
Sahil Moza- Doctor of Philosophy
- PostDoc Position at Harvard University
Sahil Moza
- Doctor of Philosophy
- PostDoc Position at Harvard University
Neuroscience
About
8
Publications
1,891
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
119
Citations
Introduction
Current institution
Additional affiliations
Education
August 2012 - July 2020
Publications
Publications (8)
Highlighted Research Paper: T. Moldwin, M. Kalmenson, and I. Segev, “Asymmetric voltage attenuation in dendrites can enable hierarchical heterosynaptic plasticity.” eNeuro (2023).
Bistable biochemical switches are key motifs in cellular state decisions and long-term storage of cellular ′memory′. There are a few known biological switches that have been well characterized, however these examples are insufficient for systematic surveys of properties of these important systems. Here we present a resource of all possible bistable...
Optical manipulation is a powerful way to control neural activity in vitro and in vivo with millisecond precision. Patterning of light provides the remarkable ability to simultaneously target spatially segregated neurons from a population. Commercially available projectors provide one of the simplest and most economical ways of achieving spatial li...
Bistable biochemical switches are key motifs in cellular state decisions and long-term storage of cellular ‘memory’. There are a few known biological switches that have been well characterized, however these examples are insufficient for systematic surveys of properties of these important systems. Here we present a resource of all possible bistable...
Life prospers despite adverse conditions in many unpredictable dimensions. This requires that cellular processes work reliably, that is they are robust against many kinds of perturbations. For example, a cellular decision to differentiate should be stable despite changes in metabolic conditions and stochasticity due to thermal noise. For evolutiona...
Excitation-inhibition (EI) balance controls excitability, dynamic range, and input gating in many brain circuits. Subsets of synaptic input can be selected or 'gated' by precise modulation of finely tuned EI balance, but assessing the granularity of EI balance requires combinatorial analysis of excitatory and inhibitory inputs. Using patterned opto...
Excitation-inhibition (EI) balance controls excitability, dynamic range, and input gating in many brain circuits. Subsets of synaptic input can be selected or ‘gated’ by precise modulation of finely tuned EI balance, but assessing the granularity of EI balance requires combinatorial analysis of excitatory and inhibitory inputs. Using patterned opto...