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Abstract

Workflow scheduling is a key component behind the process for an optimal
workflow enactment. It is a well-known NP-hard problem and is more challeng-
ing in the heterogeneous computing environment. The increasing complexity of
the workflow applications is forcing researchers to explore hybrid approaches to
solve the workflow scheduling problem. The performance of genetic algorithms
can be enhanced by the modification in genetic operators and involving an effi-
cient heuristic. These features are incorporated in the proposed Hybrid Genetic
Algorithm (HGA). A solution obtained from a heuristic is seeded in the initial
population that provides a direction to reach an optimal (makespan)solution.
The modified two fold genetic operators search rigorously and converge the al-
gorithm at the best solution in less amount of time. This is proved to be the
strength of the HGA in the optimization of fundamental objective (makespan)
of scheduling. The proposed algorithm also optimizes the load balancing during
the execution side to utilize resources at maximum. The performance of the
proposed algorithm is analyzed by using synthesized datasets, and real-world
application workflows. The HGA is evaluated by comparing the results with
renowned and state of the art algorithms. The experimental results validate
that the HGA outperforms these approaches and provides quality schedules
with less makespans.
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1. Introduction

Scientific communities are dealing with the experimentation and simulations
that involve huge amount of data. Many scientific fields, such as Astronomy,
Bio-informatics, Meteorology, Environmental Science, and Geological Sciences
deal with large-scale data [1]. Handling such an amount of data has become
a great challenge. The increased complexity, the heterogeneity of the scientific
applications and the execution platforms cause additional challenges in the big
data management [2]. Scientists use workflow management systems (WMS)
to handle such large-scale experiments. The WMS organize and manage large-
scale distributed data. Moreover, the WMS simplify the complexity to run
data-intensive applications [3].

Many WMS have been developed over the last decade and are widely used
by the scientific world, such as Pegasus [4], Swift [5], Kepler [6], Taverna [7],
Trident [8], and Konstanz Information Miner (KNIME) [9]. The workflow opti-
mization is a vital part of all WMS that takes place during resource mapping,
and scheduling in workflow life-cycle [10]. An efficient resource allocation strat-
egy directly effects the WMS overall performance. Therefore, scientific commu-
nity has been putting their efforts to propose novel techniques for the workflow
optimization and overcome the challenges that emerge with the development in
scientific applications.

The major contribution of this research is a new workflow scheduling al-
gorithm, namely the Hybrid Genetic Algorithm (HGA). The HGA is a genetic
algorithm (GA) guided by a heuristic to pursue an optimal (makespan) schedule
in an efficient manner. Genetic algorithms (GAs) have the capability to search
large problem spaces. The heuristic helps GA to enhance the performance. The
genetic operators (crossover and mutation) are modified that help the HGA to
explore most of the problem space in less amount of time and ultimately the
HGA converges. The workflows are usually modeled as Directed Acyclic Graphs
(DAGs) [11], in which the nodes or vertices represent tasks, and the edges repre-
sent the precedence or data dependencies among the tasks. The same workflow
model has been adopted in our work. The behavior of the proposed algorithm
is analyzed with the diverse datasets, including synthesized, and real-world ap-
plication workflows e.g Montage, and CyberShake 1. Montage and CyberShake
workflows are common choice of the researchers as benchmarks to validate the
performance of workflow scheduling algorithms. These workflows have different
characteristics and include most of the workflow patterns that are required to
be analyzed during the performance evaluation of any novel scheduling algo-
rithm. Random workflows provide grounds to check the behavior of proposed
algorithm for different sizes and shapes of workflows having different values of
out-degree and communication to computation ratio.
The rest of the paper is organized as follows. Section 2 provides the background.
The related work is summarized in Section 3. Section 4 describes the proposed

1confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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algorithm. The performance analysis and discussion are presented in Section 5,
and Section 6 concludes the paper.

2. Background

Workflows have simplified the management of data-intensive applications
by decomposing the applications into smaller tasks that need to be completed
in a sequence to reach the results. The concept of workflows has reduced the
complexity of large-scale experiments [10]. The WMS have been designed to or-
ganize and manage large data using a step-wise approach [12]. The major stages
of a WMS are shown in Fig. 1. Scientific experiments and simulations generate
huge amounts of data. Different WMS mandate inputs in specific formats. The
workflow composition stage constructs a high level workflow (abstract work-
flow), that identifies the software component and data required for the partic-
ular execution without any details of physical execution resources. In the next
stage, the abstract workflow is mapped to the physical resources and provides
an executable plan in the form of a concrete workflow. Resource allocation is
optimized in the mapping stage. The mapped workflow is then scheduled on the
physical resources and executed. The performance of the workflow execution is
monitored and results are gathered. The resource allocation is optimized in the
mapping stage and scheduling during the execution [2]. Efficient scheduling
can enhance the system performance [13]. We focus on the latter stage of the
optimization in this paper. The HGA is a scheduling algorithm that optimizes
the makespan (schedule length) of the workflow and balances the load across all
of the available resources.

The paper is based on our previously proposed algorithm Performance Ef-
fective Genetic Algorithm (PEGA) [14]. In this paper we presents a hybrid
approach by using a schedule of well-known heuristic Heterogeneous Earliest
Finish Time (HEFT) in the initial population. In-addition load balancing pro-
cedure enhances the equal load distribution among resources. These features
provide strength to the proposed algorithm to provide better schedules with
lower makespan. HEFT is a well-known list-based scheduling heuristic that
outperforms a number of algorithms [15]. HEFT schedule is used as a seed in
the initial population of the proposed hybrid approach. List-based scheduling
is a two-phase process. In the first phase, the task-priority list is generated,
and in the second phase, the processors are allocated. In the HEFT, a priority
list is generated in the descending order of up-ward rank or the b-level. The
processors allocation for tasks is based on the earliest finish time. Following are
the attributes used in HEFT that are b-level, earliest start time, and earliest
finish time. These attributes are defined and briefly discussed below.

• Upward rank (b-level):

rankb(vn) = wn +maxvm∈succ(vn)
{dnm + rankb(vm)}, (1)

where wn is the average execution cost (it is the amount of time required to
execute a task on execution node), dnm is the average communication cost
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Figure 1: Major stages of a generic workflow management system.

(it is the cost of data transfer from a parent to child node in a workflow)
between nodes n and m, and vm is the successor of vn. The up-ward rank
of each of the task is calculated by the above recursive function and a
task priority list is generated by a descending order of the corresponding
upward rank values.

• Earliest start time (EST):
The earliest time of a processor pk for a task vn is defined as:

EST (vn, pk) = max{avail[k],maxvm∈pred(vn)
(AFT (vm) + dnm)}, (2)

where avail[k] is the time when processor k is ready to execute a new task,
AFT (vm) is the actual finish time of task vm on processor pk, dnm is the
communication cost of tasks vn and vm, and the task vm is predecessor of
vn. Task vn can have more than one predecessors. Therefore, the maxi-
mum sum of the AFT and dnm among the predecessors will be considered
in Eq. 2, which will cause the maximum delay in the execution of the task
vn.

• Earliest finish time (EFT):
The EFT is the attribute that determines the processor allocation. The
EFT of a processor pk for task vn can be defined as:

EFT (vn, pk) = wn + EST (vn, pk), (3)

where wn is the average execution cost of task vn across all of the proces-
sors and EST is the earliest start time of a processor pk for task vn, which
is already defined in Eq. 2.
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3. Related Work

The workflow scheduling problem has been widely studied during the last
couple of decades. Number of heuristics and evolutionary algorithms has been
proposed to solve the workflow scheduling problem. The Modified Critical Path
(MCP) [15] is a scheduling algorithm that uses the As Late As Possible (ALAP)
parameter to create the priority list of the workflow tasks. The ALAP parameter
is the maximum time a task n can be delayed at the latest without violating
the precedence constraints. Thereafter, the tasks are arranged in a descending
order in terms of the ALAP parameter. The resource allocation is carried out by
allocating the tasks on the machine executing them in the earliest finish time.

In meta-heuristics, there are different categories of techniques, such as GAs [14],
ant colony optimization [16], and particle swarm optimization [17] that are avail-
able in the literature to solve the task scheduling problem. However, GAs gained
more popularity among researchers due to the ease of hybridization with other
paradigms.

Various hybrid approaches can be found in literature however, our work fo-
cuses on a hybrid approach that uses both a heuristic and a genetic algorithm
to try to reach an optimal (makespan)solution for workflow scheduling. Various
hybrid algorithms have been proposed by combining heuristics with genetic algo-
rithms. A Hybrid Successor Concerned Heuristic-Genetic Scheduling (HSCGS)
algorithm was presented in [18], in which the authors, combined a heuristic and
a GA. In the first phase, the heuristic named Successor Concerned List Heuris-
tic Scheduling (SCLS) was employed to generate a schedule. The SCLS is a
list-based heuristic in which the priority list of tasks was formed based on the
up-ward rank and successor of tasks. In the second phase the schedule gener-
ated by SCLS heuristic is incorporated in a GA. After number of generations the
algorithm converges and provides a schedule with reasonable schedule length.
Another recently proposed algorithm, Performance Effective Genetic Algorithm
(PEGA) [14] optimizes makespan using a hybrid approach. However, the time
complexity of PEGA is high. The PEGA only optimizes makespan while the
HGA reduces makespan as well as provides a load balanced schedule. In addi-
tion, a heuristic is also incorporated in the HGA that enhances the performance
of the HGA by directed search.

A recently proposed GA, Multiple Priority Queues Genetic Algorithm (MPQGA) [19]
exploits multiple queues of the tasks (priority lists) in a GA. The chromosomes
are represented by the priority lists produced for the DAG by b-level, t-level,
and sum of both parameters. The b-level (rankb(vn)), and t-level (rankt(vn))
values of each task are calculated by Eq. 1, and Eq. 4 respectively.

rankt(vn) = maxvm∈pred(vn)
{wn + dnm + rankt(vm)}, (4)

where wn is the average execution cost, dnm is the average communication cost
between nodes n and m, and vm is the predecessor of vn. The t-level (downward
rank) of each of the task is calculated by the above recursive function given in
Eq. 1 and a task priority list is generated by an ascending order of the corre-
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sponding values of t-level.

The initial population consists of these priority queues based chromosomes
and the mapping of tasks on the processors is performed based on earliest finish
time parameter. Fitness for each chromosome is then computed using roulette
wheel method and fit chromosomes are selected for genetic operations. Single
point crossover and swap mutation operation comprises the genetic operations
of the MPQGA. Our proposed algorithm differs from the MPQGA by the chro-
mosome representation because in the HGA chromosome length is twice the
number of tasks in a DAG and half of the chromosome consists of the random
processor allocation to each of the task and the other half represents the priority
list of tasks within the DAG. The HGA dominates the MPQGA from its two-
fold crossover and mutation operations that are twice as efficient as compared
to the traditional genetic operations. Load balancing is an additional strength
of our proposed algorithm.

Daoud and Kharma have proposed a two phase algorithm, named the Hy-
brid Heuristic Genetic Algorithm (H2GS) [20]. In the first phase, schedules
in the form of chromosomes are generated by employing the Longest Dynamic
Critical Path (LDCP) heuristic. The LDCP generates schedules and thereafter
such schedules are used in the initial population of a customized GA, called
the Genetic Algorithm for Scheduling (GAS). The produced schedules work as
catalyst and support GAS during the second phase to reach the resulting sched-
ule. A two-dimensional chromosomal representation used in the GAS and the
customized operators are used to search the problem space. In our proposed
technique, we have used a comparatively less complex one-dimensional direct
chromosome representation. The genetic operators (crossover and mutation) are
modified to a two-fold operators that enhance the process of search to pursue an
optimal (makespan) solution. Based on the aforementioned features, the HGA
has a capability to arrive efficiently at the best solution.

In [21] an improvement of well-known multi-objective GA, NSGA-II is pre-
sented. In the market oriented grid environment the price for the workflow
execution is an important constraint. Therefore, in addition to makespan, price
is also considered as the objective function in the proposed algorithm. A fuzzy
system is implemented to optimize the third objective that is load balancing.
The proposed algorithm improved these parameters but the complexity is in-
creased considerably. However, the improvement in the makespan, and load
balancing can be achieved by the HGA with much less time.

4. The Proposed Algorithm HGA

4.1. Problem Statement

Consider an appliocation that can be represented as workflow and modeled
as DAG. A DAG can be given by a tuple (V , D, P ), where V is the set of n
number of tasks, D is the set of edges representing the precedence between the
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pair of tasks, and P is the set of the available processors. The elements of the
DAG tuple are:

V = {v1, v2, v3, . . . , vn},

D = {d1, d2, . . . , dn}

where d represents edge between two nodes,

P = {p1, p2, p3, . . . , pm}.

The element D in the DAG representation illustrates the precedence of tasks,
which means that for any pair of tasks (vi, vj) ∈ V , the execution of vj cannot
be started until vi is completed. That is to say that, vj is a successor of vi.
Any task vi without a predecessor is called as the entry task, and a task vj with
no successor task is called the exit task. There can be more than one entry
task and one exit task. During scheduling, the precedence must not be violated,
otherwise the schedule will be invalid. The cost to move data from one processor
to another is termed as the communication cost represented by element D in
the DAG tuple. For any pair of tasks the edge between them is given by di ∈ D
, the communication cost is represented by di that will be a real number.

The execution cost of any task vi on a processor j from the set of available
processors P is represented by wij . The execution costs of all of the tasks on
each of the processor are the numerical values that are represented by an n x
m matrix, with n being the number of tasks in the application and m being
the number of processors. The workflow scheduling problem is defined as the
assignment of a set of tasks V to the set of resources P , such that:

• the precedence constraint is preserved;

• the schedule length is reduced; and

• the load is balanced among processors.

The objectives of the proposed workflow scheduling algorithm are to opti-
mize the makespan and to balance the load. In this paper, it is assumed that
information, such as workflow size, task precedence, and resources are known a
prior. Such a category of algorithms, in which all of the information is known
prior to scheduling, is called deterministic or static algorithms [22]. The work-
flow scheduling is proven to be NP-hard [23] problem.

4.2. The Proposed Algorithm

The proposed algorithm is a hybrid approach that is a combination of heuris-
tic and genetic algorithm. The outline of the HGA is given in Algorithm 1. The
HGA starts with a set of schedules in the form of initial population. The popu-
lation size Np, number of generations Ng, crossover, mutation and elitism prob-
abilities are assumed to be user input. Algorithm 1 ( line 1) starts with set of
chromosomes called initial population. Then the HEFT schedule is seeded into
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the initial population. The HEFT heuristic provides guidance to the algorithm
that improves the performance of the HGA. The directed search helps the HGA
to converge after fewer numbers of generations. The variable Ng represents the
number of generations that is used as a termination criterion. The outer for
loop at line 3 will run for Ng times.
The population consists of the individuals called chromosomes. The chromo-
some representation is direct and each of the chromosomes consists of two parts.
The left half represents the resource allocation and its length is equal to the
number of nodes in the DAG. The genes represent the processor numbers from
1 to P , where P is the maximum number of available processors. The size of
the second half is also the number of nodes within a DAG, which represents
the sequence or order of the tasks to be scheduled. The precedence constraints
must not be violated; otherwise the chromosome will be an invalid chromosome
and will not represent a correct schedule. Each chromosome represents a valid
schedule. An example chromosome is shown in Fig. 2, and the corresponding
schedule on three processors in the form of Gantt Chart is shown in Fig. 3.

1524.333.663536.3323.66512113122

t1 t2 t3 t4 t5 t6 t7

processor allocation task sequence using b-level

Figure 2: Chromosome representation.

The first half is randomly generated, while the second half is determined by
the up-ward rank of tasks using Eq. 1. The sequence of tasks in the example
chromosome shown in Fig. 2 will be in the descending order of the b-level.
The task priority list will be {1, 3, 4, 6, 2, 7, 5}. If the tasks are mapped
on the processors according to the processor allocation shown in the first half
of chromosome, then the resulting schedule length will be 51 time units. The
corresponding schedule is shown in Fig. 3.

In evaluation process (Algorithm 1, line 4, 5, 6), each schedule in each gen-
eration is evaluated based on the fitness function. The fitness of a chromosome
x can be defined as:

f(x) = c/makespan(x), (5)

where c is a constant and the makespan is defined as:

makespan(x) = F.T (texit), (6)

with F.T (texit) being the finish time of exit node. In case there are more than
one exit task, the makespan is defined by Eq. 7:

makespan(x) = max(F.T (ti)), i = {1, 2, 3, . . . , n}. (7)
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Algorithm 1: Hybrid Genetic Algorithm

Input: Np Population Size,
α Elitism Rate,
β Mutation Rate,
Ng Number of Generations.

Output: S Near Optimal Solution.
1 Initial population generation of size Np − 1;
2 Seed HEFT schedule as a chromosome in Np;
3 for i = 1 to Ng do

/* Evaluation */

4 for j = 1 to Np do
5 Compute fitness value of each chromosome;
6 end for

/* Elitism */

7 Number of Elite Chromosomes E = α×Np;
8 Select E Chromosomes having best fitness values as NE ;
9 Selection Routine as shown in Algorithm 2;

10 Crossover Routine as shown in Algorithm 3;
11 Mutation Routine as shown in Algorithm 4;

/* Next generation */

/* Ns are the selected chromosomes */

12 Np = NE +Ns;
13 Load Balancing Routine as shown in Algorithm 5;

14 end for
15 Return Near optimal (makespan) solution S;

Algorithm 2: Selection Routine

1 Pick two chromosomes at random from initial population;
2 for k = 1 to Ng do
3 if f(x) < f(y) then
4 Select chromosome x as Ns;
5 end if

6 end for

Algorithm 3: Crossover Routine

Data: Number of crossover C = Ns/2
1 for k = 1 to C do
2 Randomly select two chromosomes xa and xb for mating;
3 Off springs by single point crossover is xc and xd;
4 Off springs by double point crossover is xe and xf ;
5 Compute fitness values of xc, xd, xe and xf ;
6 Select two best off springs as Ns;

7 end for
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Algorithm 4: Mutation Routine

Data: Number of mutations M = βxNs

1 for l = 1 to M do
2 Randomly select a chromosome xi from Ns;
3 Perform single point mutation off spring = xj ;
4 Perform double point mutation off spring = xk;
5 Compute fitness of xj and xk;
6 Select offspring with better fitness value as Ns;

7 end for

Algorithm 5: Load Balancing Routine

1 Calculate LB parameter for all chromosomes using Eq. 8;
2 Select 50% of chromosome with higher LB values;
3 forall the selected chromosomes do
4 Identify the overloaded processor pl from chromosome yol;
5 Randomly select a processor pi such that pi 6= pl;
6 Replace the pol by pn at two places;
7 A new chromosome xlb is formed;
8 if f(xlb) > f(yol) then
9 Replace xlb by yol;

10 end if

11 end forall
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Figure 3: Corresponding schedule of example chromosome shown in Fig. 2.

The evaluation is carried out based on the fitness function defined in Eq. 5.
Elitism at line 7 and 8 is also introduced in HGA that copy best chromosomes
from each generation to the next generation. It prevents HGA to lose quality
solutions. The details of selection at line 9 is given in Algorithm 2 in which
fit chromosomes are selected by employing a binary tournament selection for
genetic operations. The selected chromosomes then undergo the crossover and
mutation. Both genetic operations are modified in the HGA that differentiate
the proposed work from existing GAs. The strength of both operators is dou-
bled by combining single and double point crossover and mutation. Pseudocode
of crossover and mutation routines are presented in Algorithms 3, and 4, respec-
tively. At the end of each generation, a neighborhood search is performed using
a load balancing function. The pseudo-code of load balancing process is given
in Algorithm 5. Each generation is completed at line 14 of Algorithm 1 and for
next generation algorithm jumps to line 3 until termination criteria is met.

The resources must be utilized in such a fashion so that the resources should
neither be overloaded nor stay idle for a long time. The load balancing Algo-
rithm 5 distributes the tasks among the processors in such a way that all of the
processors complete the job with the minimum difference in the finish time. At
the end of each iteration, the Algorithm 5 is executed that enhances the quality
of the schedules in terms of schedule length by balancing the load across all of
the processors.

The load balancing parameter (LB) is defined in Eq.8, that is used in Algo-
rithm 5 to determine the quality of the load balance in each of the schedule:

LB = SLength −min{FT1, FT2, FT3, . . . , FTn}, (8)
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where SLength being the schedule length of the corresponding chromosome and
FTn is the finish time of processor n. The greater the LB value the worse is the
load balancing. The complexity of the proposed algorithm is nm+ n2, where n
is the number of generations and m is the population size. Increase in any of
these two factors the runtime of HGA will also increase.

5. Performance Analysis and Discussion

In this section the performance of the proposed algorithm is analyzed. The
HGA is evaluated by using datasets with diverse characteristics and the achieved
results are compared with the following selected algorithms. We selected heuris-
tics (MCP and HEFT), a generic evolutionary algorithm (PEGA), and recently
proposed hybrid genetic algorithms (MPQGA and HSCGS) for comparative
analysis with the proposed algorithm. These selected algorithms based on dif-
ferent approaches provide sound grounds to study and compare the behavior of
the HGA. We have selected Average Schedule Length (ASL) of 1000 runs as a
performance metric. The range bars for ASL of all algorithms shows a 95% of
the confidence interval for corresponding ASL. This shows that for any other
workflow of similar type the schedule length of that workflow would be in the
given interval with 95% of certainty. In some of the bar charts the confidence
interval is not distinguishable from the mean value for the scale used in those
graphs.

The proposed algorithm is evaluated by simulations in a target system that
is heterogeneous. The resources as well as the network links both are hetero-
geneous in the execution environment. Since the tasks are different based on
the type of the workloads, therefore the heterogeneity of execution nodes and
tasks both are considered in the heterogeneous execution times of each task on
execution nodes. Similarly, the heterogeneity of network links and the edges
are implicitly considered as the varying communication costs mentioned on the
edges. After number of simulations the most suitable parameters for the pro-
posed algorithm that provides best results with the crossover and mutation
probabilities of 0.8 and 0.02 respectively. The population size and the number
of generations both attributes are taken as 100 to simplify the simulations.

HEFT is a well-known heuristic that provides good schedules. We seed
HEFT schedule in the initial population of HGA that accelerates the process
to reach an optimal (makespan). We have made simulations with and without
HEFT solution in the initial population of HGA. The results are given in Table 1.
The results show that the HEFT solution in the initial population accelerates
the runtime of the algorithm.

The datasets selected for the simulations include synthesized, and workflows
of real-world applications. The characteristics of the datasets used are tabulated
in Table 2. Researchers have been working on the workflow patterns 2 and many

2www.workflowpatterns.com
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Table 1: Comparision of results with and without HEFT Seed in Initial Population

Workflow
Nodes

HGA
with
HEFT
(sec)

HGA
without
HEFT
(sec)

100 6.55 7.94

500 30.66 39.99

1K 72.11 80.07

2K 143.52 159.45

benchmarks are available for the performance evaluation of new algorithms. As
an example, the NAS Grid Benchmarks3 (NGB) are designed for the perfor-
mance evaluation of parallel and distributed systems. The benchmarks include
four classes of problem obtained from computational fluid dynamics (CFD) ap-
plications: Embarrassingly Distributed (ED), Helical Chain (HC), Visualization
Pipeline (VP), and Mixed Bag (MB) [24]. These benchmarks represent the typ-
ical applications that run on the heterogeneous systems like grid. Each of these
consists of computational tasks achieved from NAS parallel Benchmarks (NGB).
They symbolize the typical applications that run on the heterogeneous systems
like grid. ED represents an important class of applications called parameter
studies, in which same program is run several times independently but with
different set of input parameters. HC represents long chains of sequential com-
putations. It is the execution of repeating a process one after another. VP is
compound of different structured processes. It contains some degree of parallel
as well as sequential flow of tasks. The structure of MB is similar to VP but the
degree of parallelism, and heterogeneity increases. The selected datasets, i.e.
Montage, CyberShake, and Gaussian Elimination are complex and large work-
flows that consist of most of the NGB classes of problem. These are real-world
workflows that demonstrate realistic execution behavior on distributed environ-
ment. Together with the synthesized workflows that are generated randomly,
we have a comprehensive set of test loads to analyze the performance of the
proposed algorithm.

Montage, Cybershake [25], and Gaussian Elimination [22] are used as work-
flow benchmarks to evaluate the proposed algorithm. These workflows represent
real-world problems.

5.1. Montage and CyberShake Benchmarks

Montage is an astronomical image mosaic engine created by NASA that is
used to generate a mosaic of the sky. The input astronomical images are com-
bined to form the final mosaic. The geometry of the final mosaic is determined

3www.nas.nasa.gov/publications/npb.html
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Table 2: Characteristics of datasets

Workflows Type Source Nature Nodes Shape

Montage Real [25] Regular 25,50,100 Fixed 4(a)

CyberShake Real [25] Regular 30,50,100 Fixed 4(b)

Gaussian
Elimination

Simulated Generated Regular 14,20,
. . . 104,119

Fixed 8

Random Synthesized Generated Random 20,40,60,
80,100

Varying

by the input images that can be represented as a workflow. Fig. 4(a) illustrates
the structure of a small size montage having 20 nodes. In Montage, there are
a lot of jobs with short execution time, such as mProjectPP, mDiffFit, mBack-
ground, and mJpeg that are required to be executed on a number of different
data items. On the other hand, some jobs such as mConcatFit, mBgModel,
and mAdd take much longer time to execute. The CyberShake workflow is used
by the Southern California Earthquake Center (SCEC). The CyberShake work-
flow is used to identify the earthquake hazards within a region. CyberShake
is a relatively simple workflow but can handle large datasets. As an example,
a small 20 node CyberShake workflow is shown in Fig. 4(b). CyberShake is
compute-intensive as well as data-intensive workflow. The details regarding the
characteristics of both workflows can be obtained from [25], in which the authors
provided the details of the execution of six diverse workflows including Montage
and CyberShake. Therefore, these workflows with different characteristics make
them highly suitable to be used for the validation of our proposed work.

We have performed extensive simulations using Montage and CyberShake
workflows to evaluate the behavior of the HGA. We obtained the data of these
benchmark workflows from [26]. The obtained data was the complete details
of previous executions of Montage and CyberShake. All of the algorithms were
tested under the same conditions to observe the comparative results. The per-
formance metric used for the performance results is ASL for 1000 runs. In the
plots the horizontal axis represents number of processors (P). The plots in Fig. 5
and Fig. 6 show the behavior of algorithms in terms of ASL when the number
of processors increase. The HGA outperformed the state of the art algorithms,
with its performance becoming better as the processors increase. The average
percentage improvement of the HGA over PEGA, MCP, HEFT, HSCGS, and
MPQGA was 73.97%, 59.55%, 29.85%, 12.58%, and 6.32%, respectively for 30
nodes CyberShake (Fig. 5(a)).

Similar results were obtained for CyberShake of 50, and 100 nodes with im-
proved performance as the size of workflow increased. The proposed algorithm
showed 19.53% and 25.05% improvement over the HSCGS, and 29.85% and
45.99% from the HEFT for 50 (Fig. 5(b)), and 100 (Fig. 5(c)) nodes CyberShake
respectively. However, the HGA significantly outperforms the PEGA and MCP
in case of the CyberShake workflows. The HGA outperformed the MPQGA by
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11.3% for 50 nodes, and 13.86% for 100 nodes Cyberhake workflows. The bet-
ter performance of the HGA with the increasing size in CyberShake workflows
proves the scalability of the HGA.
Similar experiments were carried out with the Montage workflows of 25, 50,
and 100 nodes. The results in Fig. 6 show a better performance of proposed
algorithm, as compared to the other five algorithms. In case of the 25 nodes
(Fig 6(a)) Montage workflow the HGA is better than the PEGA by 32.07%,
MCP by 16%, HEFT by 6.7%, and HSCGS by 4.97%. However, minimum aver-
age percentage improvement was 5.4% and 8.56% over MPQGA for 50(Fig 6(b))
, and 100 (Fig 6(c)) nodes Montage workflows respectively. For the rest of the
algorithms the average percentage improvement is comparatively high. It is no-
ticeable that the performance of proposed algorithm is better for CyberShake
workflows as compared to Montage workflows. Both types of workflows have
different characteristics, CyberShake is data-intensive workflow as compared to
Montage workflow.

The bar charts of Fig. 7 show the overall performance of the CyberShake
and Montage workflows of different sizes. The average schedule lengths obtained
from proposed algorithm are less considerably than the other five algorithms.
The HGA performance improved from MPQGA by 6.54%, HSCGS by 7.99%,
HEFT by 10.73%, MCP by 17.7%, and PEGA 29.33% for Cybershake workflows
(Fig. 7(a)). In case of the Montage workflows (Fig. 7(b)) average percentage im-
provement of HGA over MPQGA is 5.46%, and rest of the results are also similar
to CyberShake workflow. The proposed algorithm outperforms aforementioned
algorithms, however the performance is significantly better than PEGA. In the
proposed algorithm the heuristic accelerates the process to search an optimal
(makespan) schedule and modified genetic operators help to search the problem
space efficiently. These features dominate the HGA among other algorithms
and it outperforms completely.

5.2. Gaussian Elimination

The Gaussian elimination algorithm generates a repeating pattern as shown
in Fig. 8. The parameter m determines the size of the workflow. As an example,
a small 20 nodes Gaussian elimination data flow for m = 6 is shown in Fig. 8 to
illustrate the structure. Number of nodes for any matrix size can be calculated
by using Eq. 9.

n = (m2 +m− 2)/2, (9)

where n being the number of nodes within the graph.
The parameter m is also called as matrix size which determines the number

of nodes in Gaussian Elimination workflow by using Eq. 9. Greater the value
of parameter m higher the number of nodes in the workflow. We used different
values of parameter m and generated workflows of various sizes. The values of
parameter m used in our experimentation are from 5 to 15, which generated
workflows of suitable sizes for our simulations. HGA and aforementioned al-
gorithms were experimented with these workflows. Fig. 9(a) shows the plot of
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Figure 5: Performance of (a) 30 (b) 50 (c) 100 nodes CyberShake workflows.
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Figure 8: Gaussian elimination workflow for matrix size 6 (20 nodes).

average schedule length with the increase in the workflow size determined by the
matrix size (m) taken along x-axis. We can see that as the size of workflows be-
come bigger the average schedule lengths increase because the execution time of
bigger workflows will be higher. The plot in Fig. 9(a) shows a significant average
improvement of 19.6% of HGA over PEGA, which is considerable improvement
as compared to other algorithms. The HGA is better than MCP by 7.86%,
HEFT by 4.07%, HSCGS by 2.14%, and MPQGA by 1.32%. The performance
of the HGA with increase in the processors was also investigated and the results
obtained are presented in bar chart 9(b). The bar chart shows that as compared
to MPQGA, and HSCGS, the proposed algorithm did not performed well for
less number of processors but as processors increase the results of HGA became
better. The HGA results are approximately 28% better than PEGA while about
7% better as compared to HEFT on the average. Proposed algorithm showed
considerable improvement for Gaussian Elimination workflow.

5.3. Synthesized Workflows

The synthesized workflows can be generated randomly [15] based on the
following parameters and these are used for performance evaluation of the HGA.

• Workflow Size (n): The parameter n is the number of nodes in a workflow
that represents the size of a workflow. Various sizes of random workflows
using different values of n given in the following set were used in the
performance evaluation of the HGA. n = {20, 40, 60, 80, 100}.
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Figure 9: Performance results with Gaussian Elimination workflow with (a) increasing matrix
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• Shape Parameter (α): The shape of workflow can be handled by the pa-
rameter α. If α < 1, then longer workflows with less parallelism are
generated. If α > 1, the small size workflows with higher parallelism are
generated. If α = 1, the workflows of balanced size are generated that are
neither long nor short. The HGA is evaluated with three different sizes of
workflows, with α= {0.1, 1, 2}.

• Communication to Computation Ratio (CCR): The parameter CCR deter-
mines whether the workflow is computation-intensive or communication-
intensive. If CCR > 1, then the workflow is communication-intensive. If
CCR < 1, then the workflow is compute-intensive. If CCR = 1 then the
workflow is neither communication nor computation-intensive. The values
of CCR considered in experimental evaluation were 0.1, 1, and 10.

• The number of resources is represented by the parameter P , we use the
number of resources as 2x, where x = {2, 3, 4, 5, 6}.

• Out degree: This parameter determines the number of edges going out
from a node. Because the workflows were random, the out degree was
chosen at random.

• Range percentage of computation costs on processors (β): It determines
the heterogeneity factor for processor speed. Its higher value causes signif-
icant difference in the computation costs of tasks and lower value indicates
similar or equal computation costs of tasks. The values of used in simu-
lations are 0.1, 0.5, and 1.

Variety of random workflows with different characteristics were generated to
analyze the performance of proposed algorithm. Fig. 10 presents the behavior
of algorithms for random 100 nodes workflow when processors increase. We
must note that as the resources increase the average schedule lengths decrease
up to certain extent, which indicates that execution times can be reduced by
exploiting parallelism in workflows but it is limited due to the serial content
in workflows. The HGA showed 50.6% over PEGA, 44.57% over MCP, 22.76%
over HEFT, 13% over HSCGS, and 6.78% over MPQGA average percentage im-
provement. Sets of workflows 5k, 10k, and 15k with different characteristics as
mentioned above were generated and simulation results are achieved with CCR
values of 0.1, 1, and 10. The results are shown in Fig. 11. The HGA showed
significant improvement over MPQGA, HSCGS, HEFT, PEGA, and MCP for
the results achieved for CCR values of 1 and 10. However, the performance of
the proposed algorithm is not convincing for CCR value 0.1. This indicates that
HGA performs well for communication-intensive workflows.
The load balancing feature in the proposed algorithm is also evaluated by com-
paring the results achieved from algorithm with and without load balancing.
Results are presented in Fig. 12. The plot shows the strength of load balancing
feature of HGA as the average schedule lengths are better with load balancing.
The HGA outperformed and considerable better results proved the supremacy
of proposed algorithm over the other five algorithms. The time complexity of
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HGA is nm + n2 ,where n is number of generations and m is the population
size. The proposed algorithm has high complexity as compared to heuristics.
Since the proposed algorithm is designed for the static scheduling, therefore the
limitation of high complexity of HGA might not affect the system performance.

6. Conclusion

In this paper, a genetic evaluation based approach is modified and a new
hybrid genetic algorithm (HGA) for workflow scheduling is presented. The pro-
posed algorithm seeds the Heterogeneous Earliest Finish Time (HEFT) based
schedule in the initial population that guides the algorithm to reach an opti-
mal (makespan) schedule in fewer generations. Rigorous search with two fold
crossover and mutation operators cover the large problem space and enhances
the HGA performance. The proposed algorithm optimizes workflow schedule
length with an additional feature of load balancing that ensures the optimized
resource utilization. The scheduling algorithms with different approaches are
compared with the HGA. The simulations with variety and different sizes of
datasets show the diversity and scalability of proposed algorithm. The results
prove that the HGA outperforms and the quality of schedules is better by re-
duced schedule lengths. The simulation with different communication to compu-
tation ratio (CCR) shows that proposed algorithm performs well for workflows
with CCR values greater than 1, that is communication-intensive workflows.

In future work we plan to investigate the performance of the proposed algo-
rithm with more complex workloads with increased processors, workflow size,
and heterogeneity. Furthermore, we plan to incorporate the optimization of
data-intensive workflows because the scientific applications are becoming more
data-intensive and scientific community is trying to solve the challenges caused
by the big data.
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