
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

249 | P a g e

www.ijacsa.thesai.org

A Comparative Analysis of Quality Assurance of

Mobile Applications using Automated Testing Tools

Haneen Anjum

Department of CS & SE,

International Islamic University,

Islamabad, Pakistan

Muhammad Imran Babar

Army Public College of

Management & Sciences, Pakistan

Corresponding Author

Muhammad Jehanzeb

Army Public College of

Management & Sciences,

Pakistan

Maham Khan

Department of CS & SE,

International Islamic University,

Islamabad, Pakistan

Saima Chaudhry

Department of CS & SE,

International Islamic University,

Islamabad, Pakistan

Summiyah Sultana

Department of CS & SE,

International Islamic University,

Islamabad, Pakistan

Zainab Shahid

Department of CS & SE,

International Islamic University,

Islamabad, Pakistan

Furkh Zeshan

Department of CS, COMSATS,

Lahore,

Pakistan

Shahid Nazir Bhatti

Department of SE, Bahria

University, Islamabad,

Pakistan

Abstract—Use of mobile applications are trending these days

due to adoption of handheld mobile devices with operating

systems such as Android, iOS and Windows. Delivering quality

mobile apps is as important as in any other web or desktop

application. Simplification and ease of quality assurance or

evaluation in mobile devices is achieved by using automated

testing tools. These tools have been evaluated for their features,

platforms, code coverage, and efficiency. However, they have not

been evaluated and compared to each other for different quality

attributes they can enhance in the apps under test. This research

study aims to evaluate different testing tools focusing on

identifying quality factors they aid to achieve in the apps under

test. Furthermore, it aims to measure overall trends of essential

quality factors achieved using automated testing tools. The

findings of this study are beneficial to the practitioners and

researchers. The practitioners need to look up for specific tools

which aid them to assure the desired quality factors in the apps

under test. The researchers may base their studies on the findings

of this study to propose solutions or revise existing tools in order

to achieve maximum number of critical quality attributes in the

app under test. This study revealed that the trend of automated

testing is high on usability, correctness and robustness.

Moreover, the trend is average on testability and performance.

However, for assurance of extensibility, maintainability,

scalability, and platform compatibility, only a few tools are

available.

 Keywords—Mobile application; quality assurance; automated

testing; testing tools

I. INTRODUCTION

Software testing enables the software testers to detect
defects in the software and remove them to ultimately achieve
improved software quality. Recently software testing became
wide-spread and critical among software development
companies. Software testing can be performed either manually

or automatically. Manual testing is to manually write the test
cases and executing them without using any tool. In manual
testing a tester performs the testing through carefully
navigating through the different interfaces of the system under
test, testing with different values of inputs, recording and
comparing the observed results with the expected results of the
tests.

Automated testing is done with the help of an automated
testing tool. The automated testing tool provides a computer-
controlled testing rather than manually. The testing tool
executes the test cases to test the performance and functionality
of the software under test. The aim of automated testing is to
reduce the required human effort as in manual testing but it
does not remove the need of manual testing at all [1]. Mobile
platforms are being adopted worldwide because of a variety of
software being offered to users in those handheld and portable
devices. Testing is being used as a quality assurance technique
for mobile apps too [2].

Several tools are proposed and implemented for this
purpose. These tools have already been already been evaluated
and compared for their unique features, supported platforms,
code coverage, and efficiency. However, existing automated
testing tools of mobile applications have not been evaluated
and compared for different quality attributes they can enhance
in apps under test. Therefore, two research objectives are
formulated for this study that is: 1) to evaluate different testing
tools of mobile apps focusing on identifying quality factors
they aid to achieve in the apps under test; 2) to measure overall
trends of essential quality factors achieved in the mobile apps
under test using automated testing tools. In this paper, we have
evaluated and compared automated testing tools for adding or
enhancing valuable quality factors in mobile applications under
test. The findings and result of this study are beneficial to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

250 | P a g e

www.ijacsa.thesai.org

practitioners as well as the researchers. The list of quality
factors to be achieved varies among apps. The testing of
different apps requires selection of different tools. Therefore,
the practitioners may need to look up for tools which aid them
to assure the desired quality factors in a particular App Under
Test (AUT). The researchers who are interested in proposing
the tools and techniques for testing of mobile apps may need to
consider the quality factors highlighted in this study. Moreover,
they can begin their own research study on the basis of these
tools to propose merged, revised and enhanced solutions for
achieving the maximum number of quality attributes in the
AUT.

The rest of this paper is structured as follows: Section 2
gives a comprehensive knowledge about the background
concepts of manual and automated software testing. Section 3
describes methodology that we used to achieve our research
objectives. Section 4 presents description of a number of
automated testing tools for mobile applications. Section 5
presents comparative study. Section 6 presents our findings and
discussion. Finally, Section 7 concludes the paper.

II. BACKGROUND

Success of any software product is determined by the
quality of that software. This gives software quality assurance
a great opportunity in software industry and customer
satisfaction drives it. To develop a product of good quality and
without any defects within the cost and time constraints have
become critical. Implementing such products, with minimum or
no bugs is a difficult task. This is the reason that the concept of
software testing has got its existence [3]. In software industry,
testing of software has become an extensive and vital phase of
SDLC. It also provides final evaluation of other activities such
as requirements specification, software design, and coding [4].

Software testing is an activity, which is performed to
evaluate correctness and functionality of software for assuring
fulfillment of user requirements and expected quality [5]. IEEE
defines software testing as the process to evaluate the system or
its components manually or by automated means to determine
whether it fulfills the user requirements or to find the difference
among actual result and expected result [6]. Hence, the
software testing is to execute a software to identify defects or
any missing features that were expected by the user
requirements. Software testing results in improved quality and
effectiveness of the software system, if it is executed
appropriately. Detecting the defects in a software and removing
those defects before the release of software leads to reduced
maintenance cost.

All the activities of software testing can be conducted by
two means: automated testing and manual testing. Manual
testing is the fundamental software testing. It is conducted
manually through moving about in the software application. A
test plan or test cases are followed for manual testing. Test
cases describe the complete test scenario in terms of actions to
be performed during testing. On the other hand, in automated
testing, the testing is conducted through some testing tool
without the navigating through the different parts of the
application manually.

Initially, manual testing was only performed. Because of
human error, few defects may be ignored or unidentified
through manual testing. So, through manual testing better
quality of a software system cannot be ensured. To overcome
this lack in manual testing, automated testing has evolved. The
automated testing is helpful in quicker testing process. Recently
automated testing got more attention and many testers prefer to
use automated testing for the variety of software systems [7].
The basic element behind automated testing is the automated
testing tool that is used to conduct the tests.

A. Software Testing

Normally software testing is considered as an activity for
detection of defects whereas there are different reasons behind
conduction of software testing. Improved software quality is
one of the major reasons. Software quality is improved by
ensuring that the software product fulfils the user requirements
and expectations. Smooth functioning of the software system
can be ensured through testing. The software developing
industries spend most of their time and cost on software testing
during the SDLC [8]. If the testing is done early in the SDLC to
prevent the occurrence of defects, it reduces the time and cost
spent whereas, if the defects are detected in later stages, then
the time to market and cost rises significantly. Therefore,
performing testing throughout the SDLC is a better practice to
detect the defects of the software. It is less expensive to remove
the defects earlier, even before the release of the software [9].

Software testing aims to evaluate the capabilities of an
application or the software and verify that it fulfils the quality
principles such as reliability, portability, efficiency, security,
usability, etc. Through testing all these principles should also
be verified and ensured [10]. There are two main objectives of
software testing. First, the detection of errors or defects.
Second, preventing the number of occurrences of defects in the
software system, that results in overall improved efficiency of
the system.

B. Manual Software Testing

Manual testing is the simplest level of testing in which the
tests are executed as per test cases and by directly interacting
with the software. In this testing, the tester prepares the test
cases. Test cases, are the explanations of the features and the
expected results of the software under test, and are written in
simple natural language. The process of manual testing
becomes too much time-taking as it requires all the activities to
be performed manually. Though, manual testing is preferred in
case of some complex systems where a few critical defects can
only be discovered while testing manually. During manual
testing the tester interacts with the system under test as the end
user of that software would, and ensures the effectiveness of
the system by navigating through the software [11]. Manual
testing have the following drawbacks [12]:

 Time-taking

 Requires more testers

 Less accurate results

 Testing multiple features in parallel, not possible

 Lack of reusability of tests

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

251 | P a g e

www.ijacsa.thesai.org

 Lack of test completeness.

C. Automated Software Testing

As the automated software testing got popular in software
industries, the testing process become more effective.
Automated software testing helps in easily executing various
tests like performance testing and regression testing. The
difficult testing activities got easier than before, as the
automated testing evolved and improved, because it conducts
the test for various datasets and the tests can be executed
repeatedly without human involvement [1]. Automated
software testing requires a little primary investment for the
software but that doesn‟t have much economical effect as it
results in reduced human efforts required for testing [13]. The
automated software testing can be performed in various phases:
preparation of test plan or developing the test cases, selecting
the testing tool, creation of the test script and finally executing
the test by using the automated testing tool and the script.

The main objective of automating software testing is to
reduce the testing effort, time and cost. Testing automation
results in improved efficiency, whereas reduction in human
involvement in testing process. Automated testing supports the
reusability of test scripts, using the testing tool, for different
upgrades of the system under test [1]. Automated software
testing simplifies the testing process and results in reduced
maintenance cost of the software [10]. Automated testing has
the following benefits [7]:

 Simplified regression testing

 Tests are repeatable and reusable

 Reduces time and cost

 Performance testing is possible due to simultaneous
testing.

Automated testing has the following drawbacks [12]:

 It is more expensive

 All areas cannot be automated

 Manual testing cannot be fully discarded.

D. Manual vs Automated Software Testing

Table 1 illustrates the differences between manual and
automated software testing [1], [7], [12].

III. METHODOLOGY

For mobile applications, nine essential software quality
factors, as described in Table 2, are selected. These factors are
the most significant quality attributes not only in software and
web based applications, but also the mobile apps must conform
to these quality requirements. Firstly, all industry-dominant
and proposed mobile apps testing tools are identified from
existing literature from 2010 to 2017. Secondly, each of these
tools is studied in order to extract its features. Thirdly, for each
tool, the quality factors it may aid to achieve in AUT are
derived on the basis of its features and characteristics. All the
derived and implied quality factors for each tool form a subset
of the set of factors mentioned in Table 2. The tools are
compared on the basis of their quality factors in Section 5.
Moreover, for each tool, the derivation of the quality factors is
also justified based on its features and characteristics. The
summarized results of this comparative study are presented
graphically in Section 6 to show an overall trend of quality
factors achieved using automated testing.

TABLE. I. DIFFERENCES BETWEEN MANUAL AND AUTOMATED SOFTWARE TESTING

Manual Testing Automated Testing

1. Time Consuming Time Efficient

2. More human effort is required. One-time human effort for creating the test scripts is enough.

3. Not accurate, due to room for human errors More accuracy as less space for human error

4. Test cases cannot be reused Supports reusability of test cases

5. More effective for functional testing and exploratory testing Effective for regression testing, load testing & performance testing

6. Reduced short term cost (no automated testing tool is

required) while increased long term cost (maintenance).

Increased short term cost (automated testing tool) while reduced long term cost

(maintenance).

TABLE. II. SOFTWARE QUALITY FACTORS FOR COMPARATIVE ANALYSIS

Software Quality Factors Description

Extensibility
Ability of software components to be added, modified and removed easily without badly effecting existing

system. Flexibility is its category focused on ability of components to be added easily.

Maintainability
Maintainability is ability to make change for error corrections, supported by defined interfaces,

documentations, comments in code.

Performance Performance is related to acceptable response time.

Scalability Ability to respond in an acceptable time in increased load or stress.

Robustness
Robustness is the ability of software to keep working and remain available in failure states by backup

plans, data and hardware.

Usability Usability is the ability of user to easily interact with the system using the user interface.

Platform compatibility Software should run on several platforms like operating systems, browsers etc.

Testability Testability refers to maximum and efficient code coverage by testing.

Correctness Correctness is software should conform to with requirements or specifications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

252 | P a g e

www.ijacsa.thesai.org

IV. AUTOMATED TESTING TOOLS FOR MOBILE

APPLICATIONS

In Software Development, Mobile Applications
Development is a prominent area which is emerging rapidly.
Therefore, testing also becomes significant in this area. Many
tools are available for supporting different types and levels of
testing in platforms like Android and iOS [14]. Following are
some noteworthy tools that are being used in Software industry
for their strong testing support for mobile apps. Robotium is
one of the UI automation frameworks used for android systems.
It is available free of cost in the market and can be used by
enterprises and individuals as well. It assists the test case
developers in writing functional, acceptance and system test
scenarios, spanning a range of android activities. It is a Java
based tool while JUnit test framework is a part of it as well. It
is made to make it easy for test case developers to write robust
and powerful automatic black box test cases. This tool cannot
be used for Web or Flash apps [14].

Renorex is a testing tool and framework that supports the
scriptless way of working and coding capabilities. This tool is
mainly used for GUI supports in mobile and web apps. It offers
a fast and intuitive way to write test cases as functions used in
SUT. It gives some extra ability for creation of a robust
regression testing. It supports cross browser testing too. The
Renorex studio IDE delivers a feature „click and go Function‟
in order to ensure the reusability of test actions and various UI
element with the team of technical skill levels [12]. Appium is
another cross-platform testing tool that allows test case
developers to write test for multiple platforms such as iOS and
android, using a single API. It enables code to be reused among
iOS and android test suites. It is an open source tool used for
web app and hybrid application of automating native mobile on
both the iOS and android platforms, where the native apps can
be written using android SDK or iOS [14].

MonkeyTalk is an open source tool used for functional
testing. It is simple to use and powerful tool for testing mobile
applications. This tool works with a range of real devices and
emulators. It tests from a simple „smoke test‟ to the
sophisticated test suites such as data driven test suites. The tests
are created for iOS and android if the parameterized tests are
used. MonkeyTalk IDE is an eclipse based tool for recording,
playing, editing and managing the functional test suites for iOS
and Android applications that runs on emulators, simulators
and devices [14]. UIAutomator is one of the testing

frameworks provided by Google‟s Android. The tests run by
this framework ensures an application to meet the functional
requirements and it achieves a fine standard quality so that it
can be successfully adopted by android users. It allows to run
the tests reliable, fast, and repeatable manner [14].

Reran is a record and replay tool for smartphones that have
Android operating system. It captures input event sent from the
phone to the OS of a user session and after that allows the
sequence of events to be sent into the phone programmatically
at high level. Reran captures the low level events and replays
them that are triggered on the phone, which allows it to capture
and playback GUI events such as touchscreen gestures, and
input sensors on device [15]. EvoDroid is used to test system of
Android apps. It combines two techniques 1) to identify parts
of the code open to be searched independently an android-
specific program analysis; 2) an algorithm performs search step
by step under the given info. Its main goal is to look for test
cases that amplify code coverage [16]. MobiGUITAR models
the state of the app‟s GUI, which helps us more accurately
model mobile apps‟ state-sensitive behaviour. On the basis of
state machine, it makes new test adequacy criteria. This test
generation technique uses the models and criteria to generate
test cases automatically. It delivers fully automatic testing that
works on security policies of smartphone platforms [2].

Dynodroid automatically generates inputs to Android apps.
It is capable of generating both UI inputs (e.g., touchscreen taps
and gestures) and system inputs (e.g., simulating incoming
SMS messages). It allows interleaving inputs from machine
and human. Through a sequence of events it interacts with its
environment. Dynodroid is an observe-select-execute cycle, it
observes which events are important to current state, selects
those events, and execute those events to make a new state in
which it repeats this process [17]. FSMdroid is a guided
approach to GUI testing of Android apps. Its basic idea is to
1) construct an initial stochastic model for the app under test;
2) iteratively mutate the stochastic model and derive tests.
Compared with the traditional model-based testing approaches,
it enhances the diversity of test sequences by 85%, but reduces
the number of them by 54%. It first uses static analysis to
identify UI events which can be missed during dynamic
analysis [18]. Table 3 summarizes general information about
above testing tools i.e. their support for testing types or levels,
platform. According to Table 3, 90% of the tools support
automated testing of Android apps. However, 20% of the tools
support testing of the iOS apps.

TABLE. III. AUTOMATED MOBILE APPLICATIONS TESTING TOOL

Testing Tool Testing Type Platform

Dynodroid Event driven testing Android

Evodroid System testing Android

FSM Droid GUI testing Android

MobiGUITAR GUI testing Android

Renorax Compatibility testing C#, Python, VB.net

Reran GUI, system, stress, and security testing Android

Robotium GUI, system, functional, and acceptance testing Android

Appium GUI and functional testing Android, IOS

MonkeyTalk Compatibility and functional testing Android, IOS

UIAutomator Functional and GUI testing Android

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

253 | P a g e

www.ijacsa.thesai.org

V. COMPARATIVE ANALYSIS OF SOFTWARE

TESTING TOOLS

The purpose of testing is to ensure that software meets its
functional requirements and it is of desired or standard quality
so that it is accepted and adopted by the user for its intended
use [14]. Aforementioned tools are proficient in one or more
from functional testing, system testing, code coverage and user
interface testing, etc. of mobile applications. This section
presents their comparative analysis on the basis of quality
factors from Table 2 they test and thus enhance in mobile apps
under test.

Dynodroid smartly plays the role of user of mobile app
under test by generating input events automatically [17], thus
giving an illusion of actual interaction of user with the
application in expected environment. For each auto generated
user event, this tool observes reaction of the application to
further generate next possible event that could be performed by
the user [17]. This proficiency makes Dynodroid fit for
evaluating mobile applications for their usability. The test
reports can help front-end developers to improve usability by
reshaping the possible interaction with user while still fulfilling
his needs. Furthermore, it allows tester‟s intervention at any
stage for entering relevant and intelligent input in any sequence
of events [17] to evaluate correctness of application. Results of
these customized tests reveal the level of correctness achieved
in application so that further conformance to requirements can
be achieved. Studies have proved that this tool also finds bugs
[17] that may crash the application, which are corrected by
developers. Thus, this tool contributes to reliability and
robustness of solution just tested. If the promised percentage of
source code is covered under tests [17], then it shows that the
testability of software is achieved. If there is less source code
coverage, then the application has not attained the quality
factor of testability.

Evodroid aims to perform system testing of mobile
applications [16]. System testing exercises application for its
overall behaviour to check correctness, so as to state that
application fits for its intended user. It offers much higher code
coverage [16] which can easily evaluate testability in an
application. Despite of higher coverage of code being offered,
if not a good percentage of code is being covered, then the
application‟s design must be modified to reduce testing effort.
So, in complicated solutions, other quality factors like
correctness, robustness, maintainability, etc. can be evaluated
after deployment also. Evodroid effectively provides features
of deploying, maintaining, and enhancing mobile applications
[16]. Thus, it adds to correctness, flexibility, and
maintainability of apps by following its methods and tips of
utilizing these features. FSMDroid focuses on Graphical User
Interface (GUI) testing [18]. GUI is the interaction point
between user and system. When GUI is tested for prompting
input, displaying output and scenarios of erroneous inputs from
user, it ultimately gives good evaluation of usability and
accessibility of application‟s features under test. It also
evaluates testability as it also offers high coverage of code [18].
It also reveals fatal bugs in code [18], which must be solved
with proper handling of exceptional error scenarios in code. In
this way, it contributes to robustness of application under test.
It helps to make GUI models which consume minimum events

[18], thus improving performance of application by avoiding
duplication and complex GUI events sequences.

MobiGUITAR helps to model state of an application‟s GUI
to test behaviour at a particular sensitive state of GUI [2]. This
feature lets testers monitor correctness of an application by
mapping response or behaviour with GUI events and states.
This tool is proficient in finding concurrency error [2] that may
lead to severe concurrency issues, fatal errors, and crashes. It
highlights other logical errors [2] too. All these errors are fixed
for achieving robustness, fault tolerance and reliability in
application being tested. It adds to testability also by its
acceptable code coverage [2]. Renorax performs platform
compatibility testing [12] which assures that the software is of
good quality in terms of its diverse usage on a variety of
famous platforms and configurations like operating systems,
browsers, web programming languages, etc. It also adds
features for supporting further addition and enhancement [12]
thus adding flexibility factor for easy maintenance and updates
of the software.

Reran tests applications which take user inputs from device
sensors and sophisticated GUI operations [15] like zoom, tap,
swipe, etc. Reran evaluates the usability of application with all
complex application and system level events from rich controls
of GUI and sensors. Such application should perform with
greater accuracy and precision of time [15] due to sudden
inputs from sensors. Reran evaluates the performance and
efficiency of application by its strong testing support. Bugs
indicated during debugging [15] and test results are corrected
by developers which ultimately adds to correctness,
performance and robustness of the application under test. It
also performs stress testing [15] which evaluates the scalability
of application for achieving optimum quality under stress or
load conditions. It also catches security related bugs caught
after invalid user inputs or malicious plugins [15] to give clues
to developers to not leave any vulnerability and make the app
and its data secure.

Robotium also supports a good evaluation of usability by
performing tests on rich GUI controls of a touch screen mobile
device [14]. Test results of function, system and acceptance
testing [14] on Robotium allows developers to improve
correctness and performance of applications to an optimum
level. Appium focuses on testing interaction of user with the
content of mobile web applications. Automated test cases are
configurable with Safari and Chrome web browsers [14]. Test
results are used to evaluate correctness and user experience
with the mobile web application in terms of usability or
accessibility of the features.

If an application is platform independent or cross-platform,
it means it is applicable for a diverse use on different operating
systems. It is a plus point to check quality factor of platform
compatibility. MonkeyTalk serves this purpose to perform tests
for mobile application‟s compatibility with iOS and Android by
offering cross platform testing [14]. It creates test scripts to
perform functionality tests against action of each user interface
event or command [14]. UIAutomator ensures that mobile app
under test is a quality app considering factors of correctness
and usability by performing UI functional testing. It automates
user test cases to reflect user experience and correctness of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

254 | P a g e

www.ijacsa.thesai.org

behaviour against input entry and events in asynchronous GUIs
like dialogs, alerts, etc. also. This tool is proficient in
automating functional UI tests even on two or more devices.
[14]

VI. FINDINGS AND DISCUSSIONS

According to Table 4, Evodroid and Renorax aid to achieve
quality factors „extensibility‟ and „maintainability‟.
„Performance‟ of the AUT can be enhanced by using three
tools i.e. FSM Droid, Reran, and Robotium. Among all the
tools, only Reran aims to achieve „scalability‟ of the AUT.
„Robustness‟ can be achieved by five tools i.e. Dynodroid,
Evodroid, FSM Droid, MobiGUITAR and Reran. Many of the
tools assure „usability‟ of the AUT i.e. Dynodroid, FSM Droid,
Reran, Robotium, Appium, and UIAutomator. The „platform
compatibility‟ testing is supported by only two tools, namely,
Renorax and MonkeyTalk. „Testability‟ of the app can be
verified and enhanced using four tools, namely, Dynodroid,

Evodroid, FSM Droid, and MobiGUITAR. Most of the tools,
namely, Dynodroid, Evodroid, MobiGUITAR, Reran,
Robotium, Appium, MonkeyTalk, and UIAutomator assure the
„correctness‟ of the AUT.

Fig. 1 presents a graph showing the results of this
comparative study. Ten dominant automated testing tools for
mobile applications are considered for this study. Each tool
focused one or more quality factors to achieve or enhance
quality of apps under test. Moreover, Fig. 1 shows an overall
trend of quality factors achieved by using automated testing.
The quality factor of „correctness‟ will be achieved using
almost every automated testing tool. „Usability‟ is also a major
aspect of mobile apps which can be evaluated and achieved by
using approximately 60% of the available software testing
tools. Approximately 50% of these tools focus on achieving
desired or optimum level of „robustness‟ of mobile apps. A
close to average percentage of testing tools attain quality
factors of „testability‟ and „performance‟ in the app under test.

TABLE. IV. QUALITY FACTORS ACHIEVED BY AUTOMATED TESTING OF MOBILE APPS

 S
o

ft
w

a
re

 T
es

ti
n

g
 T

o
o

ls

Software Quality Factors

E
x

te
n

si
b

il
it

y

M
a

in
ta

in
a

b
il

it
y

 P
er

fo
rm

a
n

ce

 S
ca

la
b

il
it

y

 R
o

b
u

st
n

es
s

 U
sa

b
il

it
y

 P
la

tf
o
rm

co
m

p
a

ti
b

il
it

y

 T
es

ta
b

il
it

y

 C
o

rr
ec

tn
es

s

Dynodroid

Evodroid

FSM Droid

MobiGUITAR

Renorax

Reran

Robotium

Appium

MonkeyTalk

UIAutomator

Fig. 1. Frequency of software quality factors achieved using automated testing tools for mobile applications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

255 | P a g e

www.ijacsa.thesai.org

A lesser percentage of tools are observed for other
important quality attributes like extensibility, maintainability,
scalability, and platform compatibility. Reran and Evodroid are
better than other tools because they tend to achieve five out of
nine quality factors. The rest of the eight tools help to achieve
less than five quality attributes in the AUT. Therefore, it is
recommendable that for an AUT, more than one tool should be
used to assure all the critical quality factors.

There is no automated testing tool or solution for mobile
apps which tests for all possible quality factors that are
mentioned in Table 2. Most testing tools cover only usability,
correctness and robustness, which are desired by almost every
mobile app. To support incremental development with testing,
and post deployment maintainability and flexibility, only a few
tools serve this purpose. Therefore, trend of automated testing
is high on usability, correctness and robustness, average on
testability and performance, and lesser on extensibility,
maintainability, scalability, and platform compatibility.

VII. CONCLUSION AND FUTURE WORK

There is no mobile app testing tool which tests for all
possible quality factors. Most testing tools cover only usability,
correctness and robustness, which are desired by almost every
mobile app. To support incremental development with testing,
and post deployment maintainability and flexibility, only a few
tools serve this purpose. Trend of automated testing is high on
usability, correctness and robustness, average on of testability
and performance, and lesser on extensibility, maintainability,
scalability, and platform compatibility. In automated testing of
mobile applications, further research can be done to propose
automated mobile apps testing tool that aims to achieve all
quality factors mentioned in Table 1. A similar analysis can be
made by considering testing tools for other mobile operating
systems as well like windows. A comparative analysis can also
be done on quality of apps of different mobile operating
systems based on automated testing tools of each platform.

Several tools are proposed and implemented for testing of
mobile apps. In this research study, these tools are evaluated
focusing on identifying the quality factors they aid to achieve
in the apps under test. Moreover, overall trends of essential
quality factors achieved using automated testing tools are
measured. This study revealed that the automated testing
provides best support for assurance of usability, correctness and
robustness. An average number of tools aid to assure testability
and performance. However, for assurance of extensibility,
maintainability, scalability, and platform compatibility, only a
few tools are available. In automated testing of mobile
applications, further research can be done to propose automated
mobile apps testing tool which aims to achieve all quality
factors mentioned in Table 2. A similar analysis can be made
by considering testing tools for other mobile operating systems
too, e.g., windows. A comparative analysis can also be done on
quality of apps of different mobile operating systems based on
automated testing tools of each platform. Moreover, on the
basis of the tools identified from this study, revised and
enhanced solutions can be proposed for achieving the
maximum number of quality attributes in the AUT.

ACKNOWLEDGEMENT

Special thanks to International Islamic University,
Islamabad Pakistan and Army Public College of Management
& Sciences, Rawalpindi, Pakistan for providing support in
order to complete this research.

REFERENCES

[1] P. Rathi and V. Mehra, “Analysis of Automation and Manual Testing
Using Software Testing Tool,” 2015.

[2] D. Amalfitano, et al., “MobiGUITAR: Automated model-based testing
of mobile apps,” IEEE Software, vol. 32, pp. 53-59, 2015.

[3] X. Wang and G. He, “The research of data-driven testing based on
QTP,” in 2014 9th International Conference on Computer Science &
Education, 2014.

[4] M. Monier and M. M. El-mahdy, “Evaluation of automated web testing
tools,” International Journal of Computer Applications Technology and
Research, vol. 4, 2015.

[5] K. M. Mustafa, et al., “Classification of software testing tools based on
the software testing methods,” in Proceedings of the International
Conference on Computer and Electrical Engineering (ICCEE‟09), 2009,
pp. 229-233.

[6] G. Saini and K. Rai, "Software Testing Techniques for Test Cases
Generation," International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3, 2013.

[7] N. Islam, "A Comparative Study of Automated Software Testing Tools,"
2016.

[8] D. Shikha and K. Bahl, “Software Testing Tools & Techniques for Web
Applications.”

[9] S. Jagannatha, et al., “Comparative Study on Automation Testing using
Selenium Testing Framework and QTP,” 2014.

[10] S. Sharma and M. VISHAWJYOTI, “STUDY AND ANALYSIS OF
AUTOMATION TESTING TECHNIQUES,” Journal of Global
Research in Computer Science, vol. 3, pp. 36-43, 2013.

[11] H. Kaur and G. Gupta, “Comparative Study of Automated Testing
Tools: Selenium, Quick Test Professional and Testcomplete,” Harpreet
Kaur et al Int. Journal of Engineering Research and Applications ISSN,
pp. 2248-9622, 2013.

[12] A. Jain, et al., “A Comparison of RANOREX and QTP Automated
Testing Tools and their impact on Software Testing,” IJEMS, vol. 1, pp.
8-12, 2014.

[13] T. Xie, “Improving effectiveness of automated software testing in the
absence of specifications,” in 2006 22nd IEEE International Conference
on Software Maintenance, 2006, pp. 355-359.

[14] S. Gunasekaran and V. Bargavi, “Survey on Automation Testing Tools
for Mobile Applications,” International Journal of Advanced
Engineering Research and Science (IJAERS), vol. 2, pp. 36-41, 2015.

[15] L. Gomez, et al., “Reran: Timing-and touch-sensitive record and replay
for android,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 72-81.

[16] R. Mahmood, et al., “Evodroid: Segmented evolutionary testing of
android apps”, in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014, pp. 599-
609.

[17] A. Machiry, et al., “Dynodroid: An input generation system for android
apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, 2013, pp. 224-234.

[18] T. Su, “FSMdroid: guided GUI testing of android apps,” in Proceedings
of the 38th International Conference on Software Engineering
Companion, 2016, pp. 689-691.

