

Available online at www.sciencedirect.com

ScienceDirect

Fuzzy Information and Engineering

http://www.elsevier.com/locate/fiae

ORIGINAL ARTICLE

$(\in, \in \lor q)$ -Intuitionistic Fuzzy Ideals of BG-algebra

S.R. Barbhuiya

Received: 24 May 2014/ Revised: 7 December 2014/

Accepted: 13 January 2015/

Abstract In this paper, we introduce the concept of $(\in, \in \lor q)$ -intuitionistic fuzzy ideals of *BG*-algebra and investigate some of their basic properties.

Keywords BG-algebra · Fuzzy ideal · (ϵ , ϵ $\vee q$)-Fuzzy ideal · (ϵ , ϵ $\vee q$)-Intuitionistic fuzzy ideal · Homomorphism.

© 2015 Fuzzy Information and Engineering Branch of the Operations Research Society of China. Hosting by Elsevier B.V. All rights reserved.

1. Introduction

In 1965, Zadeh [1] introduced the notion of a fuzzy subset of a set as a method of representing uncertainty in real physical world. The concept of intuitionistic fuzzy subset was introduced by Atanassov [2] in 1986, which is a generalization of the notion of fuzzy sets. Fuzzy sets give a degree of membership of an element in a given set, while intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership. In 1966, Imai and Iseki [3] introduced the two classes of abstract algebras, viz., BCK-algebras and BCI-algebras. It is known that the class of BCK-algebra is a proper subclass of the class of BCI-algebras. Neggers and Kim [4] introduced a new concept, called B-algebras, which are related to several classes of algebras such as BCI/BCK-algebras. Kim and Kim [5] introduced the notion of BG-algebra which is a generalization of B-algebra. Zarandi and Saeid [6] developed intuitionistic fuzzy ideal of BG-algebra. Senapati, Bhowmik and Pal [7] studied

Department of Mathematics, Srikishan Sarda College, Hailakandi-788151, Assam, India email: saidurbarbhuiya@gmail.com

Peer review under responsibility of Fuzzy Information and Engineering Branch of the Operations Research Society of China.

© 2015 Fuzzy Information and Engineering Branch of the Operations Research Society of China. Hosting by Elsevier B.V. All rights reserved.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.fiae.2015.03.003

S.R. Barbhuiya (🖂)

intuitionistic fuzzy ideals in BG-algebras in 2012. Bhakat and Das [8] used the relation of "belongs to" and "quasi coincident with" between fuzzy point and fuzzy set to introduce the concept of $(\in, \in \lor q)$ -fuzzy subgroup and $(\in, \in \lor q)$ -fuzzy subring. Basnet and Singh [9] introduced $(\in, \in \lor q)$ -fuzzy ideals of BG-algebra in 2011. Barbhuiya and Choudhury [10] introduced $(\in, \in \lor q)$ -fuzzy ideals of d-algebra in 2014. Motivated by this, we introduce the notion of $(\in, \in \lor q)$ -intuitionistic fuzzy ideals of d-algebra and establish some of their basic properties.

2. Preliminaries

Definition 1 A BG-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying the following axioms:

- (i) x * x = 0,
- (ii) x * 0 = x,

(iii)
$$(x * y) * (0 * y) = x \forall x, y \in X$$
.

For brevity, we also call X a BG-algebra.

Example 1 Let $X = \{0, 1, 2, 3, 4\}$ with the following cayley table:

Table 1: Cayley table for *BG*-algebra.

*	0	1	2	3	4
0	0	4	3	2	1
1	1	0	4	3	2
2	2	1	0	4	3
3	3	2	1	0	4
4	4	3	2	1	0

Then (X, *, 0) is a *BG*-algebra.

Definition 2 A non-empty subset S of a BG-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.

Definition 3 A nonempty subset I of a BG-algebra X is called a BG-ideal of X if

- (i) $0 \in I$,
- (ii) $x * y \in I$, $y \in I \Rightarrow x \in I \ \forall \ x, y \in X$.

Definition 4 A fuzzy set μ in X is called a fuzzy BG-ideal of X if it satisfies the following conditions:

(i) $\mu(0) \ge \mu(x)$,

(ii) $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \} \ \forall \ x, y \in X.$

Example 2 Consider a BG-algebra $X = \{0, 1, 2\}$ with the following cayley table:

Table 2: Example of fuzzy BG-ideal.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Define $\mu: X \to [0, 1]$ by $\mu(0) = 0.9, \mu(1) = 0.6, \mu(2) = 0.3$. Then it is easy to verify that μ is a fuzzy *BG*-ideal of *X*.

Definition 5 An intuitionistic fuzzy set (IFS) A of a BG-algebra X is an object of the form $A = \{< x, \mu_A(x), \nu_A(x) > | x \in X\}$, where $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ with the condition $0 \le \mu_A(x) + \nu_A(x) \le 1, \forall x \in X$. The numbers $\mu_A(x)$ and $\nu_A(x)$ denote respectively the degree of membership and the degree of non-membership of the element x in set A. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \nu_A)$ for the intuitionistic fuzzy set $A = \{< x, \mu_A(x), \nu_A(x) > | x \in X\}$.

Definition 6 *If* $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$ *and* $B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle | x \in X \}$ *are any two IFS of a set X, then*

 $A \subseteq B$ if and only if for all $x \in X$, $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$,

A = B if and only if for all $x \in X$, $\mu_A(x) = \mu_B(x)$ and $\nu_A(x) = \nu_B(x)$,

 $A \cap B = \{ \langle x, (\mu_A \cap \mu_B)(x), (\nu_A \cap \nu_B)(x) \rangle | x \in X \},$

where $(\mu_A \cap \mu_B)(x) = \min\{\mu_A(x), \mu_B(x)\}\$ and $(\nu_A \cap \nu_B)(x) = \max\{\nu_A(x), \nu_B(x)\},$

 $A \cup B = \{ \langle x, (\mu_A \cup \mu_B)(x), (\nu_A \cup \nu_B)(x) \rangle | x \in X \},$

where $(\mu_A \cup \mu_B)(x) = \max\{\mu_A(x), \mu_B(x)\}\ and\ (\nu_A \cap \nu_B)(x) = \min\{\nu_A(x), \nu_B(x)\}.$

Definition 7 An intuitionistic fuzzy set A of a BG-algebra X is said to be an intuitionistic fuzzy BG-subalgebra of X if

- (i) $\mu_A(x * y) \ge \min{\{\mu_A(x), \mu_A(y)\}},$
- (ii) $v_A(x * y) \le \max\{v_A(x), v_A(y)\} \ \forall \ x, y \in X.$

Example 3 Consider a BG-algebra $X = \{0, 1, 2\}$ with the following cayley table:

Table 3: Example of intuitionistic fuzzy BG-subalgebra.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

The intuitionistic fuzzy subset $A = \{< x, \mu_A(x), \nu_A(x) > | x \in X\}$ given by $\mu_A(0) = \mu_A(1) = 0.6, \mu_A(2) = 0.2$ and $\nu_A(0) = \nu_A(1) = 0.3, \nu_A(2) = 0.5$ is an intuitionistic fuzzy *BG*-subalgebra of *X*.

Definition 8 An intuitionistic fuzzy set A of a BG-algebra X is said to be an intuitionistic fuzzy ideal (IFI) of X if

- (i) $\mu_A(0) \ge \mu_A(x)$,
- (ii) $v_A(0) \le v_A(x)$,
- (iii) $\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\},\$
- (iv) $v_A(x) \le \max\{v_A(x * y), v_A(y)\} \ \forall \ x, y \in X.$

Example 4 Consider a BG-algebra $X = \{0, 1, 2, 3\}$ with the following cayley table:

Table 4: Example of IFI.

*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

The intuitionistic fuzzy subset $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$ given by $\mu_A(0) = 1, \mu_A(1) = \mu_A(2) = \mu_A(3) = 0.3$, and $\nu_A(0) = 0, \nu_A(1) = \nu_A(2) = \nu_A(3) = 0.4$ is an intuitionistic fuzzy *BG*-subalgebra of *X*. Then *A* is an IFI of the *BG*-algebra *X*.

3. $(\in, \in \lor q)$ -Intuitionistic Fuzzy Ideals of BG-algebra

Definition 9 A fuzzy set μ of the form

$$\mu(y) = \begin{cases} t, & \text{if } y = x, \ t \in (0, 1] \\ 0, & \text{if } y \neq x \end{cases}$$

is called a fuzzy point with support x and value t and is denoted by x_t .

Definition 10 A fuzzy point x_t is said to belong to (respectively be quasi coincident with) a fuzzy set μ written as $x_t \in \mu$ (respectively $x_tq\mu$) if $\mu(x) \geq t$ (respectively $\mu(x) + t > 1$). If $x_t \in \mu$ or $x_tq\mu$, then we write $x_t \in \forall q\mu$. (Note $\overline{\in \forall q}$ means $\in \forall q$ does not hold).

Definition 11 A fuzzy subset μ of a BG-algebra X is said to be an $(\in, \in \lor q)$ -fuzzy ideal of X if

$$(x * y)_t, y_s \in \mu \Rightarrow x_{m(t,s)} \in \forall q\mu.$$

Definition 12 A fuzzy subset μ of a BG-algebra X is said to be an (α, β) -fuzzy ideal of X, if

$$(x * y)_t, y_s \alpha \mu \Rightarrow x_{m(t,s)} \beta \mu \ \forall \ x, y \in X,$$

where $m(t, s) = \min\{t, s\}$ and $\alpha, \beta \in \{\in, q, \in \lor q, \in \land q\}$ and $\alpha \neq \in \land q$.

Definition 13 A fuzzy point x_t is said to belong to (respectively be quasi coincident with) an intuitionistic fuzzy set $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}$ written as $x_t \in A$ (respectively x_tqA), if $\mu_A(x) \geq t$ (respectively $\mu_A(x) + t > 1$) and $\nu_A(x) \leq t$ (respectively $\nu_A(x) + t < 1$). If $x_t \in A$ or x_tqA , then $x_t \in VqA$.

Definition 14 An intutionistic fuzzy subset $A = (\mu_A, \nu_A)$ in a BG-algebra X is said to be an $(\in, \in \lor q)$ -IFI of X if it satisfies the following conditions:

- (i) $(x * y)_t, y_s \in \mu_A \Rightarrow x_{m(t,s)} \in \forall q \mu_A,$ *i.e.*, $\mu_A(x * y) \ge t, \mu_A(y) \ge s \Rightarrow \mu_A(x) \ge m(t,s) \text{ or } \mu_A(x) + m(t,s) > 1, \forall x, y \in X,$ where $m(t,s) = \min(t,s).$
- (ii) $(x * y)_t, y_s \in v_A \Rightarrow x_{M(t,s)} \in \forall q v_A,$ *i.e.*, $v_A(x * y) \le t, v_A(y) \le s \Rightarrow v_A(x) \le M(t,s)$ or $v_A(x) + M(t,s) < 1, \forall x, y \in X,$ where $M(t,s) = \max(t,s).$

Theorem 1 An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a BG-algebra X is an IFI of X iff A is an (\in, \in) -IFI of X.

Proof Let $A = (\mu_A, \nu_A)$ be an IFI of X. Then

$$\mu_A(x) \ge \min\left\{\mu_A(x * y), \mu_A(y)\right\} \tag{1}$$

and

$$\nu_A(x) \le \max \left\{ \nu_A(x * y), \nu_A(y) \right\} \ \forall \ x, y \in X. \tag{2}$$

Let $x, y \in X$ such that $(x * y)_t, y_s \in A$, where $t, s \in (0, 1)$. Then $\mu_A(x * y) \ge t, \mu_A(y) \ge s$ and $\nu_A(x * y) \le t, \nu_A(y) \le s$.

Now (1) $\Rightarrow \mu_A(x) \ge \min \{\mu_A(x * y), \mu_A(y)\} \ge \min \{t, s\} = m(t, s) \Rightarrow x_{m(t, s)} \in \mu_A$, and

 $(2) \Rightarrow \nu_A(x) \le \max \{\nu_A(x * y), \nu_A(y)\} \le \max \{t, s\} = M(t, s) \Rightarrow x_{M(t, s)} \in \nu_A$. Therefore, A is an (\in, \in) -IFI of X.

Conversely, let $A = (\mu_A, \nu_A)$ be an (\in, \in) -IFI of X. To prove that $A = (\mu_A, \nu_A)$ is an IFI of X.

Let
$$x, y \in X$$
 and $t = \mu_A(x * y), s = \mu_A(y)$. Then
 $\mu_A(x * y) \ge t, \mu_A(y) \ge s$
 $\Rightarrow (x * y)_t \in \mu_A, y_s \in \mu_A$
 $\Rightarrow x_{m(t,s)} \in \mu_A \text{ [since } A = (\mu_A, \nu_A) \text{ be an } (\in, \in)\text{-IFI of } X\text{]}$
 $\Rightarrow \mu_A(x) \ge m(t, s)$
 $\Rightarrow \mu_A(x) \ge m(\mu_A(x * y), \mu_A(y)).$ (3)

Again, let $x, y \in X$ and $t = v_A(x * y)$, $s = v_A(y)$. Then

$$v_{A}(x * y) \leq t, \mu_{A}(y) \leq s$$

$$\Rightarrow (x * y)_{t} \in v_{A}, y_{s} \in v_{A}$$

$$\Rightarrow x_{M(t,s)} \in v_{A} \text{ [since } A = (\mu_{A}, v_{A}) \text{ be an } (\in, \in)\text{-IFI of } X]$$

$$\Rightarrow v_{A}(x) \leq M(t, s)$$

$$\Rightarrow v_{A}(x) \leq M\{v_{A}(x * y), v_{A}(y)\}. \tag{4}$$

Hence, from Eqs. (3) and (4), $A = (\mu_A, \nu_A)$ is an IFI of X.

Theorem 2 If $A = (\mu_A, \nu_A)$ be a (q, q)-IFI of a BG-algebra X, then it is also an (\in, \in) -IFI of X.

Proof Let $A = (\mu_A, \nu_A)$ be a (q, q)-IFI of a BG-algebra X. Let $x, y \in X$ such that $(x * y)_t, y_s \in \mu_A$. Then

$$\mu_A(x * y) \ge t$$
 and $\mu_A(y) \ge s$
 $\Rightarrow \mu_A(x * y) + \delta > t$ and $\mu_A(y) + \delta > s$,

[where δ is an arbitrary small positive number]

$$\Rightarrow \mu_A(x * y) + \delta - t + 1 > 1 \text{ and } \mu_A(y) + \delta - s + 1 > 1$$

\Rightarrow (x * y)_\delta - t + 1 q \mu_A \text{ and } y_\delta - s + 1 q \mu_A.

Since $A = (\mu_A, \nu_A)$ is an (\in, \in) -IFI of X. Therefore, we have

$$\begin{aligned} x_{m(\delta-t+1,\delta-s+1)}q\mu_A \\ &\Rightarrow \mu_A(x) + m(\delta-t+1,\delta-s+1) > 1 \\ &\Rightarrow \mu_A(x) + \delta+1 - \max(t,s) > 1 \\ &\Rightarrow \mu_A(x) > M(t,s) - \delta \\ &\Rightarrow \mu_A(x) > M(t,s) \text{ [since δ is arbitrary]} \\ &\Rightarrow \mu_A(x) > M(t,s) > m(t,s) \\ &\Rightarrow x_{m(t,s)} \in \mu_A. \end{aligned}$$

Therefore,

$$(x * y)_t, y_s \in \mu_A \Rightarrow x_{m(t,s)} \in \mu_A. \tag{5}$$

Again, let
$$x, y \in X$$
 such that $(x * y)_t, y_s \in v_A$. Then $v_A(x * y) \le t$ and $v_A(y) \le s$ $\Rightarrow v_A(x * y) - \delta < t$ and $v_A(y) - \delta < s$,

[where δ is an arbitrary small positive number]

$$\Rightarrow \nu_A(x * y) + 1 - \delta - t < 1 \text{ and } \mu_A(y) + 1 - \delta - s < 1$$

\Rightarrow (x * y)_{1-\delta - t} q\nu_A \text{ and } (y)_{1-\delta - s} q\nu_A

Since $A = (\mu_A, \nu_A)$ is a (q, q)-IFI of X. Therefore, we have

$$\begin{aligned} x_{M(1-\delta-t,1-\delta-s)}qv_A \\ \Rightarrow v_A(x) + M(1-\delta-t,1-\delta-s) < 1 \\ \Rightarrow v_A(x) + 1 - \delta - m(t,s) < 1 \\ \Rightarrow v_A(x) < m(t,s) + \delta \\ \Rightarrow v_A(x) < m(t,s) [since \delta \text{ is arbitrary}] \\ \Rightarrow v_A(x) < m(t,s) < M(t,s) \\ \Rightarrow x_A(x) < m(t,s) < M(t,s) \end{aligned}$$

Therefore,

$$(x * y)_t, y_s \in \nu_A \Rightarrow x_{M(t,s)} \in \nu_A. \tag{6}$$

Hence, from Eqs. (5) and (6), $A = (\mu_A, \nu_A)$ is an (\in, \in) -IFI of X.

Remark 1 Converse of the above theorem is not true, i.e., every (\in, \in) -IFI is not a (q, q)-IFI.

Example 5 Consider a BG-algebra $X = \{0, 1, 2, 3\}$ with the following cayley table:

Table 5: Illustration of converse of Theorem 2.

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Let $A = (\mu_A, \nu_A)$ be an IFS in X defined as $\mu_A(0) = \mu_A(1) = 0.42, \mu_A(2) = \mu_A(3) = 0.35$, and $\nu_A(0) = \nu_A(1) = 0.53, \nu_A(2) = \nu_A(3) = 0.57$. Then $A = (\mu_A, \nu_A)$ is an (\in, \in) -IFI in X, but it is not a (q, q)-IFI, because if x = 2, y = 1, t = 0.72, s = 0.62, then x * y = 2 * 1 = 3. Here $\mu_A(x * y) + t = \mu_A(3) + 0.72 = 0.35 + 0.72 = 1.07 > 1$ and $\mu_A(y) + s = \mu_A(1) + 0.62 = 0.42 + 0.62 = 1.04 > 1$, i.e., $(x * y)_t q \mu_A$ and $y_s q \mu_A$, but $\mu_A(x) + m(t, s) = \mu_A(2) + m(0.72, 0.62) = 0.35 + 0.62 = 0.97 < 1$.

Theorem 3 An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a BG-algebra X is an $(\in, \in \lor q)$ -IFI of X iff

- (i) $\mu_A(x) \ge m(\mu_A(x * y), \mu_A(y), 0.5),$
- (ii) $v_A(x) \le M(v_A(x * y), v_A(y), 0.5)$.

Proof (i) First, let $A = (\mu_A, \nu_A)$ be an $(\in, \in \vee g)$ -IFI of X.

Case I Let $m(\mu_A(x * y), \mu_A(y)) < 0.5 \ \forall x, y \in X$. Then

$$m(\mu_A(x * y), \mu_A(y), 0.5) = m(\mu_A(x * y), \mu_A(y)).$$

If possible, let $\mu_A(x) < m(\mu_A(x * y), \mu_A(y))$. Choose a real number t such that $\mu_A(x) < t < m(\mu_A(x * y), \mu_A(y))$. Then $(x * y)_t, (y)_t \in \mu_A$.

But.

 $\mu_A(x) < t$, i.e., $x_t \notin \mu_A$ and $\mu_A(x) + t < 2t$, i.e., $\mu_A(x) + t < 2m(\mu_A(x * y), \mu_A(y)) < 2 \times 0.5 = 1$

$$\Rightarrow \mu_A(x) + t < 1 \Rightarrow x_t \overline{q} \mu_A$$
.

which contradicts the fact that $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -IFI of X. Therefore, $\mu_A(x) \ge m(\mu_A(x * y), \mu_A(y)) = m(\mu_A(x * y), \mu_A(y), 0.5)$.

Case II Let $m(\mu_A(x * y), \mu_A(y)) \ge 0.5$. Then $m(\mu_A(x * y), \mu_A(y)) = 0.5$. If possible, let $\mu_A(x) < m(\mu_A(x * y), \mu_A(y), 0.5) = 0.5$. Then

$$\mu_A(x * y) \ge 0.5$$
 and $\mu_A(y) \ge 0.5$.

Therefore, $(x * y)_{0.5}, y_{0.5} \in \mu_A$.

But, $\mu_A(x) < 0.5$, therefore, $x_{0.5} \notin \mu_A$ and $\mu_A(x) + 0.5 < 0.5 + 0.5 = 1$, i.e., $x_{0.5} \overline{\in \vee q}$, which is again a contradiction that $A = (\mu_A, \nu_A)$ is a $(\in, \in \vee q)$ -IFI of X.

Hence, we must have $\mu_A(x) \ge 0.5 = m(\mu_A(x * y), \mu_A(y), 0.5)$.

Converse Part:

Let
$$\mu_A(x) \ge m(\mu_A(x * y), \mu_A(y), 0.5).$$
 (7)

Let $x, y \in X$ such that $(x * y)_t, y_s \in \mu_A$. Then $\mu_A(x * y) \ge t$ and $\mu_A(y) \ge s$.

Therefore, $m(\mu_A(x * y), \mu_A(y)) \ge m(t, s)$. By Eq. (7), $\mu_A(x) \ge m(t, s, 0.5)$.

Now, if $m(t, s) \le 0.5$, then m(t, s, 0.5) = m(t, s).

Therefore, $\mu_A(x) \ge m(t, s)$

$$\Rightarrow x_{m(t,s)} \in \mu_A$$
 (8)

Again, if m(t, s) > 0.5, then m(t, s, 0.5) = 0.5.

Therefore, $\mu_A(x) \ge m(t, s, 0.5) = 0.5$, i.e., $\mu_A(x) + m(t, s) > 0.5 + 0.5 = 1$

$$\Rightarrow x_{m(t,s)}q\mu_A. \tag{9}$$

From Eqs. (8) and (9), we have

$$(x * y)_t, y_s \in \mu_A \Rightarrow x_{m(t,s)} \in \forall q\mu_A. \tag{10}$$

Therefore, μ_A is an $(\in, \in \vee q)$ -IFI.

(ii) First, let $A = (\mu_A, \nu_A)$ be an $(\in, \in \vee q)$ -IFI of X.

Case I Let $M(v_A(x * y), v_A(y)) > 0.5 \forall x, y \in X$. Then

$$M(v_A(x * y), v_A(y), 0.5) = M(v_A(x * y), v_A(y)).$$

If possible, let $v_A(x) > M(v_A(x * y), v_A(y))$. Choose a real number t such that $v_A(x) > t > M(v_A(x * y), v_A(y))$

$$\Rightarrow \nu_A(x * y) < t, \nu_A(y) < t$$

$$\Rightarrow (x * y)_t \in \nu_A, y_t \in \nu_A.$$
But, $\nu_A(x) > t$

$$\Rightarrow x_t \notin \nu_A \text{ and } \nu_A(x) + t > 2t$$

$$\Rightarrow \nu_A(x) + t > 2M(\nu_A(x * y), \nu_A(y)) > 2 \times 0.5 = 1$$

$$\Rightarrow \nu_A(x) + t > 1,$$

which contradicts the fact that $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -IFI of X. Therefore, $\nu_A(x) \le M(\nu_A(x * y), \nu_A(y)) = M(\nu_A(x * y), \nu_A(y), 0.5)$.

Case II Let
$$M(v_A(x * y), v_A(y)) \le 0.5 \ \forall x, y \in X$$
. Then $M(v_A(x * y), v_A(y)) = 0.5$. If possible, let $v_A(x) > M(v_A(x * y), v_A(y), 0.5) = 0.5$. Then $v_A(x * y) \le 0.5$ and $v_A(y) \le 0.5$.

Therefore, $(x*y)_{0.5}$, $y_{0.5} \in v_A$. But $v_A(x) > 0.5$, therefore $x_{0.5} \notin v_A$ and $v_A(x) + 0.5 > 0.5 + 0.5 = 1$, which is again a contradiction that $A = (\mu_A, v_A)$ is a $(\in, \in \lor q)$ -IFI of X. Hence, we must have $v_A(x) \le 0.5 = M(v_A(x*y), v_A(y), 0.5)$.

Converse Part:

Let
$$v_A(x) \le M(v_A(x * y), v_A(y), 0.5)$$
. (11)

Let $x, y \in X$, such that $(x * y)_t, y_s \in v_A$. Then $v_A(x * y) \le t$ and $v_A(y) \le s$. Therefore $M(v_A(x * y), v_A(y)) \le M(t, s)$ By (11), $v_A(x) \le M(t, s, 0.5)$.

Now, if $M(t, s) \ge 0.5$, then M(t, s, 0.5) = M(t, s). Therefore,

$$v_A(x) \le M(t, s)$$

 $\Rightarrow x_{M(t,s)} \in v_A.$ (12)

Again, if M(t, s) > 0.5, then M(t, s, 0.5) = 0.5. Therefore,

$$v_A(x) \le M(t, s, 0.5) = 0.5$$

 $\Rightarrow v_A(x) + M(t, s) < 0.5 + 0.5 = 1$
 $\Rightarrow x_{M(t,s)}qv_A,$ (13)

$$(12) \text{ and } (13) \Rightarrow (x * y)_t, y_s \in v_A \Rightarrow x_{M(t,s)} \in \forall qv_A.$$
 (14)

(10) and (14) $\Rightarrow v_A$ is an $(\in, \in \lor q)$ -IFI.

Remark 2 An (\in, \in) -IFI is always an $(\in, \in \lor q)$ -IFI of X, but not conversely and can be seen from the following example.

Example 6 Consider a BG-algebra $X = \{0, a, b, c\}$ with the following cayley table:

Table 6: Illustration of converse of Remark 2.

*	0	а	b	с
0	0	а	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Let $A = (\mu_A, \nu_A)$ be an IFS in X defined as $\mu_A(0) = \mu_A(a) = \mu_A(c) = 0.7, \mu_A(b) = 0.55$, and $\nu_A(0) = \nu_A(a) = \nu_A(c) = 0.42, \nu_A(b) = 0.3$. Then $A = (\mu_A, \nu_A)$ is an (\in, \in) $\forall q$)-IFI of X. By Theorem 3, it is not an (\in, \in) -IFI, since $c_{0.6} = (b*a)_{0.6}, a_{0.6} \in \mu_A$ but $b_{0.6} \notin \mu_A$.

Theorem 4 An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a BG-algebra X is an $(\in, \in \lor q)$ -IFI of X and if $\mu_A(x) < 0.5, \nu_A(x) > 0.5 \ \forall x, y \in X$, then $A = (\mu_A, \nu_A)$ is also an (\in, \in) -IFI of X.

Proof Let $A = (\mu_A, \nu_A)$ be an $(\in, \in \lor q)$ -IFI of X and $\mu_A(x) < 0.5$ and $\nu_A(x) > 0.5 \ \forall x, y \in X$. Let $(x * y)_t \in \mu_A$, $y_s \in \mu_A$. Then we have

$$t \le \mu_A(x * y) < 0.5$$
 and $s \le \mu_A(y) < 0.5$.

Therefore m(t, s) < 0.5 and also $\mu_A(x) < 0.5$. Thus $\mu_A(x) + m(t, s) < 0.5 + 0.5 = 1$.

Since μ_A is an $(\in, \in \lor q)$ -IFI of X, therefore,

either
$$\mu_A(x) \ge m(t, s)$$
 or $\mu_A(x) + m(t, s) > 1$.

So we must have $\mu_A(x) \ge m(t, s) \Rightarrow x_{m(t, s)} \in \mu_A$. Therefore,

$$(x * y)_t \in \mu_A, y_s \in \mu_A \Rightarrow x_{m(t,s)} \in \mu_A. \tag{15}$$

Thus, μ_A is (\in, \in) -IFI.

Again, let $(x * y)_t \in v_A$, $y_s \in v_A$. Then $0.5 < v_A(x * y) \le t$ and $0.5 < v_A(y) \le s$.

Therefore, M(t, s) > 0.5. Also $v_A(x) > 0.5$. Thus, $v_A(x) + M(t, s) > 0.5 + 0.5 = 1$.

Since v_A is an $(\in, \in \lor q)$ -IFI of X, we have

either
$$v_A(x) \le m(t, s)$$
 or $v_A(x) + M(t, s) < 1$.

So we must have, $v_A(x) \le m(t, s) \Rightarrow x_{M(t, s)} \in v_A$. Therefore,

$$(x * y)_t \in \nu_A, y_s \in \nu_A \Rightarrow x_{M(t,s)} \in \nu_A. \tag{16}$$

Thus, v_A is (\in, \in) -IFI.

Hence (15) and (16) $\Rightarrow A = (\mu_A, \nu_A)$ is (\in, \in) -IFI of X.

Remark 3 Every (\in, q) -IFI of *BG*-algebra *X* is always a $(\in, \in \lor q)$ -IFI of *X*.

Theorem 5 An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a BG-algebra X is an $(\in, \in \lor q)$ -IFI of X iff the sets $(\mu_A)_t = \{x \mid \mu_A(x) \ge t, \text{ where } t \in (0, 0.5), \mu_A(0) \ge t\}$ and $(\nu_A)_s = \{x \mid \nu_A(x)\} < s$, where $s \in (0.5, 1], \nu_A(0) < s\}$ are ideal of X.

Proof Assume $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -IFI of X. Clearly,

$$0 \in (\mu_A)_t, 0 \in (\nu_A)_s$$
 [since $\mu_A(0) \ge t, \nu_A(0) \le s$].

Let $x, y \in X$, such that $x * y, y \in (\mu_A)_t$ where $t \in (0, 0.5]$. Therefore $\mu_A(x * y) \ge t, \mu_A(y) \ge s$.

Now by Theorem 3

$$\mu_A(x) \ge m(\mu_A(x * y), \mu_A(y), 0.5) \ge m(t, t, 0.5) = t$$

 $\Rightarrow \mu_A(x) \ge t \Rightarrow x \in (\mu_A)_t$

Therefore, $x * y, y \in (\mu_A)_t \Rightarrow x \in (\mu_A)_t$.

Hence $(\mu_A)_t$ is an ideal of X.

Again let $x, y \in X$ such that $x * y, y \in (v_A)_s$ where $s \in (0.5, 1]$.

Therefore $v_A(x * y) < s, v_A(x * y) < s$.

Now by Theorem 3

$$v_A(x) \le M(v_A(x * y), v_A(y), 0.5) < M(s, s, 0.5) = s$$

$$\Rightarrow v_A(x) < s \Rightarrow x \in (v_A)_s$$

Therefore $x * y, y \in (v_A)_s \Rightarrow x \in (v_A)_s$.

Hence $(\nu_A)_s$ is an ideal of X.

Conversely, let $A=(\mu_A,\nu_A)$ be an intuitionistic fuzzy subset of X and the sets $(\mu_A)_t=\{x\mid \mu_A(x)\geq t, \text{ where }t\in(0,0.5)\}$ and $(\nu_A)_s=\{x\mid \nu_A(x))< s, \text{ where }s\in(0.5,1]\}$ are ideal of X, to prove $A=(\mu_A,\nu_A)$ is an $(\in,\in\vee q)$ -IFI of X. Suppose $A=(\mu_A,\nu_A)$ is not an $(\in,\in\vee q)$ -IFI of X, then there exist $a,b\in X$ such that at least one of $\mu_A(a)< m(\mu_A(a*b),\mu_A(b),0.5)$ and $\nu_A(a)> M(\nu_A(a*b),\nu_A(b),0.5)$ hold. Suppose $\mu_A(a)< m(\mu_A(a*b),\mu_A(b),0.5)$ holds. Let $t=[\mu_A(a)+m(\mu_A(a*b),\mu_A(b),0.5)]/2$. Then $t\in(0,0.5)$ and

$$\mu_A(a) < t < m(\mu_A(a*b), \mu_A(b), 0.5)$$
 (17)

$$\Rightarrow \mu_A(a * b) > t, \mu_A(b) > t$$

$$\Rightarrow a * b \in (\mu_A)_t, b \in (\mu_A)_t$$

$$\Rightarrow a \in (\mu_A)_t \text{ [since } (\mu_A)_t \text{ is ideal]}.$$

Therefore $\mu_A(a) > t$, which contradicts (17). Hence we must have

$$\mu_A(x) \ge m(\mu_A(x * y), \mu_A(y), 0.5).$$
 (18)

Next let $v_A(a) > M(v_A(a * b), v_A(b), 0.5)$ holds.

Let $s = [v_A(a) + M(v_A(a * b), v_A(b), 0.5)]/2$. Then $s \in (0.5, 1]$ and

$$v_A(a) > s > M(v_A(a*b), v_A(b), 0.5)$$
 (19)

$$\Rightarrow \nu_A(a * b) < s, \nu_A(b) < s$$

\Rightarrow a * b \in (\nu_A)_s, b \in (\nu_A)_s \Rightarrow a \in (\nu_A)_s [since (\nu_A)_s is ideal].

Therefore $v_A(a) < s$, which contradicts (19). Hence we must have

$$\nu_A(x) = M(\nu_A(x * y), \nu_A(y), 0.5). \tag{20}$$

Hence (18) and (20) $\Rightarrow A = (\mu_A, \nu_A)$ is an $(\in, \in \vee q)$ -IFI of X.

Theorem 6 Let S be a subset of a BG-algebra X. Consider the IFS $A_S = (\mu_S, \nu_S)$ in X defined by

$$\mu_S(x) = \begin{cases} 1, & \text{if} \quad x \in S, \\ 0, & \text{otherwise,} \end{cases} \qquad \nu_S(x) = \begin{cases} 0, & \text{if} \quad x \in S, \\ 1, & \text{otherwise.} \end{cases}$$

Then S is an ideal of X iff $A_S = (\mu_S, \nu_S)$ is an $(\in, \in \vee q)$ -IFI X.

Proof Let S be an ideal of X. Now $(\mu_S)_t$ = $\{x \mid \mu_S(x) \ge t\}$ = S, And $(\nu_S)_t$ = $\{x \mid \nu_S(x) < t\}$ = S, which is an ideal. Hence by Theorem 5, $A_S = (\mu_S, \nu_S)$ is an

 $(\in, \in \vee q)$ -IFI X.

Conversely, assume that $A_S = (\mu_S, \nu_S)$ is an $(\in, \in \lor q)$ -IFI X, to prove S is an ideal of X. Let $x * y, y \in S$. Then

$$\mu_{S}(x) \ge m(\mu_{S}(x * y), \mu_{S}(y), 0.5) = m(1, 1, 0.5) = 0.5$$

$$\Rightarrow \mu_{S}(x) \ge 0.5 \Rightarrow \mu_{S}(x) = 1 \Rightarrow x \in S$$
and
$$v_{S}(x) = M(v_{S}(x * y), v_{S}(y), 0.5) = M(0, 0, 0.5) = 0.5$$

$$\Rightarrow v_{S}(x) \le 0.5 \Rightarrow v_{S}(x) = 0 \Rightarrow x \in S.$$

Hence S is an ideal of X.

Theorem 7 Let S be an ideal of X. Then there exists $(\in, \in \lor q)$ -IFI $A = (\mu_A, \nu_A)$ of X such that $(\mu_A)_t = (\nu_A)_s = S$ for every $t \in (0, 0.5)$ and $s \in (0.5, 1]$.

Proof Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X defined by

$$\mu_A(x) = \begin{cases} 1, & \text{if} \quad x \in S, \\ u, & \text{otherwise,} \end{cases} \qquad \nu_A(x) = \begin{cases} 0, & \text{if} \quad x \in S, \\ s, & \text{otherwise,} \end{cases}$$

where $u < t \in (0, 0.5]$. Therefore $(\mu_A)_t = \{x : \mu_A(x) \ge t\} = S$, $(\nu_A)_t = \{x : \nu_A(x) < t\} = S$, and hence $(\mu_A)_t = (\nu_A)_s = S$ is an ideal.

Now if $A = (\mu_A, \nu_A)$ is not an $(\in, \in \lor q)$ -fuzzy ideal of X, then there exist $a, b \in X$ such that at least one of $\mu_A(a) < m(\mu_A(a*b), \mu_A(b), 0.5)$ and $\nu_A(a) > M(\nu_A(a*b), \nu_A(b), 0.5)$ hold. Suppose $\mu_A(a) < m(\mu_A(a*b), \mu_A(b), 0.5)$ holds, then choose a real number $t \in (0, 1)$ such that

$$\mu_A(a) < t < m(\mu_A(a*b), \mu_A(b), 0.5)$$
 (21)

$$\Rightarrow \mu_A(a * b) > t, \mu_A(b) > t$$

$$\Rightarrow a * b \in (\mu_A)_t, b \in (\mu_A)_t$$

$$\Rightarrow a \in (\mu_A)_t = S \text{ [since } (\mu_A)_t \text{ is ideal]}.$$

Therefore $(\mu_A)_t(a) = 1 > t$, which contradicts (21).

Hence we must have $\mu_A(x) < m(\mu_A(x * y), \mu_A(y), 0.5)$.

Again if $v_A(a) > M(v_A(a*b), v_A(b), 0.5)$ holds, then choose a real number $s \in (0, 1)$ such that

$$v_A(a) > s > M(v_A(a * b), v_A(b), 0.5)$$

$$\Rightarrow v_A(a * b) < s, v_A(b) < s$$

$$\Rightarrow a * b \in (v_A)_s, b \in (v_A)_s$$

$$\Rightarrow a \in (v_A)_s = S \text{ [since } (v_A)_s \text{ is ideal]}.$$
(22)

Therefore $v_A(a) = 0 < s$, which contradicts (22).

Hence we must have $v_A(x) \le M(v_A(x * y), v_A(y), 0.5)$. Thus, $A = (\mu_A, v_A)$ is an $(\in, \in \lor q)$ -IFI X.

Definition 15 Let $A = (\mu_A, \nu_A)$ be intuitionistic fuzzy subset of BG-algebra X and $t \in (0, 1]$. Then let

$$(\mu_A)_t = \{x \mid x_t \in \mu_A\} = \{x \mid \mu_A(x) \ge t\},\$$

$$<\mu_A>_t=\{x\mid x_tq\mu_A\}=\{x\mid \mu_A(x)+t>1\},\$$

$$[\mu_A]_t = \{x \mid x_t \in \forall q \mu_A\} = \{x \mid < \mu_A(x) \ge t \text{ or } \mu_A(x) + t > 1\},$$

where $(\mu_A)_t$ is called t level set of $\mu_A < \mu_A >_t$ is called q level set of μ_A and $[\mu_A]_t$ is called $\in \lor q$ level set of μ_A ,

clearly.

$$\begin{split} & [\mu_A]_t = <\mu_A>_t \cup (\mu_A)_t, \\ & (\nu_A)_t = \{x \mid x_t \in \nu_A\} = \{x \mid \nu_A(x) \leq t\}, \\ & <\nu_A>_t = \{x \mid x_tq\nu_A\} = \{x \mid \nu_A(x) + t < 1\}, \\ & [\nu_A]_t = \{x \mid x_t \in \vee q\nu_A\} = \{x \mid <\nu_A(x) \leq t \text{ or } \nu_A(x) + t < 1\}, \end{split}$$

where $(v_A)_t$ is called t level set of v_A , $< v_A >_t$ is called q level set of v_A and $[v_A]_t$ is called $\in \lor q$ level set of v_A ,

clearly,

$$[v_A]_t = < v_A >_t \cup (v_A)_t.$$

Theorem 8 Let $A = (\mu_A, \nu_A)$ be intuitionistic fuzzy subset of BG-algebra X. Then A is an $(\in, \in \lor q)$ -IFI X iff $[\mu_A]_t$ and $[\nu_A]_t$ is an ideal of X for all $t \in (0, 1]$. We call $[\mu_A]_t$ and $[\nu_A]_t$ as $\in \lor q$ level ideals of μ .

Proof Assume that *A* is an $(\in, \in \lor q)$ -IFI of *X*, to prove $[\mu_A]_t$ and $[\nu_A]_t$ is an ideal of *X*. Let $x * y, y \in [\mu_A]_t$ for $t \in (0, 1]$. Then

$$(x * y)_t \in \forall q \mu_A \text{ and } (y)_t \in \forall q \mu_A,$$

i.e.,
$$\mu_A(x * y) \ge t$$
 or $\mu_A(x * y) + t \ge 1$ and $\mu_A(y) \ge t$ or $\mu_A(y) + t \ge 1$.

Since A is an $(\in, \in \lor q)$ -IFI of X,

$$\mu_A(x) \ge m(\mu_A(x), \mu_A(y), 0.5) \ \forall \ x, y \in X.$$

Now we have the following cases.

Case I
$$\mu_A(x * y) \ge t$$
, $\mu_A(y) \ge t$, let $t > 0.5$. Then

$$\mu_A(x) \ge m(\mu_A(x), \mu_A(y), 0.5) = m(t, t, 0.5) = 0.5,$$

$$\Rightarrow \mu_A(x) \ge 0.5 \Rightarrow \mu_A(x) + t > 0.5 + 0.5 = 1 \Rightarrow x_t q \mu_A$$

Again if $t \le 0.5$, then

$$\mu_A(x) \geq m(\mu_A(x), \mu_A(y), 0.5) \geq m(t, t, 0.5) = t,$$

$$\Rightarrow \mu_A(x) \ge t \Rightarrow x_t \in \mu_A$$
.

Hence $(x)_t \in \forall q \mu_A \Rightarrow x_t \in [\mu_A]_t$.

Case II $\mu_A(x * y) \ge t$, $\mu_A(y) + t \ge 1$, let t > 0.5. Then

$$\mu_A(x) \ge m(\mu_A(x), \mu_A(y), 0.5) > m(t, 1 - t, 0.5) = 1 - t,$$

$$\Rightarrow \mu_A(x) > 1 - t \Rightarrow \mu_A(x) + t > 1 \Rightarrow x_t q \mu_A$$
.

Again if $t \le 0.5$, then

$$\mu_A(x) \ge m(\mu_A(x), \mu_A(y), 0.5) = m(t, 1 - t, 0.5) = t,$$

$$\Rightarrow \mu_A(x) \ge t \Rightarrow x_t \in \mu_A$$
.

Hence $(x)_t \in \vee q\mu_A \Rightarrow x_t \in [\mu_A]_t$.

Case III
$$\mu_A(x * y) + t > 1, \mu_A(y) \ge t$$
.

This is similar to case II.

Case IV
$$\mu_A(x * y) + t \ge 1, \mu_A(y) + t \ge 1$$
, let $t > 0.5$. Then

$$\mu_A(x) \ge m(\mu_A(x), \mu_A(y), 0.5) > m(1 - t, 1 - t, 0.5) = 1 - t,$$

$$\Rightarrow \mu_A(x) > 1 - t \Rightarrow \mu_A(x) + t > 1 \Rightarrow x_t q \mu_A$$
.

Again if $t \le 0.5$, then $\mu_A(x) \ge m(\mu_A(x), \mu_A(y), 0.5) = m(1 - t, 1 - t, 0.5) = 0.5 \ge t$ $\Rightarrow \mu_A(x) \ge t \Rightarrow x_t \in \mu_A$.

Hence $(x)_t \in \forall q \mu_A \Rightarrow x_t \in [\mu_A]_t$.

Hence from above four cases $x * y, y \in [\mu_A]_t \Rightarrow x_t \in [\mu_A]_t$.

Hence $[\mu_A]_t$ is an ideal of X. Similarly, we can prove $[\nu_A]_t$ is an ideal of X.

Conversely, let $A=(\mu_A,\nu_A)$ be an IFS in X, such that $[\mu_A]_t$ and $[\mu_A]_t$ is an ideal of X for all $t\in(0,1]$, to prove $A=(\mu_A,\nu_A)$ is an $(\in,\in\vee q)$ -IFI of X. Suppose A is not an $(\in,\in\vee q)$ -IFI of X, then there exist $a,b\in X$ such that at least one of $\mu_A(a)< m(\mu_A(a*b),\mu_A(b),0.5)$ and $\nu_A(a)> M(\nu_A(a*b),\nu_A(b),0.5)$ hold. Suppose $\mu_A(a)< m(\mu_A(a*b),\mu_A(b),0.5)$ is true, then choose $t\in(0,1]$, such that

$$\mu_A(a) < t < m(\mu_A(a * b), \mu_A(b), 0.5).$$
 (23)

Then $\mu_A(a*b) > t$, $\mu_A(b) > t \Rightarrow a*b$, $b \in (\mu_A)_t \subset [\mu_A]_t$ which is an ideal. Therefore, $a \in [\mu_A]_t \Rightarrow \mu_A(a) \ge t$ or $\mu_A(a) + t > 1$ which contradict (23).

Again if $v_A(a) > M(v_A(a * b), v_A(b), 0.5)$ is true, then choose $t \in (0, 1]$, such that

$$v_A(a) > t > M(v_A(a*b), v_A(b), 0.5).$$
 (24)

Then $v_A(a*b) < t$, $v_A(b) < t \Rightarrow a*b$, $b \in (v_A)_t \subset [v_A]_t$ which is an ideal. Therefore, $a \in [v_A]_t \Rightarrow v_A(a) < t$ or $v_A(a) + t < 1$ which contradict (24).

Hence we must have

$$\mu_A(x) \ge m(\mu_A(x * y), \mu_A(y), 0.5),$$

 $\nu_A(x) \le M(\nu_A(x * y), \nu_A(y), 0.5) \ \forall x, y \in X.$
Hence $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -IFI of X .

Theorem 9 Every $(\in \lor q, \in \lor q)$ -IFI is an $(\in, \in \lor q)$ -IFI.

Proof It follows from definition.

Theorem 10 Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two $(\in, \in \lor q)$ -IFIs of a BG-algebra X. Then $A \cap B$ is also an $(\in, \in \lor q)$ -IFI of X.

Proof Let $x, y \in X$. Now we have $A \cap B(x) = \{ \langle x, (\mu_A \cap \mu_B)(x), (\nu_A \cup \nu_B)(x) \rangle | x \in X \}$,

$$(\mu_{A} \cap \mu_{B})(x) = m\{\mu_{A}(x), \mu_{B}(x)\}$$

$$\geq m\{m\{\mu_{A}(x * y), \mu_{A}(y), 0.5\}, m\{\mu_{B}(x * y), \mu_{B}(y), 0.5\}\}$$
[since A is an $(\in, \in \lor q)$ – IFI]
$$= m\{m\{\mu_{A}(x * y), \mu_{B}(x * y)\}, m\{\mu_{A}(y), \mu_{A}(y)\}, 0.5\}$$

$$= m\{(\mu_{A} \cap \mu_{B})(x * y), (\mu_{A} \cap \mu_{B})(y), 0.5\},$$
(25)

$$(\nu_{A} \cap \nu_{B})(x) = M\{\nu_{A}(x), \nu_{B}(x)\}$$

$$\leq M\{M\{\nu_{A}(x * y), \nu_{A}(y), 0.5\}, M\{\nu_{B}(x * y), \nu_{B}(y), 0.5\}\}$$
[since A is an $(\in, \in \lor q)$ – IFI]
$$= M\{M\{\nu_{A}(x * y), \nu_{B}(x * y)\}, M\{\nu_{A}(y), \nu_{A}(y)\}, 0.5\}$$

$$= M\{(\nu_{A} \cup \nu_{B})(x * y), (\nu_{A} \cup \nu_{B})(y), 0.5\}.$$
(26)

(25) and (26) \Rightarrow $(A \cap B)$ $(\in, \in \lor q)$ -IFI of X.

The above theorem can be generalized as

Theorem 11 Let $\{A_i = (\mu_{A_i}, \nu_{A_i}) \mid i = 1, 2, 3, \cdots \}$ be a family of $(\in, \in \vee q)$ -IFIs of a BG-algebra X. Then $\bigcap_{i=1}^{n} A_i$ is also an $(\in, \in \vee q)$ -IFI of X, where $\bigcap_{i=1}^{n} A_i(x) = \{< x, m\{\mu_{A_i}(x) \mid i = 1, 2, 3, \cdots \}, M\{\nu_{A_i}(x) \mid i = 1, 2, 3, \cdots \} >: x \in X\}.$

4. Cartesian Product of BG-algebras and Their $(\in, \in \lor q)$ -Intuitionistic Fuzzy Ideals

Theorem 12 Let X, Y be two BG-algebras. Then their cartesian product $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$ is also a BG-algebra under the binary operation * defined in $X \times Y$ by (x,y) * (p,q) = (x * p,y * q) for all $(x,y),(p,q) \in X \times Y$.

Proof Clearly, $0 \in X$, $0 \in Y$, therefore $(0,0) \in X \times Y$. Let $(x, y), (p, q) \in X \times Y$. Now

(i)
$$(x, y) * (x, y) = (x * x, y * y) = (0, 0) \in X \times Y$$
,

(ii)
$$(x, y) * (0, 0) = (x * 0, y * 0) = (x, x) \in X \times Y$$
,

(iii)
$$((x, y) * (p, q)) * ((0, 0)) * (p, q)) = (x * p, y * p) * (0 * p, 0 * q)$$

= $((x * p) * (0 * p), (y * p) * (0 * q))$
= (x, y) for all $(x, y), (p, q) \in X \times Y$,

which shows that $(X \times Y, (0,0), *)$ is a BG-algebra.

Definition 16 Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two $(\in, \in \lor q)$ -IFIs of a BG-algebra X. Then their Cartesian product $A \times B$ is defined by $(A \times B)(x, y) = \{<(x, y), m\{\mu_A(x), \mu_B(y)\}, M\{\nu_A(x), \nu_B(y)\} >: x, y \in X\}$ where $\mu_A, \mu_B : X \to [0, 1]$ and $\nu_A, \nu_B : X \to [0, 1] \ \forall x, y \in X$.

Theorem 13 Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two $(\in, \in \lor q)$ -IFIs of a BG-algebra X. Then $A \times B$ is also an $(\in, \in \lor q)$ -IFI of X.

Proof Similar to Theorem 10.

5. Homomorphism of BG-algebras and Intuitionistic Fuzzy Ideals

Definition 17 Let X and X' be two BG-algebras. Then a mapping $f: X \to X'$ is said to be homomorphism if $f(x * y) = f(x) * f(y) \forall x, y \in X$.

Theorem 14 Let X and X' be two BG-algebras and $f: X \to X'$ be homomorphism. If $A = (\mu_A, \nu_A)$ is an $(\in, \in \vee q)$ -IFI of X', then $f^{-1}(A)$ is $(\in, \in \vee q)$ -IFI of X.

Proof $f^{-1}(A) = f^{-1}(\mu_A, \nu_A)(x)$ is defined as $f^{-1}(\mu_A, \nu_A)(x) = (\mu_A, \nu_A)(f(x)) \forall x \in X$. Let $A = (\mu_A, \nu_A)$ be an $(\in, \in \vee q)$ -IFI of X', let $x, y \in X$ such that $(x * y)_t, y_s \in f^{-1}(A) =$ $f^{-1}(\mu_A, \nu_A) = (f^{-1}\mu_A, f^{-1}\nu_A)$. Then $(x * y)_t, y_s \in f^{-1}(\mu_A)$ and $(x * y)_t, y_s \in f^{-1}(\nu_A)$.

Case
$$I$$
 Let $(x * y)_t, y_s \in f^{-1}(\mu_A)$
 $\Rightarrow f^{-1}(\mu_A)(x * y) \ge t$ and $f^{-1}(\mu_A)(y) \ge s$
 $\Rightarrow \mu_A f(x * y) \ge t$ and $\mu_A f(y) \ge s$
 $\Rightarrow (f(x * y))_t \in \mu_A$ and $(f(y))_s \in \mu_A$
 $\Rightarrow (f(x) * f(y))_t \in \mu_A$ and $(f(y))_s \in \mu_A$ [since f is homomorphism]
 $\Rightarrow (f(x))_{m(t,s)} \in \mu_A$
 $\Rightarrow \mu_A(f(x)) \ge m(t,s)$ or $\mu_A(f(x)) + m(t,s) > 1$
 $\Rightarrow f^{-1}(\mu_A)(x) \ge m(t,s)$ or $f^{-1}(\mu_A)(x) + m(t,s) > 1$
 $\Rightarrow x_{m(t,s)} \in f^{-1}(\mu_A)$ or $x_{m(t,s)} \in qf^{-1}(\mu_A)$
 $\Rightarrow x_{m(t,s)} \in \forall qf^{-1}(\mu_A)$.

Therefore,

$$(x * y)_t, y_s \in f^{-1}(\mu_A) \Rightarrow x_{m(t,s)} \in \forall q f^{-1}(\mu_A).$$
 (27)

Case II Let
$$(x * y)_t, y_s \in f^{-1}(v_A)$$

 $\Rightarrow f^{-1}(v_A)(x * y) \le t$ and $f^{-1}(v_A)(y) \le s$
 $\Rightarrow v_A f(x * y) \le t$ and $v_A f(y) \le s$
 $\Rightarrow (f(x * y))_t \in v_A$ and $(f(y))_s \in v_A$
 $\Rightarrow (f(x) * f(y))_t \in v_A$ and $(f(y))_s \in v_A$ [since f is homomorphism]
 $\Rightarrow (f(x))_{M(t,s)} \in v_A$
 $\Rightarrow v_A(f(x)) \le M(t,s)$ or $v_A(f(x)) + M(t,s) < 1$
 $\Rightarrow f^{-1}(v_A)(x) \le M(t,s)$ or $f^{-1}(v_A)(x) + M(t,s) < 1$
 $\Rightarrow x_{M(t,s)} \in f^{-1}(v_A)$ or $x_{M(t,s)} \in qf^{-1}(v_A)$
 $\Rightarrow x_{M(t,s)} \in \forall qf^{-1}(v_A)$.

Therefore,

$$(x * y)_t, y_s \in f^{-1}(v_A) \Rightarrow x_{M(t,s)} \in \forall q f^{-1}(v_A).$$
 (28)

(27) and (28)
$$\Rightarrow f^{-1}(A) = f^{-1}(\mu_A, \nu_A) = (f^{-1}\mu_A, f^{-1}\nu_A)$$
 is an $(\in, \in \lor q)$ -IFI of X .

Theorem 15 Let X and X' be two BG-algebras and $f: X \to X'$ be an onto homomorphism. If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy subset of X' such that $f^{-1}(A)$ is an $(\in, \in \lor q)$ -IFI of X, then A is also an $(\in, \in \lor q)$ -IFI of X.

Proof Let $x', y' \in X'$ such that $(x' * y')_t, y'_s \in A = (\mu_A, \nu_A)$ where $t, s \in [01]$, that is $(x' * y')_t, y'_s \in \mu_A$ and $(x' * y')_t, y'_s \in \nu_A$. Then $\mu_A(x' * y') \ge t$ and $\mu_A(y') \ge s$ and $v_A(x'*y') \le t$ and $v_A(y') \le s$. Since f is onto, so there exists $x, y \in X$ such that f(x) = x', f(y) = y', also f is homomorphism so f(x*y) = f(x)*f(y) = x'*y'. Now $(x'*y')_t, y'_s \in \mu_A$

$$\Rightarrow \mu_A(f(x * y)) \ge t \text{ and } \mu_A((f(y)) \ge s$$

$$\Rightarrow f^{-1}(\mu_A)(x * y) \ge t \text{ and } f^{-1}(\mu_A)(y) \ge s$$

$$\Rightarrow (x * y)_t \in f^{-1}(\mu_A) \text{ and } (y)_s \in f^{-1}(\mu_A)$$

$$\Rightarrow (x)_{m(t,s)} \in \forall q f^{-1}(\mu_A)$$
[since $f^{-1}(\mu_A)$ is a $(\in, \in \lor q)$ intuitionistic fuzzy ideal of X]
$$\Rightarrow f^{-1}(\mu_A)(x) \ge m(t,s) \text{ or } f^{-1}(\mu_A)(x) + m(t,s) > 1$$

 $\Rightarrow \mu_A(f(x)) \ge m(t,s) \text{ or } \mu_A(f(x)) + m(t,s) > 1$

 $\Rightarrow \mu_A(f(x)) \ge m(t,s) \text{ or } \mu_A(f(x)) + m(t,s) > 1$ \Rightarrow \mu_A(x') \geq m(t,s) \text{ or } \mu_A(x') + m(t,s) > 1

 $\Rightarrow x'_{m(t,s)} \in \vee q\mu_A.$

Therefore,

$$(x' * y')_t, y'_s \in \mu_A \Rightarrow x'_{m(t,s)} \in \forall q\mu_A. \tag{29}$$

Again
$$(x' * y')_t, y'_s \in v_A$$

 $\Rightarrow v_A(x' * y') \le t \text{ and } v_A(y') \le s$
 $\Rightarrow v_A(f(x * y)) \le t \text{ and } v_A(f(y)) \le s$
 $\Rightarrow f^{-1}(v_A)(x * y) \le t \text{ and } f^{-1}(v_A)(y) \le s$
 $\Rightarrow (x * y)_t \in f^{-1}(v_A) \text{ and } (y)_s \in f^{-1}(v_A)$
 $\Rightarrow (x)_{M(t,s)} \in \forall q f^{-1}(v_A) \text{ [since } f^{-1}(v_A) \text{ is a } (\in, \in \forall q)\text{-IFI of } X]$
 $\Rightarrow f^{-1}(v_A)(x) \le M(t, s) \text{ or } f^{-1}(v_A)(x * y) + M(t, s) < 1$
 $\Rightarrow (v_A)f(x) \le M(t, s) \text{ or } (v_A)f(x) + M(t, s) < 1$
 $\Rightarrow (v_A)(f(x)) \le M(t, s) \text{ or } (v_A)(f(x)) + M(t, s) < 1$
 $\Rightarrow (v_A)(x') \le M(t, s) \text{ or } (v_A)(x') + M(t, s) < 1$
 $\Rightarrow (x')_{M(t,s)} \in v_A \text{ or } (x')_{M(t,s)}qv_A.$

Therefore,

$$(x'*y')_t, y'_s \in \nu_A \Rightarrow (x')_{M(t,s)} \in \forall q\nu_A. \tag{30}$$

(29) and (30) \Rightarrow A is an $(\in, \in \lor q)$ -IFI of X.

6. Conclusion

In this paper, we introduce the concept of $(\in, \in \lor q)$ -IFIs of BG-algebra and investigate some of their useful properties. In my opinion, these definitions and results can be extended to other algebraic systems also. In the notions of (α, β) -fuzzy ideals, we can define twelve different types of ideals by three choices of α and four choices of β . In the present paper, we mainly discuss $(\in, \in \lor q)$ type fuzzy ideal. In the future, the following studies may be carried out: 1) $(\in, \in \lor q)$ -IFIs of d-algebra, 2) $(\in, \in \lor q)$ -doubt fuzzy ideals of BG-algebra.

Acknowledgments

The author would like to express his sincere thanks to the referees for their valuable comments and helpful suggestions in improving this paper.

References

- [1] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
- [2] K.T. Atanassov, Intutionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986) 87-96.
- [3] Y. Imai, K. Iseki, On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, 1966, pp. 19-22.
- [4] J. Neggers, H.S. Kim, On B-algebras, Math. Vensik 54 (2002) 21-29.
- [5] C.B. Kim, H.S. Kim, On BG-algebras, Demonstration Mathematica 41 (2008) 497-505.
- [6] A. Zarandi, A.B. Saeid, On intutionistic fuzzy ideals of BG-algebras, World Academy of Sciences Engineering an Technology 5 (2005) 187-189.
- [7] T. Senapati, M. Bhowmik, A. Pal, Intuitionistic fuzzifications of ideals in BG-algebras, Mathematical Aeterna 2(9) (2012) 761-778.
- [8] S.K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems 80 (1996) 359-368.
- [9] D.K. Basnet, L.B. Singh, (∈, ∈ ∨q)-Fuzzy ideal of BG-algebra, International Journal of Algebra 5(15) (2011) 703-708.
- [10] S.R. Barbhuiya, K.D. Choudhury, (∈, ∈ ∨q)- Fuzzy ideal of d-algebra, International Journal of Mathematics Trends and Technology 9(1) (2014) 16-26.