
Saja Mohammad Hussein- PH.D ، Professor
- University of Baghdad/ college of administration and economics
Saja Mohammad Hussein
- PH.D ، Professor
- University of Baghdad/ college of administration and economics
About
57
Publications
5,560
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
24
Citations
Introduction
Current institution
University of Baghdad/ college of administration and economics
Publications
Publications (57)
في البيانات ذات الأبعاد العالية هناك مشكلة عدم معرفة اختيار المتغيرات ذات الاهمية لذلك يعد أداء التصنيف معياراً مهماً لمعرفة اهم المتغيرات الداخلة في النموذج حيث يلخص هذا البحث اداء تصنيف متغير الاستجابة للبيانات عالية الابعاد من خلال تطبيق اوزان مختلفة للاسو مع الوزن المقترح من قبل الباحث مع انموذج الانحدار اللوجستي الجزائي وتم تطبيق هذه الازوان ع...
In this research, the covariance estimates were used to estimate the population mean in the stratified random sampling, and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating...
In this research, discrete regression estimators were presented to estimate the population mean in stratified random sampling through the MSE comparison standard. In addition, these estimations were compared with the classical estimators using the efficiency criterion (RE).The method estimator (OLS) is effective because it takes into account covari...
A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing...
Abstract:
The method of selecting or designing the sample may be expensive or take a long time in some studies. And with the existence of the relationship between the main and auxiliary variables, which can employ in the process of selecting sampling units through the possibility of ranking for the auxiliary variable at the lowest possible cost. Ra...
In this paper, we used the traditional method (GLS, OLS), and the three robust methods (M-Estimations, S-Estimations and MM-Estimations). In estimating the parameters of the seemingly unrelated regression model, to study the profitability of three Iraqi commercial banks, for a real data set for the time (2002-2020). The study shows that the use of...
This study presents a proposal to estimate the finite population's mean of the main variable by median ranked set sampling through the generalized ratio-cum-product type exponential estimator. The relative bias , mean squared error and percentage relative efficiencies of the proposed estimator is obtained to the first degree of approximation. The p...
With the advance of technology, the collection and storage of data have become routine. Huge amounts of data are increasingly produced from biology, meteorology, psychology, chemistry, and economics experiments. As technology progresses, these high-dimension problems are becoming more and more common. The "large p, small n" problem, in which there...
In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to...
In this study, we present a proposal aimed at estimating the finite population's mean of the main variable by stratification rank set sample S t RSS through the modification made to generalized ratio-cum-product type exponential estimator. The relative bias PRB, Mean Squared Error Mse and percentage relative efficiencies PRE of the proposed modifie...
Linear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inacc...
Abstract:
In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers and
given the appearance of these two problems together and their bad effect on the
estimation, some of the researchers found new methods to address these two
problems together at the same time. In th...
In This Paper, some semi- parametric spatial models were estimated, these
models are, the semi – parametric spatial error model (SPSEM), which suffer
from the problem of spatial errors dependence, and the semi – parametric
spatial auto regressive model (SPSAR). Where the method of maximum
likelihood was used in estimating the parameter of spatial e...
In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part...
SPSEM يعاني والذي) لتقدير األعظم اإلمكان طريقة استعمال تم إذ التقدير، طرائق بعض باستعمال المكانية األخطاء ارتباطات مشكلة من معل المكاني الخطاء مة (λ) ألنموذج (SPSEM) التمهيد دالة لتقدير المعلمية وطرائق m(X) الطرائق هذه ومن كيرنل دالة باستعمال الموضعي الخطي للمقدر المرحلتين...
This study examined a study and analysis of data characterized by spatial reliability of observational units and to deal with spatial dependency. A semi-parametric spatial selfregression error model (SPSEM) that suffers from the problem of spatial error
correlations using some estimation methods was used, as the greatest possible method was used to...
وتم في البحث دراسة وتحليل كل عام من العامين على مستوى المحافظات والفئات العمرية والمستوى التعليمي للام والجنس والمنطقة لمؤشر الهزال, باستخدام تحليل التباين باتجاه واحد لمقارنة اكثر من متوسطين واختبار T لمقارنة متوسطين .كما تم اجراء المقارنة بين العامين لهذا المؤشر باستعمال اختبار الفرق بين نسبتين لاختبار الفروق بين نسبة الاصابة بـ( الهزال والهزال ا...
المستخلص
يعد العراق من البلدان التي تعاني من مشكلة البطالة وتعتبر البطالة من اشد المخاطر التي تهدد استقرار و تماسك المجتمعات ، و ليس بخاف أن أسبابها تختلف من مجتمع لآخر، و حتى أنها تتباين داخل نفس المجتمع من منطقة لأخرى. هناك بعض المسوحات المتخصصة وغير المتخصصة التي اجراها الجهاز المركزي للأحصاء اصدر في تقارير عن مؤشرات البطالة وكانت دراسات عدة في...
ان دراسة ظاهرة البطالة والعوامل ذات التاثير الاكبر باتجاه سلوكها والمؤثرة فيها من الامور المهمة للعراق الذي يهدف الى التقليل من حدتها في المجتمع .تمت الاستعانه ببيانات المسح الاجتماعي والاقتصادي للاسرة في العراق IHSESII)) الذي نفذ خلال السنتين( 2007و2012) للوصول الى المتغيرات الاجتماعية والاقتصادية واسباب عدم العمل التي تؤثر في انتشار ظاهرة البطالة...
اهتم البحث بمقارنة حالة التقزم ونقص الوزن لاطفال العراق (دون سن الخامسة)للعامين 2006 و2011 من خلال بعض الاساليب الاحصائية كاختبار t للمقارنة بين متوسطين وتحليل التباين باتجاه واحد للمقارنة بين اكثر من متوسطين لمؤشرات المحافظات والفئات العمرية والمستوى التعليمي للام والجنس والمنطقة. وتم استعمال اختبار الفرق بين نسبتين(لحالات التقزم ونقص الوزن) للمقا...
ويهتم البحث في مقارنة الحالة التغذوية لاطفال العراق(دون سن خمس سنوات ) للعامين , 2006 و2011 من خلال دراسة بعض العوامل المؤثرة على الحالة التغذوية للاطفال باستعمال اسلوب التحليل العاملي حيث تم استعمال تحليل المركبات الرئيسية لاستخلاص العوامل الاكثر تفسيرا للحالة التغذوية , وكانت النتائج تشير الى ان العوامل الاكثر تفسرا للظاهرة هي تقريبا متماثلة للعا...
تخصص بالطرائق اللامعلمية للبيانات العنقودية
Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which con...
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group. In this research, I estimate the reliability function of cluster function by using the seemingly unrelated Ker...
We propose grafting the maximum likelihood estimator (ML)for logit model into the mixed estimator (ME) and stochastic restricted ridge regression estimator (SRRR) for a linear model. To obtain estimators that can apply to models in which the dependent variable is binary in the presence of multicollinearity problem in the case of the heteroscedastic...
In this article we proposed new estimators namely, Almost Unbiased Jackknifed Generalized Liu Estimator (AUJGLE)and Almost Unbiased Modified Jackknifed Generalized Liu Estimator(AUMJGLE) for Multiple linear regression , it was studied the efficiency of the proposed estimators by simulating experiment and comparing the proposed estimators with some...
The emergence of the problem of complete multicollinearity in the explanatory variables of the multivariate linear regression model makes it difficult to apply classical methods such as the (OLS) method because it gives inaccurate results. To address such a problem, other methods are used, including Partial Least Squares (PLS).
However, this method...
ان ظهور مشكلة التعدد الخطي التام في المتغيرات التوضيحية لنموذج الانحدارالخطي المتعدد المتغيرات يجعل من الصعوبة تطبيق الطرائق الكلاسيكية مثل طريقة (ols ) لانها تعطي نتائج غير دقيقة ولمعالجة مثل هذه المشكلة تستعمل طرائق اخرى منها المربعات الصغرى الجزئية (pls) .الا ان هذه الطريقة تكون حساسة تجاه القيم الشاذه ان وجدت في مجموعة البيانات لذا فمن المستحسن...
Abstract
The estimate the parameters of the General linear model, which suffers from a breach in one of the assumptions which is semi multicollinearity between the explanatory variables be using methods of estimating generalized Ridge regression which it will focus our attention in this research such as Generalized Ridge Regression Estimator (GRRE)...
The Multicollinearity problem has currently became known by many researchers and knowledge of the statistical effects on parameters of the multiple linear regression model. In a simple case this problem causes to move away the estimate of parameters in the regression model that he scientific capabilities that desired in interpretation of the phenom...
الخلاصه :
البحث يهدف الى قياس وتقييم كفاءة الاستاذ الجامعي المتمثل بأساتذة قسم الاحصاء / كلية الادارة والاقتصاد من خلال استمارة التقييم المعتمدة من قبل جامعة بغداد والدرجات التي حصلوا عليها ولحملة لقب أستاذ وأستاذ مساعد ومدرس وتم توحيد فقرات الاستبيان ودرجاتهم ,وقد أستخدمت اساليب احصائيه مختلفه لغرض تحقيق الاهداف الخاصه بالبحث منها ,العرض الوصفي لل...
The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinar...
The regression analysis of multivariate is statistical technique task clarify the relationship between variable adopted (variables response), and the independent variables (predictive), In the case of several variables predictive will show us the problem of multicollinearity In this case, we cannot apply classic methods , such as ordinary least squ...