  in device k ∈ 

 t

m,k
Total input transmission energy of module m ∈  in device k ∈ 

 r

m,k
Total output transmission energy of module m ∈  in device k ∈ 

Ψ Energy threshold

k

Signal strength of device k ∈ 

� Tolerable signal strength threshold
�
k

Associativity time of device k ∈ 

E
k

Available energy of device k ∈ 

Ω
k

Reputation of device k ∈ 

�
n,m

Percentage of dependency of a child module m ∈  on its parent n ∈ 

	 S. Saha et al.

1 3

tree to define dependencies between modules. This rooted
tree determines execution flow of the application as shown
in Fig. 3. Each edge consists of two weights—o

m
 and m,

the input and output instruction sizes, respectively, of the
module m ∈ . A dependent child module can be exe-
cuted only when output of the parent module is available.
However, all parallel modules can be executed simultane-
ously based on availability of the donor devices.

The execution time of an application is inversely related
with the number of dependency levels since the later
decreases execution parallelism. The total execution time
of the application is the maximum execution time of a sub-
tree including communication delays. In this work, local
and remote executions have been used interchangeably with
donee and donor device executions, respectively.

3.2.2 � Construction of rooted tree of modules

A module n is said to be the parent of another module m if,
there exists a dependency between the execution of mod-
ule m and n that is, module m requires the output from n
at any particular instance of it’s execution. A module may
require outputs form more than one parent modules and
the set of all parent modules of module m is given by Πm.
Again, a module has been considered as leaf, if it has no
child dependent on it. The set of leaf modules is given by
. Algorithm 1 summarizes the steps of determining Πm
and  from the dependency graph G(, e). Here, each ele-
ment of e is a directional edge from parent module to child
module.

3.2.3 � Time required for local execution

Time of execution for the whole application in the local
device is the total time required for the completion of both
local and remote executable modules. Here, time required for
executing module m ∈  is given by,  l

m
(o) =

o
m

�k|k=0
 where,

o
m
 represents the size of module m ∈  and �k represents the

execution speed of device k ∈ ; k = 0 represents the local
device and all the remote devices under the cloudlet takes a
nonzero value of k. Similarly, time required for executing
module m ∈  is represented as,  l

m
(u) =

u
m

�k|k=0
. Therefore,

the total local execution time is obtained from the execution
delay of all local () and remote () executable modules,

3.2.4 � Time estimation for remote execution

To calculate the execution time of offloadable modules at
remote hosts and unoffloadable modules at local device, we
need to consider the time for transmitting the modules, exe-
cute the modules and collect the results back to the cloudlet.
The time for transmitting module m ∈  from the cloudlet
to device k ∈  can be expressed as,

where, d
k
 represents the available bandwidth for data trans-

mission from cloudlet to device k ∈ ; k = 0 again repre-
sents the donee device which executes the unoffloadable

(2) (l) =

||∑

m=1

 l
m
(o) +

||∑

m=1

 l
m
(u).

(3) t
m,k

=

(
u
m

d
k|k=0

+
o
m

d
k|k>0

)
×ym,k,

A

B C

D E

F

S
o
m

Wm

Fig. 3   Dependency tree of the application modules

Tradeoff between execution speedup and reliability for compute‑intensive code offloading…

1 3

modules. Now, the time for execution of module m ∈  in
device k ∈  of MDC can be represented as,

After completion of execution of a module, all devices
including the donee will transmit the result back to the
cloudlet. The time required to send the execution result of
module m ∈  from device k ∈  to cloudlet can be cal-
culated as,

where, m represents the size of results produced after the
execution of module m. Therefore, the total execution time
of module m ∈  in device k ∈  can be obtained as,

Now, for calculating the completion time of a module,
we have summed up the total time required to execute the
module from the beginning of execution of the applica-
tion. This is performed by adding the execution time of the
module ( c

m,k
) with the total completion time of it’s parent

(n(r)|n ∈ Πm). However, a child may not always depends
completely on the result of it’s parents. It may start inde-
pendently and after completion of a certain percentage
of execution it requires the results from it’s parents. This
dependency relation is represented by �n,m. Therefore, the
total completion time of module m ∈  is given by,

The total time required for execution completion of the
application is therefore, the largest time required for com-
pletion among all the leaf modules. The total time required
for execution of the complete application is represented as,

In order to evaluate the completion time of an application
in MDC and compare among different scheduling arrange-
ments, scheduling speedup factor needs to be calculated.
The speedup factor of a scheduling can be represented as,

3.2.5 � Reputation value calculation

For successful execution of offloaded modules reliable
donor selection is a prerequisite. If a low performing or
unreliable donor is selected for execution of a module, it
turns into an unsuccessful execution, increasing response

(4)
x
m,k

=

(
u
m

𝜇k|k=0
+

u
m

𝜇k|k>0

)
×ym,k.

(5) r
m,k

=
m

u
k

×ym,k,

(6)
c
m,k

= 
t
m,k

+ 
x
m,k

+ 
r
m,k

.

(7)m(r) = max ( c

n,k̄
) + 

c
m,k

(1 − 𝜙n,m);∀n ∈ Πm.

(8) (r) = max (m(r));∀m ∈ L.

(9) (f) = 1 −
 (r)

 (l)
.

time and hence deteriorates the overall performance of off-
loading mechanism. Any device may advertise itself as a
first-rate donor with high computing capability whereas its
successful execution rate might be very poor. The reputa-
tion parameter can be used to guard against such unquali-
fied donors. The reputation of a device is calculated as,

where, � is a relative weight parameter and takes value
from the range [0,1]; cm,k is a binary variable having value
1 when, module m ∈  is completed successfully in device
k ∈  and, 0 otherwise. Similarly, binary variable ym,k
is set to 1, if m ∈  is executed on device k ∈ , and 0
otherwise.

While scheduling the offloadable modules of an applica-
tion, reputation of the mobile devices for task execution needs
to be considered. Involving devices with higher reputation
for execution of the modules of an application increases the
execution reliability. Calculation of total reputation for sched-
uling all the modules of an application can be expressed as,

As soon as a registered device comes in contact with a
cloudlet, the RMM communicates with the RWM and
loads reputation value (Ωk) of that device. Whenever execu-
tion of a particular application ends, the RWM calculates
reputation value of all the involved mobile devices. Since
this work mainly focuses on making the offloading decision
optimally, we do not discuss on calculation of reputation
value further in this paper.

3.2.6 � Energy required for remote execution

Since mobile devices suffer from the scarcity of energy, we
need to calculate the total energy that will be required to
offload a module to a donee device. To calculate the total
energy consumed to offload a module, we need to con-
sider the energy required for the transmission and execu-
tion of the module and collection of the result back. Energy
required to transmit module m ∈  from cloudlet to
device k ∈  is given by,

where, �t
k
 represents the energy consumption rate for trans-

mission by device k ∈ . Now, the energy required to exe-
cute module m ∈  in device k ∈  is expressed as,

Similarly, energy required to transmit output of module
m ∈  from device k ∈  to cloudlet is,

(10)Ωk = � × Ωk + (1 − �) ×

∑
m∈ cm,k∑
m∈ ym,k

,

(11)Ωt =
∑

k∈

Ωk × ym,k.

(12)
t
m,k

= 
t
m,k

×�t
k
×ym,k,

(13)
x
m,k

= 
x
m,k

×�x
k
×ym,k.

	 S. Saha et al.

1 3

where, �x
k
 and �r

k
 represents the energy consumption rate

of device k ∈  for execution and result transmission
respectively.

3.2.7 � Optimal selection of mobile server

Now to select the optimal set of remote mobile devices for
the execution of offloadable modules, we need to choose
those devices for which the execution delay of offloadable
and unoffloadable modules gets minimized while total repu-
tation of all the scheduling devices gets maximized. The
objective function for the selection of remote mobile devices
is formulated as,

Here, weight factor � has been used to represent rela-
tive priority between application completion time and
device reputation. The value of � can be determined by the
requirement of the application. Time sensitive applications
can set a higher of � while applications requiring high reli-
ability can choose a lower percentage of �.

Constraints Each module should be executed in a single
device at a time.

The offloadable computation time of the modules through
MDC should be less than local computation time of the
whole application, i.e.,

Participating node signal strength should be greater than a
certain minimum threshold, i.e.,

where, k represents the signal strength of device k ∈ 
which is obtained through simulation process; and, � rep-
resents the threshold value of signal strength that must be
satisfied by a potential donor.

Participating device energy, after execution, should be
greater than a certain minimum threshold, that is,

(14)
r
m,k

= 
r
m,k

×�r
k
×ym,k,

(15)Maximize: { = � ×  (f) + (1 − �) × Ωt}.

(16)
∑

k∈

ym,k = 1;∀m ∈ 

(17) (r) <  (l).

(18)k > 𝛾;∀k ∈ ,

(19)Ek > 
t
m,k

+ 
x
m,k

+ 
r
m,k

+ Ψ;∀k ∈ ,∀m ∈ ,

where, Ψ represents the energy threshold that the donor
devices must hold after the completion of the execution.

During the execution and transmission period, the par-
ticipating devices will be available within the range of the
cloudlet, i.e.,

where, �k represents the associativity time of device k ∈ 
with the cloudlet.

All the unoffloadable modules (m ∈ ) must have to be
executed on the local device

Note that, the objective function of the proposed TESAR
algorithm provided in equation (15) selects those mobile
devices for which total execution time in remote mobile
device cloud is minimum and have the highest previous
reputation of execution. It is a multi-objective mixed inte-
ger linear programming (MILP) problem that has both
combinatorial and continuous constraints. To solve the
MILP problem, the NEOS optimization tool [39] has been
used to find the impact of optimization function param-
eters and the optimal mapping between modules and donor
devices for task allocation and scheduling in TESAR. Two
Intel Xeon E5-2698@2.3 GHz CPU with 192GB RAM has
been used to find the optimal scheduling for an application
containing 12–15 modules and 60–80 mobile devices. Note
that, with the increase of number of modules and availa-
ble mobile devices, real-time solution of TESAR becomes
intractable in a typical cloudlet and thus the problem can be
grouped as NP-complete one [40]. However, the constraints
(16–21) facilitate us to significantly reduce the input sets
in TESAR environment and thus the optimal solution was
found in polynomial time.

4 � Performance evaluation

In this section, we discuss the emulation testbed that is
used to implement the proposed module offloading algo-
rithm TESAR and compare the obtained results with state-
of-the-art works. We compare the performance of TESAR
with the following algorithms:

(20)m(r) < 𝜆k;∀m ∈ ,∀k ∈ ,

(21)ym,k =

{
1, if k = 0

0, otherwise.

Table 2   Device settings Device Model OS Version RAM CPU

Laptop (cloudlet) ASUS ZenBook UX303LN Windows 10 8GB Core i5-5200U 2.20GHz
Cell phone (donee) Sony LT18i Android 4.0.4 512 MB 1.4 GHz Scorpion
Tablet PC (donor) Symphony T8Q Android 4.2.1 1 GB Quad-core 1.2 GHz Cortex A7
Cell phone (donor) Walton Primo X2mini Android 4.2.1 1 GB Quad-core 1.5 GHz Cortex-A7

Tradeoff between execution speedup and reliability for compute‑intensive code offloading…

1 3

•	 OMDC In OMDC [13], the application modules are
assigned to different available donors in a round robin
scheduling order.

•	 Honeybee In Honebee [36], application modules are
scheduled on different donor devices based on avail-
ability in a purely random fashion. If a poor donor was
chosen for a module, the work stealing mechanism is
applied to take out the module (from the poor donor)
and is executed later on a computation rich donor.

•	 Random In this mechanism, the modules are assigned to
different donor devices randomly without considering
the device status.

4.1 � Experimental testbed

To evaluate the performance of our proposed TESAR, an
emulation testbed has been set up by implementing an
Android application on a number of heterogeneous mobile
devices. The cloudlet functionalities are implemented on a
laptop through which all the mobile devices are connected.
The mobile devices and the laptop communicate to each
other via a Wi-Fi access point. Different parameters and
their values used to carry out the emulation are summa-
rized in Table 2.

We consider prime number calculation problem as an
experimental prototype to represent a compute-intensive
application. Generation of prime numbers with a large
range requires a lot of computation. This particular prob-
lem can easily be subdivided into several modules that are
passed through Algorithm 1 to construct the parent-child
dependency tree. Then, we run the objective function on
this set of modules for distributing the execution of mod-
ules on nearby donor devices.

In this experiment, the prime number problem produces
primes between 1 and 300,000, where the complete range
is divided into modules of different size. The number of
modules varies from 4 to 12 according to the need of the
experiment. Total number of available devices were 12
which is also varied for measuring different performance
metrics. First module of the application is always executed
on the donee device. The donee device can execute one or
more modules while the rest of the modules are offloaded
to be executed on the donor devices.

A device must contain a certain percentage of remaining
battery power (�) for self-sustainability and a minimum of
−80 dB signal strength to be a candidate donor. The � is
a system defined parameter and its value can be tuned fol-
lowing the needs of the computing environment and without
loss of generality, we have kept � = 20% in our experiments.
The access point that has been used to connect the mobile
devices with the cloudlet supports IEEE 802.11b/g/n and
can achieve maximum 150 Mbps data rate through different

channels [41]. The value of � has been chosen to be 0.6 to
give emphasis on the execution time. All the experiments
have been conducted for 20 times and the obtained results
are averaged. The local device takes 235 s on an average to
execute the application without offloading.

4.2 � Results and discussion

This subsection provides the experimental result and analy-
sis of our proposed TESAR system with other benchmark

Completion Time

Communication Latency

Rescheduling Overhead

(a)

(b)

(c)

Fig. 4   Impacts of increasing number of modules in an application

	 S. Saha et al.

1 3

solutions. In most of the cases, random allocation method
fails to execute the allocated module as it doesn’t consider
the capability of the donor device and handles failed mod-
ules. The results depict that, the magnitude of transmission
time is negligible compared to completion time. The results
for random allocation are obtained from the successful
completion of application executions only.

4.2.1 � Impact of number of modules in an application

Figure 4 shows the impact of varying the total number of
modules in an application on the performances of the stud-
ied systems. Figure 4a shows that, initially, the total comple-
tion time is decreased significantly with the increasing num-
ber of application modules in all the studied systems. Such

Completion Time

Communication Latency

Rescheduling Overhead

(a)

(b)

(c)

Fig. 5   Impacts of increasing number of donor devices

Completion Time

Communication Latency

Rescheduling Overhead

(a)

(b)

(c)

Fig. 6   Impacts of increasing number of parallel modules

Tradeoff between execution speedup and reliability for compute‑intensive code offloading…

1 3

behavior is theoretically expected as well since the scope of
parallel execution is enhanced with the number of modules.
However, after reaching at a certain level of partitioning (10
modules in the figure), the completion time starts increasing
gradually with the number of modules. This is due to the fact
that, as the number of modules increases, the assignment of
modules to relatively poor donor devices also increases and
communication latency among the interdependent modules
is increased with the same rate. In case of communication
latency (Fig. 4b), with the rise of the number of modules,
transmission time and output reception time increases for
all the approaches. Figure 4c shows the result of reschedul-
ing overhead with the growth of number of modules. As the
number of modules increases, the module size decreases and
hence the rescheduling overhead is also decreased. However,
our TESAR system outperforms all others with respect to
completion time, communication latency and rescheduling
overhead since it selects devices with higher signal strength,
reliability and associativity period.

4.2.2 � Impact of number of devices

With increasing number of devices, the opportunity of
selecting more suitable candidates for code offloading is
enhanced, resulting in better performances in comple-
tion time as well as rescheduling overhead of modules,
as shown in Fig. 5a, c. However, with the increase in the
number of devices, communication latency for code off-
loading is increased gradually (Fig. 5b). Nevertheless,
since TESAR method selects devices with high reputa-
tion, it can avoid rescheduling of application modules to a
large extent and hence it experiences better performance
compared to state-of-the-art offloading algorithms.

4.2.3 � Impact of number of parallel modules

Comparative study among the systems on varying num-
ber of parallel modules is illustrated in Fig. 6. Here, the
number of total modules is fixed at 12, amongst which
the number of parallel modules has been increased from
2 to 10. Fig. 6 shows that, the completion time of the
application decreases gradually with the number of paral-
lel modules. However, computation latency and module
rescheduling overhead rise for higher number of paral-
lel modules. This is caused by increased communication
latency among the higher number of modules. Again, the
likelihood to module rescheduling increases with grow-
ing number of parallel executable modules. However, the
proposed TESAR system considers partial dependency
and it selects optimal devices for code offloading and
hence outperforms compared to other offloading algo-
rithms under study.

4.2.4 � Impact of � value on the performance of TESAR
system

Figure 7 shows performances of the proposed TESAR sys-
tem in terms of completion time of applications with respect
to increasing number of devices and modules for different
values of �. The graph reveals the fact that, the proposed
TESAR system provides the worst completion time for � = 0.
The completion time is decreased with the gradual increase
in � value. This is because, with the increase of �, the algo-
rithm chooses devices having high computational speed and
reasonable reliability. It exhibits the optimal behavior when
� takes the value of 0.6. However, further increase of � value

Fig. 7   Impact of � value on the
performance of TESAR system

secivedforebmungnisaercnIseludomforebmungnisaercnI(a) (b)

	 S. Saha et al.

1 3

starts increasing the completion time again. This is due to the
fact that, much higher value of � forces the system to choose
devices offering reduced reliability, causing a number of
modules experience rescheduling and therefore, completion
time of the application is increased.

5 � Conclusion

In this paper, we have focused on strategies for code
offloading to surrounding mobile devices instead of dis-
tant remote cloud. Offloading decision has been imple-
mented to make a tradeoff between execution speedup
and reliability for compute-intensive applications. The
proposed TESAR system employs cloudlet infrastructure
to coordinate apportion of application into modules and
to distribute on different donor devices for faster execu-
tion. The system outperforms as the best donor devices
are extracted from the set of candidate donors by con-
sidering offered computation speed, reliability, signal
strength and available energy. Simultaneous execution
of parallel modules with most suitable donor device
achieves better result in terms of execution time, com-
munication latency and rescheduling overhead compared
to the state-of-the-art works for varying number of mod-
ules and devices. In future, this work can be extended
further to develop an incentive mechanism for provid-
ing rewards to different donor devices according to their
execution performances. Such kind of incentives might
encourage a mobile device to share its resources and to
act as a donor.

Acknowledgements  Special thanks to the Information and Commu-
nication Technology Department of the Government of Bangladesh
for student fellowship.

References

	 1.	 Conti, M., Mascitti, D., Passarella, A.: Offloading service pro-
visioning on mobile devices in mobile cloud computing envi-
ronments. In: European Conference on Parallel Processing, pp.
299–310. Springer, New York (2015)

	 2.	 http://www.statista.com/topics/1002/mobile-app-usage/. Mobile-
app usage overview. Access Date 10 Feb 2017

	 3.	 Murray, D.G., Yoneki, E., Crowcroft, J., Hand, S.: The case for
crowd computing. In: Proceedings of the Second ACM SIG-
COMM Workshop On Networking, Systems, and Applications
on Mobile Handhelds, pp. 39–44. ACM (2010)

	 4.	 Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Sar-
oiu, S., Chandra, R., Bahl, P.: Maui: making smartphones last
longer with code offload. In: Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services, pp.
49–62. ACM (2010)

	 5.	 Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X., Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading. In: INFOCOM, 2012 Proceedings
IEEE, pp. 945–953. IEEE (2012)

	 6.	 Huang, D., Wang, P., Niyato, D.: A dynamic offloading algo-
rithm for mobile computing. Wirel. Commun. IEEE Trans.
11(6), 1991–1995 (2012)

	 7.	 Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., Chan, A.: A frame-
work for partitioning and execution of data stream applications
in mobile cloud computing. ACM SIGMETRICS Perform. Eval.
Rev. 40(4), 23–32 (2013)

	 8.	 Jia, M., Cao, J., Yang, L.: Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud
computing. In: Computer Communications Workshops (INFO-
COM WKSHPS), 2014 IEEE Conference on IEEE, pp. 352–357
(2014)

	 9.	 Qian, H., Andresen, D.: Extending mobile device’s battery life
by offloading computation to cloud. In: Mobile Software Engi-
neering and Systems (MOBILESoft), 2015 2nd ACM Interna-
tional Conference on, IEEE, pp. 150–151 (2015)

	10.	 Cheng, Z., Li, P., Wang, J., Guo, S.: Just-in-time code offloading
for wearable computing. Emerg. Topics Comput. IEEE Trans.
3(1), 74–83 (2015)

	11.	 Khoda, M.E., Razzaque, M.A., Almogren, A., Hassan, M.M.,
Alamri, A., Alelaiwi, A.: Efficient computation offloading deci-
sion in mobile cloud computing over 5g network. Mob. Netw.
Appl. 21(5), 777–792 (2016)

	12.	 Mtibaa, A., Harras, K., Fahim, A., et al.: Towards computational
offloading in mobile device clouds. In: Cloud Computing Tech-
nology and Science (CloudCom), 2013 IEEE 5th International
Conference, vol. 1, pp. 331–338. IEEE (2013)

	13.	 Mtibaa, A., Harras, K.A., Habak, K., Ammar, M., Zegura, E.W.:
Towards mobile opportunistic computing. In: Cloud Computing
(CLOUD), 2015 IEEE 8th International Conference on IEEE,
pp. 1111–1114 (2015)

	14.	 Li, J., Bu, K., Liu, X., Xiao, B.: ENDA: embracing network
inconsistency for dynamic application offloading in mobile cloud
computing. In: Proceedings of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing, pp. 39–44. ACM (2013)

	15.	 Kulkarni, V., Moro, A., Garbinato, B.: Mobidict: a mobility pre-
diction system leveraging realtime location data streams. In: Pro-
ceedings of the 7th ACM SIGSPATIAL International Workshop
on GeoStreaming, p. 8. ACM (2016)

	16.	 Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case
for vm-based cloudlets in mobile computing. Pervasive Comput.
IEEE 8(4), 14–23 (2009)

	17.	 Jararweh, Y., Tawalbeh, L., Ababneh, F., Dosari, F.: Resource
efficient mobile computing using cloudlet infrastructure. In:
Mobile Ad-hoc and Sensor Networks (MSN), 2013 IEEE Ninth
International Conference on IEEE, pp. 373–377 (2013)

	18.	 Zhang, Y., Niyato, D., Wang, P., Tham, C.-K.: Dynamic offload-
ing algorithm in intermittently connected mobile cloudlet sys-
tems. In: IEEE International Conference on Communications
(ICC), pp. 4190–4195. IEEE (2014)

	19.	 Mahmud, M.R., Afrin, M., Razzaque, M.A., Hassan, M.M.,
Alelaiwi, A., Alrubaian, M.: Maximizing quality of experience
through context-aware mobile application scheduling in cloudlet
infrastructure. Softw. Pract. Exp. 46(11), 1525–1545 (2016)

	20.	 Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user compu-
tation offloading for mobile-edge cloud computing. IEEE/ACM
Trans. Netw. 24(5), 2795–2808 (2016)

	21.	 Wang, C., Li, Y., Jin, D.: Mobility-assisted opportunistic com-
putation offloading. Commun. Lett. IEEE 18(10), 1779–1782
(2014)

http://www.statista.com/topics/1002/mobile-app-usage/

Tradeoff between execution speedup and reliability for compute‑intensive code offloading…

1 3

	22.	 Drolia, U., Martins, R., Tan, J., Chheda, A., Sanghavi, M., Gan-
dhi, R., Narasimhan, P.: The case for mobile edge-clouds. In:
Ubiquitous Intelligence and Computing, 2013 IEEE 10th Inter-
national Conference on and 10th International Conference on
Autonomic and Trusted Computing (UIC/ATC), , pp. 209–215.
IEEE (2013)

	23.	 Bhardwaj, K., Sreepathy, S., Gavrilovska, A., Schwan, K.: Ecc:
edge cloud composites. In: Mobile Cloud Computing, Services,
and Engineering (MobileCloud), 2014 2nd IEEE International
Conference on IEEE, pp. 38–47 (2014)

	24.	 Fernando, N., Loke, S.W., Rahayu, W.: Computing with nearby
mobile devices: a work sharing algorithm for mobile edge-
clouds. IEEE Trans. Cloud Comput. 99, 1–1 (2016)

	25.	 Huerta-Canepa, G., Lee, D.: A virtual cloud computing provider
for mobile devices. In: Proceedings of the 1st ACM Workshop
on Mobile Cloud Computing & Services: Social Networks and
Beyond, p. 6. ACM (2010)

	26.	 Shi, C., Lakafosis, V., Ammar, M.H., Zegura, E.W.: Serendip-
ity: enabling remote computing among intermittently connected
mobile devices. In: Proceedings of the Thirteenth ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Comput-
ing, pp. 145–154. ACM (2012)

	27.	 Shi, C., Ammar, M.H., Zegura, E.W., Naik, M.: Computing in
cirrus clouds: the challenge of intermittent connectivity. In: Pro-
ceedings of the first edition of the MCC workshop on mobile
cloud computing, pp. 23–28. ACM (2012)

	28.	 Barroso, L.A., Hölzle, U.: The case for energy-proportional com-
puting. Computer 40(12), 33–37 (2007)

	29.	 Carroll, A., Heiser, G.: An analysis of power consumption in a
smartphone. In: USENIX Annual Technical Conference, vol. 14.
Boston (2010)

	30.	 Rodríguez, J.M., Mateos, C., Zunino, A.: Are smartphones really
useful for scientific computing? In: International Conference on
Advances in New Technologies, Interactive Interfaces, and Com-
municability, pp. 38–47. Springer, New York (2011)

	31.	 Ren, J., Zhang, Y., Zhang, K., Shen, X.: Exploiting mobile
crowdsourcing for pervasive cloud services: challenges and solu-
tions. IEEE Commun. Mag. 53(3), 98–105 (2015)

	32.	 Saha, S., Habib, M.A., Razzaque, M.A.: Compute intensive code
offloading in mobile device cloud. In: Region 10 Conference
(TENCON), 2016 IEEE, pp. 436–440. IEEE (2016)

	33.	 Chun, B.-G., Maniatis, P.: Augmented smartphone applications
through clone cloud execution. In: Proceedings of the 12th Con-
ference On Hot Topics in Operating Systems, USENIX Associa-
tion, pp. 8 (2009)

	34.	 Marinelli, E.E.: Hyrax: Cloud Computing on Mobile Devices
Using Mapreduce, Citeseer (2009)

	35.	 Fahim, A., Mtibaa, A., Harras, K.A.: Making the case for com-
putational offloading in mobile device clouds. In: Proceedings of
the 19th Annual International Conference on Mobile Computing
& Networking, pp. 203–205. ACM (2013)

	36.	 Fernando, N., Loke, S.W., Rahayu, W.: Honeybee: a program-
ming framework for mobile crowd computing. In: International
Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services, pp. 224–236. Springer, New York
(2012)

	37.	 Fernando, N., Loke, S.W., Rahayu, J.W.: Mobile crowd comput-
ing with work stealing. In: NBiS, pp. 660–665 (2012)

	38.	 Habak, K., Ammar, M., Harras, K.A., Zegura, E.: Femto clouds:
Leveraging mobile devices to provide cloud service at the edge.
In: 2015 IEEE 8th International Conference on Cloud Comput-
ing, pp. 9–16 . IEEE (2015)

	39.	 http://www.neos-server.org/neos/N. optimization server. Access
Date: 10 Feb 2017

	40.	 Hassan, M.M., Song, B., Hossain, M.S., Alamri, A., Alnuem,
M.A., Monowar, M.M., Hossain, M.A.: Efficient virtual machine
resource management for media cloud computing. TIIS 8(5),
1567–1587 (2014)

	41.	 http://www.tp-link.com.bd/products/details/cat-15-TD-W8901N.
htmlTP-Link TD-W8901N Wireless Router Specification.
Access Date: 10 Feb 2017

http://www.neos-server.org/neos/N
http://www.tp-link.com.bd/products/details/cat-15-TD-W8901N.htmlTP-Link%20TD-W8901N
http://www.tp-link.com.bd/products/details/cat-15-TD-W8901N.htmlTP-Link%20TD-W8901N

	Tradeoff between execution speedup and reliability for compute-intensive code offloading in mobile device cloud
	Abstract
	1 Introduction
	2 Related works
	3 Mobile device cloud architecture
	3.1 Compute-intensive code offloading framework
	3.2 Optimization problem formulation
	3.2.1 Compute-intensive application model
	3.2.2 Construction of rooted tree of modules
	3.2.3 Time required for local execution
	3.2.4 Time estimation for remote execution
	3.2.5 Reputation value calculation
	3.2.6 Energy required for remote execution
	3.2.7 Optimal selection of mobile server

	4 Performance evaluation
	4.1 Experimental testbed
	4.2 Results and discussion
	4.2.1 Impact of number of modules in an application
	4.2.2 Impact of number of devices
	4.2.3 Impact of number of parallel modules
	4.2.4 Impact of value on the performance of TESAR system

	5 Conclusion
	Acknowledgements
	References

